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ABSTRACT

Given few noisy linear measurements of distinct misaligned modal-
ities, we aim at recovering the underlying multimodal image using
a sparsity promoting algorithm. Unlike previous multimodal sparse
recovery approaches employing side information under the naive as-
sumption of perfect calibration of modalities or of known deforma-
tion parameters, we adaptively estimate the deformation parameters
from the images separately recovered from the incomplete measure-
ments. We develop a multiscale dense registration method that pro-
ceeds alternately by finding block-wise intensity mapping models
and a shift vector field which is used to obtain and refine the defor-
mation parameters through a weighted least-squares approximation.
The co-registered images are then jointly recovered in a plug-and-
play framework where a collaborative filter leverages the local and
nonlocal cross-modal correlations inherent to the multimodal image.
Our experiments with this fully automatic registration and joint re-
covery pipeline show a better detection and sharper recovery of fine
details which could not be separately recovered.

1. INTRODUCTION

Multimodal imaging methods acquire multiple measurements of an
object using different acquisition techniques or distinct sensors, pro-
viding various aspects of a phenomenon of interest. The mutual and
complementary information found across different modalities can be
used synergistically, to enable exploration, insight, analysis, and di-
agnostics which would not be possible using the individual modal-
ities alone. Direct capture of a multimodal image is often not pos-
sible, with some modalities requiring expensive indirect measure-
ments. Multimodal sparse recovery aims to recover an underlying
multimodal image from its few, possibly noisy, linear measurements.
Such computational imaging technique is being widely used in di-
verse applications, including biomedical imaging [1–3], joint depth-
intensity imaging [4], multispectral imaging [5], and beyond. The
typical multimodal sparse recovery approaches either individually
treat each modality, thus separately reconstructing the images, or
pursue a joint recovery under the assumption that different modal-
ities share structural similarities. The images reconstructed in the
former approach may then be fused to reveal more informative data;
however, it has been shown that the latter approach can remarkably
improve the quality of recovery [1–5]. Joint multimodal sparse re-
covery commonly leverages additional guidance data, referred to as
side information [4, 5], or considers much higher sampling rates for
some of the modalities [2, 3] in order to enhance the recovery of the
most sparsely sampled images.

In joint multimodal imaging, it is commonly assumed that
modalities are perfectly co-registered, or that the deformation pa-
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rameters are known beforehand and obtained by a separate offline
calibration procedure. In a realistic scenario, however, the acquisi-
tion devices may not be perfectly aligned making the image registra-
tion a crucial component of multimodality imaging. Moreover, due
to hardware constraints of acquisition devices or different acquisi-
tion setups, the acquired images may go under some types of defor-
mation (e.g., geometric transformations, or optical deformations and
aberrations) which along with the intensity variation and structural
difference across modalities make the image registration especially
challenging. Accurate registration is crucial, as joint recovery or fu-
sion under imprecise registration can be detrimental [6, 7].

The objective of this paper is to exploit the inherent local
and nonlocal cross-modal correlation in the sparse recovery from
severely underdetermined measurements of misaligned modalities
under unknown registration information. To this end, we resort to a
hybrid recovery procedure consisting of sequential separate and joint
recovery phases (Section 2). The intermediate step between these
recovery phases is to estimate the deformation parameters from the
separately recovered images, providing also the co-registered images
used to initialize the joint recovery phase. Our key contributions are
summarized as follows:

• We develop a dense registration method that proceeds al-
ternately, in a coarse-to-fine multiscale fashion, by finding
block-wise intensity mapping models and a shift vector field
which is then used to obtain and refine the deformation
parameters through a weighted least-squares approximation
(Section 3.1).

• We propose a joint multimodal sparse recovery approach that
proceeds iteratively by refining the estimation of the under-
lying signal using a stationary correlated noise denoiser, thus
extending our work [8] to the multimodal case (Section 3.2).

• We validate our proposed approach in the context of multi-
contrast magnetic resonance (MR) imaging and multichannel
sparse recovery, showing the significant improvement by the
joint recovery in artifact reduction and sharper recovery of
finer details that could not be resolved from separate recov-
ery (Section 4).

