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ABSTRACT

Light fields representing Lambertian scenes are character-
ized by specific epipolar plane images, which support in
Fourier domain is limited by the minimum and maximum
scene depth. This feature of the light field has been taken into
account when designing the shearlet-based light field recon-
struction algorithm. However, this feature does not hold for
the case of non-Lambertian scenes. Therefore, the original
algorithm performs sub-optimally for such scenes.

In this work, we extend the shearlet based reconstruction
algorithm to enable light fields reconstruction for scenes com-
posed of surfaces with non-Lambertian properties. Instead
of assuming Lambertianity and the corresponding Fourier-
domain support, we estimate the real Fourier-domain support
of the given light field of a non-Lambertian scene. Based on
the estimated support, we adapt the Shearlet frame to prop-
erly span that support. The results demonstrate that the new
method yields a faithful reconstruction of densely sampled
light fields of non-Lambertian scenes from a small number of
captured views.

Index Terms— light field, view-reconstruction, optical
flow, non-Lambertian surface, shearlet transform

1. INTRODUCTION

In the pursuit of describing faithfully the world around us re-
searchers make use of the Plenoptic function (PF), a 7D con-
tinuous function which formalizes the visual world as a set
of light rays impinging from different directions [1]. Because
of its complexity, it is typically approximated by its 4D rep-
resentation referred to as Light Field (LF) [2]. Moreover, as
sensing devices are predominantly digital, visual sensing of
3D scenes can be formulated as sampling its LF. In this sce-
nario, a complete reconstruction of the underlying PF from
its samples would be necessary to calculate and render any
possible view of the scene.

Plenoptic sampling theory has been developed in [4],
where the authors performed a spectral analysis of the PF
and designed tailored anti-aliased filters that guaranteed the
minimum sampling rate for which the Plenoptic function of

a Lambertian scene1 does not show aliasing. This work was
extended in [5] and [6] to include non-Lambertian scenes.
In [5], Zhang and Chen performed a detailed analysis of the
spectrum of the PF including examples for non-Lambertian
scenes and scenes with occlusions showing that effects such
as depth variation, occlusions and non-Lambertianity spread
the spectrum, which can be analyzed through an extension
of the truncating window. In [6], Do et al. showed that an
analysis of scenes with smooth surface is possible through
the concept of essential bandwidth. The essential bandwidth
is defined as the region in frequency domain where the most
of the signal energy resides. This concept can be exploited
to reduce the computational burden of frequency-based LF
reconstruction algorithms.

One possible approach to reconstruct the PF from its
sampled version is by making use of Image-Based Rendering
(IBR) systems which have as a main goal the rendering of
novel views from a set of sparsely sampled images compos-
ing the LF [7]. A very widely used simplification in IBR is
the use of the Lambertian reflectance model whose adoption
has enabled the development of multiple LF reconstruction
algorithms [8], [9]. However, in real life scenarios it is very
unlikely to deal with pure Lambertian scenes, therefore it is
vital to extend the reconstruction process to non-Lambertian
scenes.

There are several LF reconstruction approaches capable
of dealing with non-Lambertian surfaces. In [10], Wang et al,
performed a ”learnable interpolation” followed by a restora-
tion process. The latter process, allowed the authors to re-
cover high frequency details that were missing after the first
step. The process was implemented by using a 3D Convo-
lutional Neural Network (CNN). In [11], a ”blur-restoration-
deblur” framework is implemented. For every Epipolar Plane
Image (EPI2), after blurring the input, a bicubic interpolation
to upsample the starting EPI to the desired resolution is per-
formed. Once at the correct resolution, the details in the an-
gular dimension of the EPI are restored by use of a CNN.

1An object is defined as Lambertian if the intensity of the light ray leav-
ing every point of its surface is the same regardless the viewing angle between
the object itself and the observer.

2An EPI is a representation which gathers all the information of an LF
epipolar plane. It is discussed in Section 2.1.



