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Abstract—While faster signal attenuation in millimeter wave
(mmWave) networks is compensated by high antenna directivity,
the effects of dynamic blockages can be mitigated by using
connections to multiple access points (APs), and the choice of
a proper cell association algorithm plays an essential role in
optimizing the overall system performance. Despite numerous
research efforts aimed at finding optimal cell associations, effects
of user mobility have not been explicitly addressed. Particularly,
mobility patterns are imperative in the case of mmWave direc-
tional access, as they impact the overall system performance and,
thus, might affect the choice of optimal solutions.

In this paper, we address correlated mobility typical for
collective extended reality (XR) applications, using the example
of reference point group mobility models (RPGM), where users
migrate in groups or clusters. Assuming 3D beamforming and
protocol settings of mmWave IEEE 802.11ad/ay that operates
at 60 GHz, we compare the performance of two cell association
schemes: baseline RSSI-based and load-aware algorithms, and
provide important insights on optimization of load-aware scheme
parameters, the choice of which is a dynamic function of antenna
directivity and network density.

Index Terms—Millimeter wave, 60 GHz, 802.11ad/ay, cell as-
sociation, group mobility, RSSI-based algorithm, load-aware
algorithm

I. INTRODUCTION

The emerging popularity of extended reality (XR) appli-
cations developed for high-end wireless eyewear imposes
stringent connectivity requirements that stem from the nature
of human visual perception and include high throughput,
extremely low latency, and high link reliability. The expected
mass adoption of immersive XR services for wearables will
cause significant network densification, which cannot be han-
dled by legacy wireless protocols operating in licensed or
unlicensed spectrum. This, in turn, requires the use of more
advanced radio technologies [1].

To meet the agressive connectivity requirements, vendors
and standardization bodies shift their attention to a less
crowded millimeter wave (mmWave) spectrum that offers
wideband connectivity and promises to support multi-gigabit
data rates. The core features of mmWave propagation en-
compass much stronger signal attenuation in comparison to
that in lower frequencies, high penetration losses, and weak
ability to diffract around obstacles that leads to frequent and

unpredictable blockage [2]. For example, an average human
body attenuates the mmWave signal by up to 35 dB [3]–[5],
wall materials contribute even higher losses, up to 80 dB [6].

While faster signal attenuation is partially compensated by
highly directional transmission, the effects of dynamic block-
age can only be mitigated by taking advantage of maintaining
connections to multiple access points (APs) and selecting
those, which are able to provide a line-of-sight (LoS) link [5].
In that regard, cell association algorithms play an essential
role in optimizing the mmWave system performance, and the
research community actively studies their implementation in
mmWave networks. In general, cell association mechanisms
are conventionally based on solving an optimization problem,
where the objective function represents either the network
throughput with guaranteed fairness [7] or without it [8], [9],
or AP utilization [10].

Despite the existing efforts aimed at finding optimal as-
sociations, effects of user mobility have not been explicitly
addressed in past literature. Particularly, mobility patterns are
important in the case of mmWave-based directional access as
they considerably impact the overall system performance and,
thus, may affect the choice of optimal solutions. For collective
XR services, of special interest become the models with
correlated travel trajectories, where users migrate in groups
or clusters.

In this paper, we address a mobile scenario with corre-
lated XR user mobility and compare the performance of two
cell association schemes: baseline received signal strength
(RSSI) based algorithm [11] and load-aware algorithm under
realistic mmWave protocol settings. In particular, we assume
that wireless connectivity is controlled by a protocol with
the structure and timings similar to the IEEE 802.11ad/ay
operating in the unlicensed 60 GHz band, and the network
users move according to the reference point group mobil-
ity (RPGM) model [12]. Consequently, our study incorporates
three elements of mmWave network modeling essential for
selecting an appropriate cell association approach: (i) specifics
of the channel and antenna directionality, (ii) realistic protocol
structure and 3D beamforming, and (iii) a user mobility
patterns typical for the implied XR scenario.



The remainder of this paper is organized as follows. In
Section II, we briefly summarize the main principles of
802.11ad/ay operation, which are essential for our scenario.
Section III outlines the modeling parameters and our main as-
sumptions, while Section IV introduces the considered RSSI-
based and load-aware algorithms. Finally, Section V illustrates
selected numerical results, while Section VI concludes the
paper.