In this preliminary paper, we implemented and tested the ap-
proach in its simplest form, where the registration is performed in
full over the separately recovered images, and the joint recovery is
done at the finest scale after registration (see Fig. 1). However, since
the the adopted collaborative filter can also be operated in a coarse-
to-fine manner, all our developed elements can be combined so that
the joint recovery is executed progressively within the coarse-to-fine
multiscale registration.
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Fig. 1. The overall schematic of the proposed multimodal recovery pipeline.

2. PROBLEM FORMULATION

Let xi ∈Rni represent an image of a same physical object viewed in
the i-th modality, i ∈ [1, . . . , I]. We consider multimodal imaging as
an underdetermined linear inverse problem

yi = Aixi + ε i , (1)

where for each modality i, Ai ∈ Cmi×ni is the measurement matrix
with mi � ni , ε i represents the measurement error, and yi is the
measurement vector. The statistics of ε i (e.g., the noise distribution
and level) can be different at each modality.

The individual estimation of xi in (1) is an ill-posed linear in-
verse problem which can be obtained through a regularization-based
optimization problem of the form

x∗i =argmin
xi ∈Rni

Ri(xi) + γiQi(xi, yi) , ∀i ∈ [1, . . . , I] , (2)

where Qi and Ri are respectively the data-fidelity with respect to the
i-th observation model and the regularization terms, and γi> 0 the
regularization parameter balancing the contribution of both terms.

Many optimization algorithms have been proposed to solve (2),
with Ri modeling the sparsity of xi with respect to a transform.
Among those algorithms, proximal splitting methods [9–12] can be
applied for large-scale optimization problems while handling the
nonsmoothness of regularizers by using the proximal operator of
Ri . Plug-and-Play (PnP) is a non-convex framework that integrates
advanced denoising filters Φi instead of proximal operators within
proximal algorithms, adopting these filters as implicit prior models
for model-based inversion. In this work, we employ the PnP-based
FBS (forward-backward splitting) algorithm [11] to solve (2), as it
does not require to perform an inversion on the forward model (1),
following an iterative procedure of the form

bi,k−1 = − ρi∇Qi(xi,k−1, yi), (3a)

ui,k =Φi
(
xi,k−1 + bi,k−1

)
, (3b)

xi,k =ui,k + tk
(
ui,k − ui,k−1

)
, (3c)

where ρi> 0 is the step size, ∇ is the gradient operator, tk ∈ [0, 1) is
the prediction parameter at iteration k ≥1, t1=0, and xi,0=ui,0 ∈Rni.

In (3b), the action ofΦi on its input can be regarded as a denoiser
seeking to recover xi from the noisy observation [8]

zi,k = x + νi,k = xi,k−1 + bi,k−1, (4)

where zi,k and νi,k respectively represent the noisy signal to be fil-
tered and the effective noise at each iteration of the algorithm. We
tacitly assume that the input of Φi is reshaped so to reconstitute the
multidimensional representation of the data and that its output is vec-
torized back.

Now, let consider the image of one modality xr ∈[1,... ,I ] as the
reference image so that the other images {xi}i,r , which we call them
moving images, are being aligned with respect to xr . We denote
by θri the deformation parameter whereby the moving image in the
system i is transformed to the reference system r , and represent this
deformation by D(xi, θri ), with D(xr, θrr ) = xr . Given θri , the joint

estimation of xi in (1) can be obtained through solving{
x?i

}I
i=1= argmin

{xi }l ∈Rni

R

( [
D(xi, θri )

] I
i=1

)
+

I∑
i=1

γiQi(xi, yi) , (5)

where the operator [·]I
i=1 stacks the overlapped portions of the reg-

istered images into a 3D array, and R is the joint regularizer. We
employ PnP-FBS to solve (5) as well.

The following principal questions are addressed in the next section:
1. How are the deformation parameters {θri }i,r estimated?
2. How is νi,k modeled and estimated in either separate and joint
recovery procedures?