As a last step, the spatial details of the EPI are recovered by
using a non-blind deblur operation. In [12] two sequential
neural networks have been employed to model the disparity
and color estimation component. In [13], two CNNs have
been used for view synthesis and refinement. In [9], after de-
tecting non-Lambertian regions, the author makes use of this
information within an optimization framework to retrieve the
missing views as an energy minimization problem by exploit-
ing the concept of structure tensor. A different approach is
the one proposed in [14] where use is made of the sparsity in
the Fourier domain to reconstruct the missing views of the LF.
In [15], Gao et al. proposed Parallax-Interpolation Adaptive
Separable Convolution (PIASC) as a method for LF recon-
struction. PIASC implements a fine-tuning process by adjust-
ing coefficient values for two 2D convolution kernels that are
computed for each pixel in the interpolated intermediate im-
age. As the method is based on video frame interpolation it
can reconstruct also non-Lambertian frames. Each convolu-
tion kernel is generated by a deep neural network. PIASC is
nowadays the method which provides the best results for LF
reconstruction.

In contrast to aforementioned methods, we seek a more
robust approach which does not require any training or prior
knowledge of the scene and provides a good quality for each
view in the whole LF. Based on works [16] [17], in which a
shearlet-based reconstruction algorithm has been introduced
for reconstruction of LFs, in this paper we show that is pos-
sible to extend that approach to non-Lambertian scenes. We
achieve such result by performing an analysis of the spectrum
of a decimated LF in order to reconstruct the essential band-
width of the LF before decimation.

The rest of this paper is organized as follows: In Section
II, the concepts of LF, EPI, shearlet transform and the optical
flow are introduced. In Section III, the proposed method to
deal with non-Lambertian scenes is presented. In Section IV,
two examples are shown and commented. Conclusions are
given in Section V.

2. PRELIMINARIES

2.1. Light field formalization

Following the two-plane parameterization [2], each ray com-
posing the LF L(u, v, s, t) can be described by the intersec-
tion with two parallel planes as shown in Figure 1 (a). The
planes are typically defined as camera plane (s, t) and im-
age plane (u, v), and are distant from each other by a value
f equal to the focal length. In order to simplify our notations
we are going to take into account a camera which moves only
on a single trajectory t (Figure 1 (b)). Such simplification
leads to a single horizontal slice of the previously defined LF
H(u, v, t) = L(u, v, s0, t). In this scenario, by stacking all
captured images for a single row u = u0 we achieve a rep-
resentation E(v, t) = H(u0, v, t) which is referred as EPI
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Fig. 1: LF and EPI formalization. (a) Two-plane LF parame-
terization. (b) Capturing setup. (c) DSEPI. (d) Sparsely sam-
pled EPI. (e) Frequency support of an EPI from a DSLF. (f)
Frequency support of a sparsely sampled EPI.

(Figure 1 (c)) [3].
For an ideal horizontal camera motion, like the one de-

picted in Figure 1 (b), a specific point at distance z from the
camera plane generates in the image plane a disparity equal
to:

∆v = v1 − v2 =
f

z
(t1 − t2) =

f

z
∆t. (1)

To better understand the concept of disparity we can make
use of the EPI where every point in space is mapped into a line
with slope −∆v/∆t. In this EPI representation, the disparity
for a single point between two consecutive images is repre-
sented as the horizontal displacement between a point and its
occurrence in the adjacent row. When the Nyquist sampling
criteria is satisfied, a point at distance zmin results in a line
with angle θzmin

≤ 45◦ (red line in Figure 1 (c)). An LF
generated respecting this criteria is usually referred to as a
densely sampled LF (DSLF) and in particular, an EPI related
to a DSLF is defined as densely sampled EPI (DSEPI). Fol-
lowing the same calculation, an object placed at the maximum



distance shows a slope with angle θzmax
≤ θzmin

(yellow
line in Figure 1 (c)). Furthermore, when the Lambertian re-
flectance model is satisfied such lines have a constant value
of intensity.