II. IEEE 802.11AD/AY STRUCTURE

In the unlicensed spectrum, which is expected to accom-
modate the traffic of most non-cellular mmWave-based XR
headsets, the IEEE 802.11 family offers two wireless standards
for operating in the 60 GHz band: commercially available
802.11ad developed in 2012 [13], which promises theoretical
data rates of up to 7 Gbps [14], [15], and its latest improvement
– 802.11ay [16] expected to be approved in 2020 and deliver
the data rates of up to 275 Gbps. In this section, we highlight
the core protocol details specified by IEEE 802.11ad/ay that
we incorporate in our modeling.

1) Beacon interval structure: Following the principles of
the legacy Wi-Fi standards, the medium access in 802.11ad/ay
is organized based on periodic beacon intervals (BIs), and the
schedule is controlled by an AP. Every BI is divided into (i) a
beacon header interval (BHI) controlling initial access and syn-
chronization, and (ii) a data transmission interval (DTI), where
the connected devices directly exchange their data packets
(see Fig. 1). The BHI, in turn, contains a beacon transmission
interval (BTI), where the AP broadcasts directional beacons to
non-AP devices, an optional association beamforming training
(A-BFT) interval dedicated to beamforming of antennas of
non-AP devices, and an announcement transmission interval
(ATI) designed for request-response management information
exchange. The DTI, which follows the BHI, consists of
contention-based access periods (CBAPs) based on enhanced
distributed coordination function (EDCF) and scheduled ser-
vice periods (SPs), where paired devices communicate without
contention. A detailed description of channel access principles
can be found in [14]–[16].

2) Beamforming: Beamforming in 802.11ad/ay, during
which the communicating devices identify their best antenna
configuration, is split into two phases: sector-level sweep
(SLS) implemented during BTI and A-BFT intervals, and
beam refinement phase (BRP) in DTI. During the SLS,
the initiating beamforming station (termed initiator) and the
responding device (termed responder) exchange a series of
directional sector sweep (SSW) frames using omnidirectional
reception. Based on the strongest received signal, the devices
identify the best transmit sectors, i.e., the initial transmit
antenna configuration that can be refined later on. Hence, after
the A-BFT interval, coarse beamforming is completed, and
in the ATI, the devices exchange management information
– including the upcoming schedule – by using directional
transmission.

To increase the directivity transmit/receive gain, the infor-
mation regarding the best antenna configuration identified in

the SLS can be further improved during the BRP phase, which
precedes the actual data transmission in DTI. The BRP phase
may include both transmit beam refinement within the known
direction and receive beam training for the paired devices.

III. SYSTEM MODEL AND ASSUMPTIONS

In this section, we outline our core system-level assumptions
and introduce the main modeling parameters.

1) System geometry and mobility: We consider a square
area of interest with the side of D. The area is populated with
NUE mobile users served by NAP mmWave APs that are evenly
distributed to provide sufficient coverage. The user devices are
elevated at hUE from the ground, while the height of the APs
is set to hAP.

The UEs are traveling across the area of interest according
to the RPGM model, as illustrated in Fig. 2. In particular,
the users form a cluster, the logical center of which defines
the mobility pattern of the entire group. The cluster center
moves with the constant speed v between random, uniformly
distributed locations, where it pauses for a time interval drawn
from the exponential distribution with the average of τ̄ . During
the pause time, the users remain within a circle of radius
r around the cluster center, and their positions are random,
uniformly distributed in the circle, and independent of the
location at the previous step. Between the pause positions, the
users travel with constant speed. An example RPGM trajectory
is illustrated in Fig. 2.

2) Antenna properties: Each user in our scenario is
equipped with a mmWave antenna that can be steered in
both vertical and horizontal planes. In particular, we assume
that during the initial beamforming phase in the SLS, all
antennas can sweep through KV,S vertical and KH,S horizontal
directions, i.e., yielding KS = KV,S · KH,S SSW sectors. For
additional beam refinement, an SSW can be further subdivided
into KV,R and KH,R narrow directions, so that the total number
of sectors can be increased to KR = KV,SKH,SKV,RKH,R.

One sector is covered by a beam with the azimuth and ele-
vation half power beamwidth (HPBW) of φHPBW and θHPBW,
correspondingly. We select the HPBW such that the power
within one beam (immediately after the beam training) may
decrease by not more than −3 dB, which is equivalent to

φHPBW = ΩV

4πKV
, θHPBW = ΩH

4πKH
, (1)

where KV/KH denote the total number of vertical/horizontal
beam directions covering solid angles ΩV /ΩH , correspond-
ingly. For example, in our scenario, we assume that AP
antennas are downtilted, and all beams cover only the lower
hemisphere, and hence, ΩV = 2π for the both receive and
transmit AP antenna modes. The situation is symmetrical for
the UEs, where antenna beams are assumed to cover the upper
hemisphere, i.e., ΩV = 2π. In the horizontal plane, UE and
AP transmit/receive beams can be steered through the solid
angle ΩH = 4π.