3. ADAPTIVE LOCAL AND NONLOCAL CROSS-MODAL
REGULARIZATION

3.1. Automatic Multiscale Multimodal Image Registration

Given two modalities xr and xt, ∀r, t ∈ [1, . . . I], respectively as the
reference and moving images, one may seek a functional relationship
between the intensity values of them. Therefore, the registration can
be obtained through maximizing a similarity measure, e.g.,

argmin
θrt , P



 xr − P
(
D(xt, θrt )

)

2
2 (6)

which yields deformation parameters θrt and an intensity mapping
P such that after deformation of xt and mapping of its intensities,
P

(
D(xt, θrt )

)
becomes as close as possible to xr . The optimization

(6) can be solved using the alternate minimization strategy along
P and θrt , e.g., as in [13, 14], where P was fitted using a global
polynomial function.

However, the intensity relationship is often weaker and more
complex than can be explained by a global functional form as de-
scribed by (6). Instead, we seek for this relationship only locally in a
block-wise fashion, by fitting low-order polynomial models indepen-
dently for each pair of co-located blocks from the moving and ref-
erence images. We then treat the block extracted from the intensity-
mapped xt as a shifted version of the corresponding block in xr ,
and estimate the corresponding shift vector through least-squares
fit of the block differences by the corresponding block of the hor-
izontal and vertical gradients of xr . This implicitly relies on a lo-
cally affine model of the image intensities, and therefore we esti-
mate the shift map in a progressive coarse-to-fine multiscale fashion
(e.g., [15]), where only small incremental shifts are resolved at the
finer scales. At each scale, the global deformation parameters θrt are
estimated from a weighted least-squares fit of the shift vector field,
with weights depending on how well the gradients of xr can locally
approximate the intensity-mapped shifted xt .

At every scale, one may interpret the above algorithm as loosely
tackling the following optimization:

argmin
θrt , {Pj}j

∑
j

w2
j



Bj (xsr ) − Pj (Bj (D(xst , θ
r
t )))



2
2 , (7)



where Bj denotes the extraction of the j-th block from an image,
Pj the local intensity-mapping polynomial model, wj are weights
promoting blocks with higher contrast where Pj is able to locally
explain the intensities of xr from xt , and the superscript s indicates
different scales of the image.

3.2. Adaptive Stationary Correlated Noise Modeling

In [16] and [8], we tacitly modeled the degradations as hybrid noise
comprised of a nonstationary and a stationary noise component, and
have shown that employing an additive stationary correlated noise
model within this modeling results in a better and faster signal re-
covery over the additive white Gaussian noise (AWGN) one. We
extend our work [8] to the multimodal case by modeling the station-
ary component of νi,k as additive correlated noise in both individual
and joint multimodal sparse recovery. In particular, leveraging this
noise model in a sparsity-promoting collaborative denoiser Φ (3b)
for solving (5) in the PnP framework, corresponds to installing an
adaptive local and nonlocal cross-modal regularization.

The overall proposed multimodal sparse recovery pipeline is il-
lustrated in Fig. 1.

4. PERFORMANCE EVALUATION

To evaluate our proposed multimodal imaging method, we first focus
on muticontrast MR imaging and then on joint multichannel image
recovery. In both experiments, for the separate (resp. joint) recovery,
we employ the PnP-FBS framework with BM3D [17] (resp. BM4D
[18]) as the denoiser Φ.

4.1. Multicontrast MR Imaging

We consider 217×181 T1 and T2 BrainWeb transverse 2-D slices
[19]. To produce a misaligned pair, the T2 image is first rotated by
6◦ clockwise, then magnified 1.2 times, translated by 4.4 pixels hor-
izontally and 5.5 pixels vertically, and finally cropped to 217×181
pixels (see Fig. 2). We treat the T1 image as the moving x1 and
the deformed T2 image as the reference x2. The matrices A1 and
A2 correspond to sampling the 2D FFT over 20 (m1/n1 = 0.097) and
30 (m2/n2 = 0.144) radial lines, respectively. We consider the prob-
lem of separate and joint recovery of x1 and x2 from incomplete
noisy measurements (1) y1 (AWGN, SNR=30 dB) and y2 (AWGN,
SNR=20 dB).

In the separate recovery phase, we did experiments for
several values of step sizes ρ1 and ρ2 to obtain the esti-
mates with the highest peak signal-to-noise ratio

(
PSNR, i.e.