2.2. Frequency domain analysis

For Lambertian scenes, the spectrum of the DSEPI from Fig-
ure 1 (c) is shown in Figure 1 (e). As demonstrated in [4],
the spectral support of a DSEPI is limited by the minimum
and maximum depth of the scene. On the contrary, if we dec-
imate the rows from the DSEPI by a factor 16, as illustrated
in Figure 1 (d), we would generate a condition for which the
Nyquist criteria is not satisfied. When the Nyquist criteria
is not satisfied, the spectrum of the EPI consist of multiple
replicas of the real spectrum that are generated because of the
discrete sampling in t. An example is illustrated in Figure 1
(f).

In the case of Non-Lambertian scenes, the spectrum of
the DSEPI is more widespread than the one of a Lambertian
scene, since the limits of the spectral support are no more
the minimum and maximum physical depth of the scene, but
those generated by the non-Lambertianities. This condition
will be further illustrated and discussed in Section 3.

2.3. Shearlet Reconstruction

Our goal is to reconstruct the original spectrum (Figure 1 (e))
out of the available aliased spectrum (Figure 1 (f)). This is
equivalent to reconstruct the missing rows for a DSEPI and,
consequently, the missing views of a DSLF. One way to do
so is through a shearlet-based approach [16]. Starting from
an aliased representation, we can reconstruct the DSEPI E∗

by solving a sparsification problem. We assume that E∗ is a
squared image such asE∗ ∈ RN2

, whereN = (R−1)dmax+
1. R is the number of available rows in the EPI and

dmax =
f

zmin
∆td (2)

is the maximum disparity, in pixels, between nearby avail-
able views at distance ∆td. In the EPI domain such available
views corresponds to rows E ∈ RN2

, which are indexed as:
E(i, l) = H(i, l)E∗(i, l), where H ∈ RN2

: H(rdmax, ·) =
1, r = 1, ..., R and 0 elsewhere. The main tool employed for
retrieving the missing rows is a variation of a specific kind of
shearlet system known as: cone-adapted shearlet system [18].
The reconstruction problem is solved as an inpainting prob-
lem with solution which needs to be sparse in the shearlet
domain, i.e.:

x∗ = arg min
x∈RN2

||S(x)||1, subject to y = Hx. (3)

The direct and inverse shearlet transforms are defined as S :
RN2 → S : RN2×η and S∗ : RN2×η → S : RN2

, where η

is the number of the generated shears for all possible scales.
Such shears are divided in different scales which are selected
as: J = dlog2 ∆de, where ∆d = dmax − dmin. This makes
∆d the most important parameter to compute in order to cor-
rectly describe the properties of the scene. Therefore, we are
going to focus on retrieving dmin and dmax.

2.4. Optical Flow

Since disparity is essential for our approach, we need to esti-
mate it. More specifically, our target is to compute the mini-
mum and maximum disparity at which every pixel, including
those related to the non-Lambertianities, varies between two
adjacent images in the LF. This can be achieved by exploiting
the Optical Flow (OF) between LF views.

The OF represents an approximation of the 2D motion
field generated from the projections of the 3D velocities of
the surfaces points. We interpret the values obtained from the
OF as disparities. Most of the OF algorithms have usually
three stages of processing in common. First, a prefiltering is
performed, second, basic measurements are extracted, third,
measurements are integrated [19]. In this work, after comput-
ing the minimum and maximum disparities we arrange them
in a histogram generated by taking the disparity values for ev-
ery pixel in every successive couple of images. A vital part of
this approach is the outliers removal, performed by exploiting
the 3-σ rule [20]. In our case this consists in taking the 99.7%
of disparity occurrences between the minimum and the 0 dis-
parity value, and the 0 and the maximum. The peculiarity of
this approach is the ability of the algorithm to retrieve both
positive and negative values of disparity in a single iteration.

