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Abstract—In this paper we present a modified sphere decoder
that can adjust the switching frequency in real time. To achieve
this, the underlying integer least-squares (ILS) problem is refor-
mulated and the lattice generator matrix is modified. By doing so,
computational demanding operations required to be performed in
real time are avoided altogether, rendering the proposed method
computationally feasible. Moreover, the optimization process is
kept computationally modest by appropriately manipulating the
geometry of the ILS problem. The effectiveness of the introduced
method is tested with a medium voltage variable speed drive
system consisting of a three-level neutral point clamped (NPC)
inverter and an induction machine.

I. INTRODUCTION

In the recent years, model predictive control (MPC) has re-

ceived increasing interest in the field of power electronics [1],

[2]. MPC uses the plant model to predict its future behavior

and a cost function that quantifies the control objectives. By

doing so, the nonlinearities and constraints of the system

can be included in a straightforward manner [3], thus fully

exploiting the potential of the system. Moreover, direct MPC

(DMPC)—which is the most popular MPC-based method in

the power electronic community—exhibits a favorable dy-

namic performance owing to the direct manipulation of the

converter switch positions [4].

The optimization problem underlying DMPC is an inte-

ger program, which is, in general, difficult to solve [5]. In

power electronics the DMPC problem is most often solved

with the brute-force approach of exhaustive search, i.e., the

optimal control input is selected by evaluating all candidate

solutions. This implies that the computational complexity

increases exponentially with the prediction horizon. Because

of this, the horizon is in most cases limited to one step.

Nevertheless, it has been shown that long prediction horizons

lead to a significant performance improvement under steady-

state operation conditions, especially when considering higher

order systems, like drives with LC filters [6].

The sphere decoding algorithm (SDA) introduced in [7]

can be adopted to solve the long-horizon DMPC problem

in a computational efficient manner and promising results

have been shown, see, e.g. [7]–[11]. To this end, the DMPC

problem has to be formulated as a (truncated) integer least-

squares (ILS) one. Following, owing to its branch-and-bound

nature [12], SDA effectively excludes suboptimal choices at

the early stages of the search process. By doing so, the

computational burden is significantly reduced and optimality

is not sacrificed.

However, despite the fact that SDA can solve the opti-

mization problem significantly more efficiently than the ex-

haustive search, long-horizon DMPC remains computation-

ally challenging. In order to save computational power some

demanding computations—required for the derivation of the

ILS problem—have to be done offline [3]. In doing so,

however, the weighting factor that decides on the trade-off

between the tracking performance of the controller and the

switching frequency has to be tuned offline since some entries

of the matrix that define the ILS problem depend on it. As a

result, this factor has to stay constant throughout the whole

operation of the drive. The latter implies that the switching

frequency cannot be adjusted among different operating points,

something that may adversely affect the drive performance.

To overcome this issue, this paper proposes a modified

sphere decoder that allows adjustment of the above-mentioned

weighting factor in real time. To this aim, the formulation of

the underlying ILS problem is modified such that the offline

calculated matrices become independent of the weighting

factor. By doing so, the switching frequency can be adjusted

in real time without requiring lengthy and computationally

demanding operations. Furthermore, by exploiting and ma-

nipulating the geometry of the formulated ILS problem the

computational load of the problem can be kept modest. To

highlight the potential benefits of the proposed control scheme

a variable speed drive system, consisting of a three-level

NPC voltage inverter and a medium-voltage (MV) induction

machine (IM) is chosen as a case study.

II. OPTIMAL CONTROL PROBLEM

In this section the formulation of the control problem is

presented. For simplicity, a constant dc-link voltage and a fixed

neutral point potential of the NPC inverter are assumed, as

shown in Fig. 1. Moreover, the modeling of the system and the

controller design are performed in the stationary orthogonal

αβ-plane. Therefore, any variable ξabc = [ξa ξb ξc]
T in

the abc-plane is mapped into the αβ-plane ξαβ = [ξα ξβ ]
T

through the transformation matrix K, i.e., ξαβ =Kξabc, with

K =
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Fig. 1: Three-level three-phase neutral point clamped (NPC) voltage source
inverter driving an induction motor (IM).

A. Control Model

Let uabc = [ua ub uc]
T denote the three-phase switch

position of the NPC inverter, where ux ∈ U = {−1, 0, 1},
with x ∈ {a, b, c}, is the single-phase position. Given uabc

the three-phase inverter output voltage (equal to the applied

stator voltage) is given by vabc = [va vb vc]
T = (vdc/2)uabc.