The resulting HPBW defines the directional antenna gains
for both reception and transmission. To address the effects
of azimuth and elevation beam misalignment, we utilize the
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Fig. 2: Illustration of group mobility in our scenario.

MiWeba model [17] and assume that the antenna gain in
decibels can be expressed via φ and θ as

GdB(φ, θ) = 10 log10

[
16π

6.76φHPBWθHPBW

]
−

12
[

φ
φHPBW

]2
− 12

[
θ

θHPBW

]2
,

(2)

where φ and θ are the azimuth and elevation angles between
the antenna boresight direction and the real AP-UE direction.

3) Received power and link throughput: For the known
azimuth and elevation beam misalignment at both transmitting
and receiving antennas (φTX/RX and θTX/RX), the received
power may be estimated as

PRX = ηPTXGTX(φTX, θTX)GRX(φRX, θRX)L(d, ILOS), (3)

where η is the antenna efficiency, PTX is the transmit power,
G is the transmit/receive antenna gain, and L(d, ILOS) is the
distance-dependent path loss. The path loss at the distance d
is calculated according to the Friis propagation equation for
the carrier frequency f and reduced by ∆LNLOS in the case
of ILOS = 0. Further, ILOS is the indicator function, which
represents the absence of blockers and, hence, the presence
of LoS connection. It is generated by a stochastic ON-OFF
process, where time intervals are distributed exponentially with
the average τ̄NLOS and τ̄LOS, respectively.

We estimate the link data rate using the Shannon’s formula:

Rinst = B log2(1 + min (SNR,SNRmax)) , (4)

where B is the channel bandwidth, SNR is the signal-to-noise
ratio, and SNRmax corresponds to the best modulation-coding
scheme (MCS).

The actual data rate at the UE can be defined based on the
allocated time resource that depends on the number of UEs
and the overhead, as

Ract = s · C = s ·B log2

(
1 + min(PRX

N0
,SNRmax)

)
, (5)

where s is the share of radio resources dedicated to the data
transmission of one user and N0 is the noise power.

Notation Definition Value
D Size of area of interest 20 m
NAP Number of APs 4
hAP AP height 10 m
NUE Number of UEs 20
hUE UE height 1.5 m
v Cluster speed 3 kmph
τ̄ Average pause time 5 s
r Cluster radius 3 m
fc Carrier frequency 60 GHz
PTX Transmit power 0 dBm
B Bandwidth 1 GHz
TBI Beacon interval 1000 ms
N0 Noise level −90 dBm

SNRmax SNR corresponding to best MCS 15 dB
AP azimuth range [0◦,360◦]
AP elevation range [180◦,360◦]
UE azimuth range [0◦,360◦]
UE elevation range [0◦,180◦]

KH Number of SSW in azimuth 4
KV Number of SSW in elevation 2
MBRP Number of BRP sectors per one SSW 3

BRP sector width [30◦, 18◦, 9◦]
TBRP(ns) BRP overhead for ns sectors 0.016+ns · 0.0007 ms
TBHI BHI overhead 0.1 ms
Tconn AP connection overhead TBI/2

TABLE I: System parameters

4) Protocol settings: In our setup, we assume a scheduler,
which equally divides the available DTI time among all users.
Hence, the share of one user may be expressed as

s =
(TBI−TBHI

N )−TBRPMBRP

TBI
= TBI−TBHI−TBRPNMBRP

NTBI
, (6)

where TBI is the variable BI length, TBHI is the fixed duration
of the BHI, TBRP is the overhead that is produced by the BRP
procedure, and MBRP is the number of BRP trainings during a
service period of one user. We assume that all the devices have
the same antenna settings, and, therefore, TBRP(ns), which
depends on the total number ns of BRP sectors, is fixed across



the considered network. The overhead parameters are given in
Table I, where AP connection overhead Tconn denotes the time
required to switch a connection to another AP.

IV. CONSIDERED ALGORITHMS

In this section, we sketch two cell-association algorithms,
particularly, RSSI-based and load-aware schemes, which we
assess further in Section V.

