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Abstract: We present a computational imaging approach, combining a phase-coded com-
putational camera with a corresponding CNN-based deblurring network, that enables ex-
tended depth of field images. The simulations demonstrate promising results achieving sig-
nificant depth of field extension.
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1. Introduction

Usually, the conventional imaging systems have to sacrifice from light efficieny for increased depth of field (DoF).
This in turn reduces the signal to noise ratio of the captured image. The research on DoF extension has been mostly
concentrated on manipulating the point spread function (PSF) of the imaging system. For instance, in [1] the DoF
is increased by inserting a cubic phase mask at the aperture. More recent works [2,3] optimize the phase mask and
the corresponding deblurring algorithm at the same time based on an end-to-end model, which demonstrate more
promising results. In [2], the phase mask is restricted to be a single-ring pattern and the deblurring algorithm is
implemented via a convolutional neural network (CNN). In [3], the phase mask is optimized within a much larger
signal space and the deblurring is accomplished via Wiener deconvolution.

In this work, we also propose an end-to-end optimization framework, which is based on a phase-coded imaging
network and a CNN-based deblurring network. For a given camera, we explicitly define the bandwidth of the
search space for the phase mask depending on the desired depth range for DoF extension, which significantly
eases the training process and is critical for the convergence of the end-to-end network.

2. Method

The proposed approach for DoF extension is illustrated in Fig. 1. The end-to-end model consisting of phase-coded
imaging and CNN-based deblurring networks is fully differentiable, which ensures optimization of (i.e. learning)
phase mask Φ together with the CNN weights via backpropagation (shown in red). The first five convolution layers

Fig. 1. End-to-end phase-coded imaging and deblurring model.

have 32 kernels with size 3× 3. The sixth convolution layer has 3 kernels with size 3× 3. The resulting residual
image is added to the original image, and the output is driven to a simple deconvolution network, i.e., two layers
of ConvT, each of which performing the operation xn+1 = HT xn with H being the convolution matrix. Finally, the
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utilized loss function is chosen to be sum of L1 loss and sparse image gradient [4] as
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Our phase-coded extended DoF (EDoF) camera, modeled via the imaging network in Fig. 1, includes a phase
mask placed on top of a (or at the aperture position of an equivalent) thin lens that has focal length f and images
the depth plane z f onto the sensor, i.e, 1/ f = 1/z f + 1/zs with zs being the distance between the lens and the
sensor. For an object point at z and nominal lens focal length f0 at wavelength λ0, the generalized pupil function
is given as
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where A(ξ ,η) is the (binary) pupil function of the lens, Φλ0(ξ ,η) is the phase pattern that corresponds to the
phase delay introduced by the mask at the nominal wavelength λ0, nλ is the refractive index of the material that
is assumed for both thin lens and phase mask, r is the radius of the circular aperture; and Ψλ ,z is the defocus
coefficient that is defined as
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The PSFs hλ ,z(x,y) for different color channels are found by taking the magnitude-squared of the Fourier trans-
form of the generalized pupil function, given by Eq. 2, at the corresponding wavelengths. During training, the mask
is discretized so that the corresponding sampling rates, (1/∆ξ ,1/∆η), are twice the one required for properly sam-
pling the defocus term (within the extent of lens aperture). The following equation provides a good approximation
for this purpose:
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3. Results

For comparison purpose, we simulate a camera with similar parameters to [3], i.e. r = 2.5mm and zs = 35.5mm .
The (convex) thin lens is focused at 2m for λ0 = 628nm, and the phase mask is optimized within Ψz ≈ [−49,49],
corresponding to the depth range of [0.5m,∞].

The network is trained by using 180×180 patches from data set [5]. The standard deviation of the sensor noise
used in training is chosen from uniform distribution U(0.001,0.01), where the image intensity is normalized to 1.

Top row of Fig. 2 illustrates the optimized phase mask and the PSFs for various depths as well as wavelengths,
shown in red (628nm), green (537nm) and blue (447nm). The mask, in a sense, minimizes the dependencies of
PSF to depth and color. Bottom row demonstrates an example result of DoF extension in comparison with existing
methods, which demonstrates superior performance. The planar object is assumed at z= 0.5m and the sensor noise
level is set to σ = 0.002. The image on the second column is taken from [3].

Fig. 2. The simulation results of DoF extension for an object point at z = 0.5m.
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