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Abstract—In this study, modern machine learning (ML) meth-
ods are proposed to predict the dynamic non-linear behavior
of wideband RF power amplifiers (PAs). Neural networks, k-
nearest neighbor, and several tree-based ML algorithms are first
adapted to handle complex-valued signals and then applied to the
PA modeling problem. Their modeling performance is evaluated
with measured data from two basestation PAs. Gradient boosting
is seen to outperform the other ML approaches and to give
comparable performance to the generalized memory polynomial
(GMP) reference model in terms of both the normalized mean
squared error (NMSE) and adjacent channel error power ratio
(ACEPR). This is the first study in the open literature to
consider modern ML approaches, besides neural networks, for
PA behavioral modeling.

Index Terms—Behavioral modeling, power amplifiers, gener-
alized memory polynomial, machine learning, neural networks,
gradient boosting, tree based approaches, decision tree.

I. INTRODUCTION

Modern wireless communication systems such as 4G/5G
and 802.11 based systems utilize nonconstant-envelope I/Q-
modulated signals such as orthogonal frequency division mul-
tiplexing (OFDM). Due to the high peak-to-average-power-
ratio (PAPR), such signals will naturally excite the nonlineari-
ties of the TX chain, especially of the power amplifier. In order
to compensate for this nonlinear behavior, different techniques
can be applied in the transmitter digital domain, with digital
predistortion (DPD) being the most popular. In this context,
behavioral modeling techniques predicting the nonlinearity of
the power amplifier (PA) are of particular interest [1], [2].

Memory polynomial (MP) based models, such as the gen-
eralized MP (GMP), have been widely used for wideband
PA modeling [3]. While GMP typically provides excellent
modeling performance, the complexity of GMP and similar
polynomial based models is high when modeling saturated
PAs. In addition, a given polynomial based model is only
valid within a narrow power range, therefore limiting their
applicability. From these perspectives, machine learning (ML)
based modeling techniques may offer increased performance
with reasonable complexity. Neural network (NN) based struc-
tures have earlier been applied to PA modeling and digital
predistortion (DPD) in [4], [5].

To the best of the authors’ knowledge, besides NN based
ML approaches, other modern/powerful ML methods such as
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decision tree (DT), random forest (RaF), gradient boosting
(GB) and k-nearest neighbor (k-NN), have not been previously
studied in the context of PA behavioral modeling. Thus, in
this study, we propose to use these modern ML algorithms
for PA behavioral modeling. The ML algorithms are designed
to work with real-valued signals only, therefore they first
need to be adapted to handle complex-valued signals. We
then apply the ML techniques to data measured from two RF
PAs, and compare their performance to conventional MP based
techniques in terms of normalized mean squared error (NMSE)
and adjacent channel error power ratio (ACEPR), considering
wideband 5G new radio (NR) waveforms.

The remainder of the paper is organized as follows. The
ML methods applied in this study are briefly introduced in
Section II. The experimental results and the measurement
setup are given in Section III. Finally, closing remarks are
provided in Section IV.

II. MACHINE LEARNING ALGORITHMS

Tree, k-NN and NN based approaches have been widely
considered in ML applications covering both classification and
regression [6]. The most common tree based models are DT,
RaF, and GB based on the decision process.

DT regression is drawn upside down with its root at the
top. Recursive binary splitting, which is also known as greedy
approach, is a common technique to obtain good performance
in DT based ML approaches, in which all the features are
taken into account and different split points are tested using a
cost function [6].

RaF regression is a flexible learning technique which pro-
vides good performance without hyper-parametric tuning. This
method creates a forest as a collection of DTs and hence,
creates additional randomness in the model to improve the
performance and also alleviate the overfitting problem [6].

GB regression method is usually the best tree based ML
technique. GB provides a prediction model in the form of an
ensemble of weak prediction models, which are commonly
DTs. Boosting, which can be interpreted as an optimization
algorithm on a suitable cost function, is used to increase the
performance of traditional tree based approaches [6].