A. RSSI-based algorithm

The basic principle of the RSSI-based algorithm is in
selecting a serving AP, whose RSSI during the SLS phase
is stronger at the considered UE (in our scenario, all UEs
continuously measure the signal from all APs). To add more
flexibility in decision making and avoid oscillations, we intro-
duce probability p of changing the serving AP for the one with
the better RSSI; p is fixed across the network. Consequently,
if p = 1, UEs will always be associated with the same AP that
was selected at the initial stage of the system operation. On
the contrary, in the case of p = 0, UEs immediately switch to
better APs.

We note that in reality, BIs of different APs begin at non-
synchronized time moments. However, since UEs may sense
the channel and collect the information on all other APs over
one BI, we, for the sake of simplicity, may consider a system
where BIs of all APs are fully synchronized. The difference
between these two systems is that for non-synchronized BIs (i)
the information on the previous RSSI values of other APs is
more recent than that of the serving station and (ii) in the case
of a decision to change the serving AP, the UE is forced to wait
for the respective BHI, which creates an additional delay as
compared to the synthetic synchronized system. We disregard
the effects of the first fact, but to accommodate the second,
we introduce a penalty (the AP overhead) that is represented
by an extra delay when the UE cannot transmit. We assume
that in the non-synchronized system, the begin times of BIs
are randomly distributed, and therefore, the corresponding
expected delay, i.e., the penalty in the synchronized system,
equals TBI/2.

As such, in the synchronized system, the UEs collect all
the information regarding the RSSI values from all APs by
the beginning of the new BHI and make their decisions on
selecting the serving AP. After selecting the target AP, in the
corresponding new BHI, the UE requests DTI resources and
is further served after beam training in the BRP phase. The
considered scheme is outlined in Algorithm 1.

B. Load-aware algorithm

The load-aware algorithm allows the UEs to choose their
serving AP based on the expected throughput precalculated
based on the previous RSSI values and the predicted share
of UEs. The effective timeshare at any candidate AP may be
approximately estimated by a UE if the APs broadcast the
load during their recent BI. By the beginning of each BI,
the considered UE is aware of the previous RSSI and load
values from all APs; the expected data rate is then calculated
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by equation (5). Here, we also rely on probability p for
adjusting the UE decisions on selecting a new serving AP (see
Algorithm 2 for pseudocode of the load-aware scheme). By
analogy with the RSSI-based algorithm, in the case of p = 1,
UEs remain associated with their initial APs, and alternatively,
p = 0 forces UEs to immediately connect to the APs with the
better expected throughput. Following the same logic as above,
we further consider a synchronized system with the penalty for
switching to the new AP.

V. NUMERICAL RESULTS

In this section, we provide selected numerical results for
the two implemented cell association algorithms described in
Section IV. In what follows, we follow the numerology of
IEEE 802.11ay assuming one spacial stream and one channel,
while setting by default TBI = 1000 ms and p = 0.5. The
resulting data rate is measured on a micro-scale, i.e., within
each BI, so that the resulting simulation incorporates the
effects of beam misalignment, which occurs between all the
consequent beam training procedures due to the user mobility.

We begin with analyzing the cumulative distribution func-
tion (CDF) of the average UE data rate achieved in the case
of the RSSI-based and load-aware association algorithms for
a varying user population, as shown in Fig. 3. The results
demonstrate a clear advantage of the load-aware algorithm
over the RSSI-based scheme, independently of the number of
users in the area of interest. The gap between the performance
of these two association algorithms decreases with the growing
UE population, which is explained by a general decrease in
the data rate due to smaller UE shares. The relative gain of
the load-aware scheme remains the same: e.g., for the 50th
percentile (middle quantile), the data rate improvement reaches
100% as compared to the RSSI-based scheme. The stair-like
shape of the CDFs in Fig. 3 is the result of introducing MCS
limitation that affects the maximum data rate.
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Further, we investigate the impact of mmWave antenna
directivity on the average user data rate averaged over the
time of UE operation and all the UEs in the system. For ex-
ample, Fig. 4 illustrates the benefits of using highly-directional
antennas for both load-aware and RSSI-based association
algorithms. In the case of 10 UEs, the beamwidth expansion
by only 10 degrees leads to a degradation of the average user
data rate by almost 30%, and this trend maintains for other
UE populations. With respect to the number of UEs, we may
observe the gains of the load-aware scheme similar to those
that Fig. 3 reports. Regardless of the number of UEs and
the beamwidth, the load-aware algorithm provides a higher
average user data rate.
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Finally, Fig. 5 illustrates the impact of the choice of p on

the average data rate across a range of the potential antenna
beamwidths. Here, we may notice that an increased value of
p results in improved average data rate; however, starting at a
certain point, the performance degrades rapidly. Hence, there
exists an optimal value p∗, which depends on a set of param-
eters, including the mobility speed and pattern, the selected

beamwidth, and the protocol settings, such as the length of
the BI and the frequency of BRP procedures. Interestingly,
the RSSI-based algorithm with probability p = 0.5 (blue
dashed line) performs better than the load-aware algorithm
with probability p = 0.8 (green solid line) and, therefore,
adequate choice of p is an important matter.