Modern disparity algorithms [9] prove that it is possible to
compute accurately dmin and dmax in the scene reducing the
probability of obtaining outliers to less than 1%. The achieved
parameters are those that we define as d(nL)

min and d(nL)
max for

non-Lambertian scenes and we use these as the input for the
reconstruction process. By doing so, we tailor our tool to the
frequency response of the scene.

3. PROPOSED RECONSTRUCTION METHOD FOR
NON-LAMBERTIAN SCENES

Lambertian objects, are very rare in real world scenarios.
Usually the light rays reflected on real surfaces tend to show
small variations based on the viewer’s position. A funda-
mental task of the reconstruction algorithm is to take into
consideration these variations. In order to illustrate the mo-
tivation behind our proposed method we make use of an
example that includes a highly reflective object: a mirror.

Following the notation introduced in the previous section,
we assume a capturing device moving over the t axis, at a dis-
tance zmin from the first object and at a distance zmax from
the farthest object, a mirror mounted on a wall. The scene
under consideration is shown in Figure 2 (a) and its geometry
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Fig. 2: Non-Lambertian scene composed of a highly reflective
surface. (a) Central view. (b) EPI corresponding to the row
represented in red in Fig 3 (a). (c) Geometry of the scene. (d)
Spectrum of the targeted DSEPI.

in Figure 2 (c). As the scene is part of a DSLF, we illustrate
in Figure 2 (d) the spectrum from one of the EPIs, shown in
Figure 2 (b) where lines of both positive and negative slopes θ
are present. Starting from the given distance values zmin and
zmax, by making use of (2) it is possible to calculate d(L)

min

and d(L)
max in the scene. Those estimates are used in the origi-

nal shearlet reconstruction algorithm [16] to determine the re-
construction area. As illustrated in Figure 2 (d), in Fourier do-
main this area is a cone delineated by a red line proportional
to d(L)

max and an orange line related to d(L)
min. The aperture of

this cone is an angle proportional to the Lambertian disparity
of the scene: θ∆dL ∝ d(L)

max−d(L)
min. Obviously, from this fig-

ure it is clear that by performing such reconstruction (inside
such cone) we would not cover the whole spectrum. There-
fore, we propose a modified approach which goes beyond the
geometric interpretation of the scene, which was defined in
[16].

The proposed algorithm performs the reconstruction by
taking into account the Fourier domain support of the LF. This
support relies on the estimation of the correct disparity range.
The algorithm can be divided in 7 steps.

1. Estimate disparities between consecutive views by
computing the OF between the views. Arrange the
estimated disparities in a histogram.

2. Remove outliers in the disparity histogram by taking
the 3-σ confidence interval.

3. Generate the shearlet frame to perform the reconstruc-
tion composed of J = dlog2 ∆dnLe levels, where
∆dnL = d

(nL)
max − d

(nL)
min . Here ∆dnL corresponds to

the disparity range for non-Lambertian scenes. These
atoms, introduced in Section 2.3, are those necessary
for the reconstruction algorithm in point 7.

4. Shear the EPI is sheared such that the area showing the
minimum slope is aligned with angle θ = 0◦. This
is the step that enables the non-Lambertian reconstruc-
tion: it performs a rotation of the signal in frequency
such that the signal area gets covered by the frequency
support of the cone-adapted shearlet system.

5. The rows composing the EPI are spaced apart by ∆d
rows and 0-padded in between such that the final num-
ber of rows in t is equal to Nt = (R− 1)∆d

(nL)
max + 1.

6. Perform the accelerated shearlet-based reconstruction
algorithm [17] using the parameters as described in the
steps above.

7. Shear the DSEPI to its original position to compensate
for the shearing performed in step 4.

Considering once again Figure 2 (d), the new reconstruction
area is equal to θ∆dnL ∝ ∆dnL.