The k-NN method is one of the simplest ML algorithms.
It builds on the assumption that similar behaviors are near to
each other. In this method, it is not required to build a model



and impose additional assumptions as in the tree based meth-
ods. As a drawback, when the number of examples, predictors
and independent variables increases, the computational time of
the method increases significantly [7].

The NN regression technique is considered as a framework
for several ML applications in different fields [8]. The NNs
are composed of highly interconnected nodes, inspired by
the structure of the human brain. Each connection of the
NN is associated with a weight value which determines the
importance of this relationship in the neuron [8]. In this
work, we utilize supervised learning with the backpropagation
algorithm [4].

Most ML algorithms do not naturally support complex
notations. Therefore, we adopt a matrix formulation with the
real and imaginary parts of the complex input and output
signals written separately. While the available k-NN and NN
algorithm implementations support both multiple inputs and
outputs with matrix notations, the tree based algorithms do not
support multiple outputs. Hence, for the tree-based methods
separate real and imaginary training networks are applied,
while the k-NN and NN require only a single training network
in the fitting process.

While there are several studies on PA modeling and DPD
with NN based ML in the literature, we are currently not aware
of any studies that consider other modern ML methods such as
the tree based approaches. In the following, we apply tree, k-
NN and NN based ML algorithms to model PAs with memory
effects.

III. MEASUREMENT RESULTS

The PA modeling procedure with the different ML algo-
rithms is illustrated in Fig. 1. As seen in the block diagram,
MATLAB and PYTHON interfaces are used together for the
purposes of signal processing and ML, respectively.
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Fig. 1. Scheme of PA modeling using machine learning algorithms.

The test setup used for the experiments consists of a vector
signal transceiver (VST) with MATLAB as the host-processor
and two different PAs: a Skyworks SKY66293-21 medium-
power PA designed for the n78 NR operating band, and a
laterally diffused metal oxide semiconductor (LDMOS) 100-
Watt peak-power base station (BS) PA designed for the n2 and
n3 NR operating bands. Firstly, the baseband I/Q component
samples are generated in the VST, and fed to the PA with the
corresponding power and carrier frequency. The PA output RF
signal is then input to the VST, where the received I/Q data
samples are extracted for further digital processing.

All the signals used in this work have been generated
according to the NR BS radio transmission and reception
standards. Two different bandwidths, 100 and 60 MHz, are
considered in the experiments. Additionally, to decrease the
noise variance in the measured signals, statistical averaging is
implemented to the received I/Q samples, such that the final
data is the result of 10 averaged measurements.

To evaluate the performance of the different behavioral
modeling techniques, we use the normalized mean square error
(NMSE) and the adjacent channel error power ratio (ACEPR).
The NMSE evaluates the full-band modeling accuracy of the
PA behavioral model, and can be defined as

NMSEdB = 10 log10

N∑
n=1
|emodel[n]|2

N∑
n=1
|ymeas[n]|2

, (1)

where emodel[n] = ymeas[n] − ymodel[n] is the error signal
between the measured signal and the predicted signal. On
the other hand, the ACEPR evaluates only the out-of-band
modeling performance, computing a ratio between the error
signal power over the adjacent channel and the desired channel
power of the measured signal (P adj

error and P ch
meas), as

ACEPRdB = 10 log10
P adj
error

P ch
meas

. (2)

Training and prediction stages are considered separately in
this study, as shown in Fig. 1. The training networks of all
used ML methods are applied once and saved for the future
test signals. In the data processing stage, the training and test
data are split as 80% and 20% of the total number of samples
N = 300000, respectively. While 20 hidden layers and
nearest neighbors are applied in NN and k-NN, respectively,
maximum depth of 10 and 400 trees are considered in both
RaF and GB regression methods. The maximum depth and
minimum sample splits are 10 and 2 in the DT regression. For
the reference MP model, we use polynomial order P = 9 (with
odd orders only considered) and memory order M = 4, while
for the GMP model, aligned signal term Ka = 7, envelope
term La = 4, lagging envelope terms Kb = 5, Lb = 3,
Gb = 2 and leading envelope terms Kc = Lc = Gc = 0
are considered (please refer to [3] for more details). Similarly,
we use M = 4 in all the ML algorithms. Once the training
stage is completed, the different test signals are applied in the
prediction stage using the saved fitting network. Finally, the
NMSE and ACEPR are calculated after forming the complex
signals from the real-valued predictor outputs.