The dynamics of the IM can be described by [13]1
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where the stator current is = [isα isβ ]
T and rotor flux ψr =

[ψrα ψrβ]
T are the state variables, while the rotor angular

speed ωr is considered to be a time-varying parameter. For

the definition of all parameters in (2) the reader is referred

to [7].

For the derivation of the MPC problem in Section II-B, the

model of the drive system in a state-space representation is

required. By utilizing (2), and by choosing the state vector

as x = [isα isβ ψrα ψrβ]
T , and the three-phase switch

position and the stator current as the system input and output,

respectively, i.e., uabc = [ua ub uc]
T and y = [isα isβ]

T , the

state-space form of the drive is

dx(t)

dt
= Fx(t) +Guabc(t) (3a)

y(t) = Cx(t), (3b)

where the matrices F ,G, andC are provided in the appendix.

By using exact discretization the discrete-time state-space

model of the system is of the form

x(k + 1) = Ax(k) +Buabc(k) (4a)

y(k) = Cx(k), (4b)

with k ∈ N, A = eFTs , and B =
∫ Ts

0
eF τdτ G.

B. Optimization Problem

The control objectives of the direct model predictive current

control (DMPCC), see Fig. 2, relate to the (a) regulation of

the stator current to its reference, and (b) the minimization of

1To simplify the notation, from this section on the subscript αβ for vectors
in the αβ-plane is omitted.
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Fig. 2: Model predictive current control with reference tracking for the three-
phase three-level NPC inverter with an IM.

switching losses. Accordingly, the cost function that describes

these objectives over a finite prediction horizon of length Np

time steps is defined as

J(k) =

k+Np−1∑

l=k

||yerr(l + 1)||22 + λu||∆uabc(l)||22 . (5)

The first term in (5) penalizes the output tracking error

yerr(l) = yref(l) − y(l) within the prediction horizon,

where yref(k) is the stator current reference generated by

the outer control loop. The second term, i.e., ∆uabc(l) =
uabc(l)− uabc(l − 1), penalizes the switching effort. Finally,

the parameter λu > 0 is a weighting factor; it chooses an

operating point on the trade-off curve by prioritizing between

the two competing control objectives.

To find the optimal switching sequence U∗(k) =
[u∗T

abc(k) u
∗T
abc(k+1) . . . u∗T

abc(k+Np− 1)]T that minimizes

function (5), problem

minimize
U(k)

J(k) (6a)

subject to x(l + 1) = Ax(l) +Buabc(l) (6b)

y(l + 1) = Cx(l + 1) (6c)

U(k) ∈ U (6d)

‖∆uabc(l)‖∞ ≤ 1, ∀l = k, · · · , k +Np − 1 (6e)

needs to be solved in real time. In (6), U(k) =
[uT

abc(k) u
T
abc(k+1) . . . uT

abc(k+Np−1)]T is the switching

sequence within the prediction horizon, and U is the feasible

set defined as U = U
Np ⊂ Z

n, i.e., the Np-times Cartesian

product of the input set U = U ×U ×U = U3, with n = 3Np.

Furthermore, (6e) introduces the switching constraint added

to prevent a shoot-through in the converter by not allowing

switching from ux = −1 to 1, or vice versa, in one step [7].

Finally, in line with the receding horizon policy [14], only

the first element of the solution, i.e., u∗
abc(k), is used as

gating signals for the converter. At the next time step, the

optimization problem is repeated over a shifted horizon with

updated measurements and estimates.



An efficient method to solve problem (6) is to formulate it

as an ILS program. In the following, only some key points are

summarized; for the detailed derivation see [7].

By successively using (4) it yields

Y (k) = Γx(k) +ΥU(k), (7)

where Y (k) = [yT (k+1) yT (k+2) . . . yT (k+Np)]
T is the

output trajectory. By introducing the unconstrained solution

Uunc(k), i.e., the solution to (6) when constraints (6d) and

(6e) are neglected (i.e., U(k) ∈ R
n), and after some algebraic

manipulations, function (5) can be written as

J(k) = (U(k)−Uunc(k))
TH(U(k)−Uunc(k)) , (8)

with

H = Υ
T
Υ+ λuS

TS (9a)

Uunc(k) = −H−1
Θ(k) (9b)

Θ
T (k) =− (Y ref(k)− Γx(k))TΥ− λu(Euabc(k − 1))TS,

(9c)

where matrices Υ, Γ, S and E are given in the appendix.