20 log10(
√

nimax(xi)‖xi − xi,k ‖−1
2 )

)
over 100 iterations, i.e. x∗1 and

x∗2. We then obtain the deformation parameter θ2
1 using the proposed

automatic multiscale multimodal registration method. The partial
overlapping parts of the co-registered D(x∗1, θ

2
1 ) and x∗2 are then ex-

tracted and stacked in a 3D array for the initialization in the joint
recovery phase.

Fig. 3 shows the overlapped portion of the co-registered recov-
ered MR images; the jointly recovered images are registered by the
automatically obtained deformation parameter, whereas the rest are
registered by ground-truth parameter. As can be seen, joint recovery
helps in recovering details which could not be separately recovered.

4.2. Multichannel Image Recovery

We consider the red and blue channels of the 512×512 Toy RGB im-
age from the CAVE dataset [20]. To misalign the channels, the blue

i=
1

i=
2

xi A†
i
(yi) x∗i

(19.80 dB) (26.90 dB)

Fig. 2. From left to right: original, back-projected, and separately
recovered multicontrast MR images in T1 (top) and T2 (bottom)
modality. The intensity values of the recovered images are clipped to
the intensity range of the original images, for a better visualization.
The reported values are obtained by averaging the PSNRs values of
the individual modalities.
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Fig. 3. Co-registered recovered MR T1 (left) and T2 (right) im-
ages. The reported values are obtained by averaging the PSNR val-
ues computed over the overlapping supports of the recovered modal-
ities.

channel is first rotated by 10◦ counterclockwise, then magnified 1.25
times, translated by 5.3 pixels horizontally and 2.8 pixels vertically,
and finally cropped to 512×512 (see Fig. 4). We take the red chan-
nel as the moving x1 and the deformed blue channel as the reference
x2. The matrix A1 is associated to sampling 35 radial lines of the
2D-FFT (m1/n1 = 0.067), whereas A2 to 15% pseudo-random sam-
pling of the 2D FFT. Noisy measurements (1) are then produced as
y1 (AWGN, SNR=30 dB) and y2 (AWGN, SNR=20 dB).
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ryFig. 5. Visual comparison of the registered recovered modalities. The images on the leftmost column are green-magenta pseudo-color

representation of the two modalities. The magnifications shown by solid line, dashed-dotted, and dashed borders correspond respectively
to pseudo-color, first modality, and second modality. The reported values are obtained by averaging the PSNR values computed over the
overlapping supports of the recovered modalities.
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Fig. 4. From left to right: original, back-projected, and separately re-
covered multichannel images. The intensity values of the recovered
images are clipped to the intensity range of the original images, for
a better visualization. The reported values are obtained by averaging
the PSNRs values of the individual modalities.

Fig. 5 shows the green-magenta pseudo-color representation of
the overlapped portion of the co-registered recovered images. As
can be seen from Fig. 5, the proposed joint recovery yields a better
detection and sharper recovery of fine structures with less artifacts
around the data compared to the separate recovery results.

MATLAB software used for the experiments of this section are
available on the authors’ institutional homepage at http://www.cs.tut.
fi/~foi/multimodal .

5. CONCLUSIONS
We estimate deformation parameters in a coarse-to-fine multiscale
fashion, mapping the intensities of each block by a localized poly-
nomial model. These parameters are embedded in a PnP recovery
approach promoting sparsity via a collaborative filter that exploits
the local and nonlocal cross-modal correlations. Experimental re-
sults demonstrate the superior subjective and objective performance
of the proposed joint recovery approach over the separate one.

In this paper, the registration is performed over the separately re-
covered images, and the joint recovery is done at the finest scale after
registration. However, since the adopted collaborative filter can also
be operated in a coarse-to-fine manner, all our developed elements
can be combined so that the joint recovery is executed progressively
within the coarse-to-fine multiscale registration, i.e. integrating (5)
and (7) into a unique optimization. This is the subject of ongoing
work which we will report in an extended version of this paper.

http://www.cs.tut.fi/~foi/multimodal
http://www.cs.tut.fi/~foi/multimodal
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