4. EXAMPLES

The scene introduced in the previous section and illustrated
in Figure 2 (a) is a Horizontal Parallax Only (HPO) scene
composed of 97 images generated with Blender [21], 12 of
those images (decimation by 8) have been used as input for
reconstruction. The reconstructed images have been com-
pared with the state-of-the-art algorithm for LF reconstruction
[15]. The means of comparison were minimum and average
Peak Signal-to-Noise Ratio (PSNR). We define the minimum
PSNR as the minimum value achieved when comparing the
RGB channels of each reconstructed view with the ground
truth (GT). Similarly, the average PSNR is the average value
of all the PSNR achieved when comparing the reconstructed
views with the GT-available views. The results of the recon-
struction process are shown in Table 1.

Results show that the proposed algorithm performs bet-
ter than state-of-the-art. Figure 3 presents a visual compari-
son of the results presented in Table 1. In the figure multiple
cutouts are presented; it is important to specify that the re-
sults presented in the figure are related to different views as



ST [17] PIASC [15] Proposed ST
Min PSNR. 32.66 40.94 41.40
Av. PSNR. 35.96 43.54 43.99

Table 1: LF reconstruction quality presented by minimum
and average PSNR in dB for the dataset: Mirror.

ST [17] PIASC [15] Proposed ST
Min PSNR. 20.37 20.11 20.78
Av. PSNR. 25.09 25.31 25.82

Table 2: LF reconstruction quality presented by minimum
and average PSNR in dB for the dataset: Tarot Cards and
Crystal Ball.

the minimum PSNR is not achieved for the same view. Fig-
ure 3 (a), (b) and (c) depict part of the reconstructed views (the
reflection of the basket), while Figure 3 (d), (e) and (f) repre-
sent the difference in the Y-channel between the reconstructed
view and the GT. The figures show that the main difference
in the reconstruction result is in areas composed of repetitive
patterns which are occluded in parts of the LF. In this case
the shearlet based algorithm overcomes the PIASC algorithm
as the latter does not rely on all the available images. As a
second mean of comparison we used datasets from [22]. In
particular, we used the dataset known as: Tarot Cards and
Crystal Ball (large angular extent). The reason behind our
choice are the multiple reflections and the see-through effect
given by the crystal ball. The original dataset is composed of
289 views on a 17x17 grid with image resolution 1024x1024.
We perform our test by following the same procedure in [16]
where the dataset has been resized to half of its original reso-
lution. The decimation factor for both the horizontal and the
vertical direction has been chosen as 4. The reconstructions
have been performed by recreating missing views from those
available along rows at first, then views from columns are re-
constructed and as a last step the views from the rows which
were not available at the beginning are reconstructed. The re-
sults of the reconstruction process are shown in Table 2 and
depicted in Figure 4. It should be noted, similar to the previ-
ous case the minimum PSNR is achieved for different views
therefore, different views are depicted in Figure 4.

5. CONCLUSIONS

In this paper we extended the shearlet based reconstruction
algorithm to non-Lambertian scenes. By analyzing the spec-
trum of the EPI we demonstrated that it is possible to perform
LF reconstruction using the shearlet-based algorithm in non-
Lambertian scenes when the properties of the objects in the
scene are properly taken into account.

Instead of computing the disparities based on the physical
distances of the objects, we estimated the real Fourier-domain

support of the LF of a non-Lambertian scene by making use
of the OF.

During the experiments we compared the result achieved
by the new algorithm against the state-of-the-art algorithm for
LF reconstruction. To this goal we made use of two datasets:
in the first case the synthetic scene has been generated to ex-
emplify the concepts behind the introduced method, while in
the second case we chose a well known problematic dataset
for reconstruction from [22]. In our experiments the proposed
method performs better in both cases.
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Fig. 3: Comparison of Y-channel for Mirror scene reconstruc-
tion. First column: reconstructed cutouts for Shearlet Trans-
form (ST), PIASC, Proposed Shearlet Transform. Second
column: Difference between ground truth and first column
for the Y-channel.
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Fig. 4: Comparison for the dataset Tarot Cards and Crystal
Ball. First column: Ground Truth. Second column: recon-
structed views for Shearlet Transform (ST), PIASC, Proposed
Shearlet Transform. Third column: Difference between first
and second column for the Y-channel.