The power spectral densities (PSDs) of the PA input, and
the actual and predicted PA output using MP, GMP and ML
algorithms, considering 60 MHz NR signal and the 100-Watt
peak-power BS PA are shown in Fig. 2. This PA has 40-dB
gain and +50-dBm 1-dB compression point. The correspond-
ing NMSE and ACEPR results of the same algorithms are
calculated as in Table I. In terms of NMSE, GB based ML
outperforms the other ML techniques and the MP model, and
has quite similar performance compared to the GMP model.
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Fig. 2. Normalized PSDs of the ideal, measured, and predicted PA output
signals. 100-Watt peak-power PA operating at 48-dBm output power under
60 MHz NR signal.

TABLE I
NMSE AND ACEPR OF ML AND POLYNOMIAL BASED ALGORITHMS FOR

THE 100-WATT PEAK-POWER BS PA.

Machine Learning and Polynomial 
based Algorithms 

NMSE ACEPR 

Memory Polynomial  -33.9138 -44.4245 

Generalized Memory Polynomial -38.1549 -46.4166 

Neural Network -31.5821 -39.9753 

k-nearest neighbor -22.7671 -34.6219 

Random Forest -31.3270 -38.3730 

Decision Tree -31.2149 -38.2673 

Gradient Boosting -38.0011 -43.4606 
 

Similarly, GB has the best ACEPR performance out of all the
ML techniques and reaches a similar performance compared
to MP based modeling. NN is the second best ML algorithm in
terms of both NMSE and ACEPR, but is still several decibels
behind GB.

Similarly, the PSDs and NMSE/ACEPR of the same models
considering a 100 MHz NR signal on a Skyworks SKY66293-
21 medium-power PA are shown in Fig. 3 and Table II,
respectively. This PA has 33-dB gain and +31.5-dBm 1-
dB compression point. GB based ML outperforms not only
the other ML approaches, but also the reference MP based
techniques, in terms of both NMSE and ACEPR. It is also
noteworthy, that all the other ML methods perform clearly
worse in modeling this particular PA.

IV. CONCLUSIONS AND FUTURE WORK

This paper proposed a novel behavioral modeling scheme
for RF PAs employing modern machine learning techniques.
The performance of decision tree, random forest, gradient
boosting, k-nearest neighbor and neural network were eval-
uated with measured data from two commercial basestation
PAs excited with wideband 5G NR signals. Gradient boosting
was shown to perform the best, yielding similar or even
better performance compared to the memory and generalized
memory polynomial reference models.

In this work, a single power level near to the saturation level
of each PA was considered to evaluate the performance of the
learning techniques. In future studies, a single predictor will be
studied to model a PA at different output power levels. Instead
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Fig. 3. Normalized PSDs of the ideal, measured, and predicted PA output
signals. Skyworks PA operating at 29-dBm output power under 100 MHz NR
signal.

TABLE II
NMSE AND ACEPR OF ML AND POLYNOMIAL BASED ALGORITHMS FOR

THE SKYWORKS SKY66293-21 MEDIUM-POWER PA.

Machine Learning and Polynomial 
based Algorithms 

NMSE ACEPR 

Memory Polynomial  -27.6417 -35.9327 

Generalized Memory Polynomial -31.6969 -37.5741 

Neural Network -25.6709 -32.8280 

k-nearest neighbor -22.7605 -33.4338 

Random Forest -25.5790 -32.3666 

Decision Tree -24.3239 -31.3957 

Gradient Boosting -32.8320 -41.5048 

 

of fitting and saving separate networks for each power level in
the training stage, this can be achieved simply by tagging each
measured data set with a power level dependent tag. This will
decrease the predictor computational complexity significantly.
Moreover, due to the page limit, this study does not cover
the detailed computational complexity analysis, which remains
a topic of future work. Applying similar machine learning
techniques for digital predistortion linearization is an obvious
future extension of this work.
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