Algorithm 1 RSSI-based algorithm
Input: NAP, NUE, locations of APs, locations and mobility
patterns of UEs, switching probability p, number of BIs NBI
Output: UE data rate set

Initialize AP set = [1, ..., NAP], UE set = [1, ..., NUE]
Initialize serving AP set = Ø, UE data rate set = Ø
InitialRSSIAssociation() // RSSI-based only
//Cell-association and service
for all beacon intervals bi, i ∈ [1, NBI] do

UE data rate set ← ServeUEs (serving AP set)
for all u ∈ [1, ..., NUE] do

for all a ∈ [1, ..., NAP] do
Measure received power PRX(u, a, bi) at u

end for
Candidate AP ac(u, bi)← arg max

a∈[1,...,NAP]
PRX(u, a, bi)

Generate s ∈ {0, 1} with probability {1− p, p}
if s = 0 then

Serving AP changes as(u, bi+1)← ac(u, bi)
else

Serving AP is the same as(u, bi+1)← as(u, bi)
end if
Update serving AP set

end for
end for

VI. CONCLUSIONS

In this paper, we provide a comparison of two mmWave cell-
association algorithms: the baseline RSSI-based scheme and
a more advanced load-aware approach that takes advantage
of the information on the current AP loading that may be
broadcasted to all the network users. Our model incorporates
three important parts: (i) specifics of mmWave propagation,
antenna directivity, and 3D beamforming, (ii) mmWave pro-
tocol features (by example of IEEE 802.11ad/ay) that include
periodic beamforming, scheduling, and more frequent beam
refinements, and (iii) dynamic user mobility. We particularly
address group mobility, where users may migrate across the
area of interest in clusters, as the network performance in this
case is largely dependent on the immediate user density.

In general, the load-aware cell association scheme out-
performs the conventional RSSI-based algorithm in terms of
the UE data rate; however, parametrization of the load-aware
scheme requires more complex analysis and optimization.
Since the emerging mmWave systems are envisioned to be
highly dynamic in terms of user mobility and blockage, the
parameters of the load-aware algorithm should also remain
dynamic. They may be estimated based on the user history
and a window of loading and RSSI values by using predictive
analytics.



function ServeUEs (serving AP set)
Input: NAP, NUE, locations of APs, locations and mobility
patterns of UEs
Output: UE data rate set

for all a ∈ [1, ..., NAP] do
Initial SSW
Serving AP a shares resources between associated UEs
for all users u from serving AP a set do

for m = 1, ...,MBRP do
BRP procedure
u is served with directional beams defined by BRP

end for
end for

end for
function InitialAssociation()
Input: NAP, NUE, locations of APs, initial locations of UEs
Output: Serving AP set (full info about associa-
tions)

for all u ∈ [1, ..., NUE] do
for all a ∈ [1, ..., NAP] do

Measure received power PRX,0(u, a) at u
end for
Serving AP as(u, b1)← arg max

a∈[1,...,NAP]
PRX,0(u, a)

Update serving AP set
end for
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end for

//Cell-association and service
for all beacon intervals bi, i ∈ [1, NBI] do

UE data rate set ← ServeUEs(serving AP set)
for all u ∈ [1, ..., NUE] do

for all a ∈ [1, ..., NAP] do
Measure received power PRX(u, a, bi) at u
Define immediate throughput Ti(u, a, bi)
Expected Texp(u, a, bi)← s(a, u, b1)Ti(u, a, bi)

end for
Candidate AP ac(u, bi)← arg max

a∈[1,...,NAP]
Ti(u, a, bi)

Generate s ∈ {0, 1} with probability {1− p, p}
if s = 0 then

Serving AP changes as(u, bi+1)← ac(u, bi)
else

Serving AP is the same as(u, bi+1)← as(u, bi)
end if
Update serving AP set

end for
for all a ∈ [1, ..., NAP] do

Estimate s(a, u, bi+1) for each u that belongs to a
end for

end for
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