As H is (by definition) positive definite for λu ∈ R
++,

a unique invertible and lower triangular matrix V ∈ R
n×n

exists, which satisfies

V TV =H . (10)

As shown in [7], matrix V can be computed by applying

the Cholesky decomposition to H−1. By doing so, and with

Ūunc(k) = V Uunc(k), (8) can be rewritten as

J(k) = (V U(k)− Ūunc(k))
T (V U(k)− Ūunc(k)) . (11)

Therefore, problem (6) can be stated as the (truncated) ILS

problem

minimize
U(k)∈U

∥∥Ūunc(k)− V U(k)
∥∥2
2
. (12)

The solution to (8) is the lattice point2 which has the smallest

Euclidean distance ρ to the unconstrained solution. This point

can be efficiently found by adopting the branch-and-bound

algorithm referred to as sphere decoder [15], [16], see [7] for

more details.

III. SPHERE DECODER FOR ONLINE ADJUSTMENT OF THE

SWITCHING FREQUENCY

The computational cost of Cholesky decomposition of an

m ×m matrix is 1
3m

3 floating-point operations (flops) [17].

As can be understood, the computational load of the Cholesky

decomposition of H—thus the computation of V —can be

very high, especially when long horizons are implemented.

Moreover, given the very short sampling intervals adopted

in direct control methods for power electronics, it can be

concluded that the Cholesky decomposition of H in real

2Matrix V generates a n-dimensional lattice—ergo its name “lattice
generator matrix”—each point of which corresponds to a candidate solution,
i.e., switching sequence U(k) ∈ U.

time becomes very challenging, if not impossible. As a re-

sult, unless if the size of H remains reasonably small [11],

the computation of the generator matrix V is performed

offline [7]. The downside of this approach is that adjustment

of the switching frequency (through λu, see (5)) in real time is

impossible since there are entries of H (and V ) that depend

on λu. In the remainder of this section a method that achieves

online adjustment of the switching frequency with minimal

additional computational overhead is presented.

A. Reformulation of the ILS Problem

To achieve online adjustment of the switching frequency

the ILS problem (12) needs to be reformulated. The aim is to

make the lattice generator matrix independent of λu such that

it can still be computed offline. To this end, (8) is written as

H = Υ
T
Υ+ λoS

TS︸ ︷︷ ︸
:=H1

+(λu − λo)STS︸ ︷︷ ︸
:=H2

. (13)

As can be seen, in (13) the term λo ∈ R
++ is introduced.

This is done to turn the positive semidefinite matrix H1 [3]

into a positive definite one3. Thus, since both H1 and H2 are

by definition positive definite, two unique invertible and lower

triangular matrices R1 ∈ R
n×n and R2 ∈ R

n×n exist such

that

RT
1R1 =H1 (14a)

RT
2R2 =H2 . (14b)

Combining (8), (13), and (14), it yields

J(k) = (U(k)−Uunc(k))
TRT

1R1(U(k)−Uunc(k))+

(U(k)−Uunc(k))
T (λu − λo)RT

2R2(U(k)−Uunc(k))

= (LU(k)− Ũunc(k))
T (LU(k)− Ũunc(k)) , (15)

where L =

[
R1√

λu − λoR2

]
is the new generator matrix and

Ũunc(k) = LUunc(k). With this, the ILS problem (12) can

be rewritten as

minimize
U(k)∈U

∥∥∥Ũunc(k)−LU(k)
∥∥∥
2

2
. (16)

As can be seen, problems (12) and (16) are equivalent. With

the latter formulation, however, λu is removed from the offline

calculated matricesR1 andR2. In doing so, the switching fre-

quency can be adjusted in real time by appropriately tuning λu
and updating L accordingly.4 Therefore, the computationally

demanding approach of recalculating H and V in (12) (via

Cholesky decomposition) is avoided altogether.

3The Cholesky decomposition is applicable only to positive definite matri-
ces.

4It should be mentioned that λu > λo is implied, meaning that the
switching effort is by default penalized with a penalty greater than λo. This
imposes a limit to the maximum achievable (average) switching frequency.
Note also that the parameter λo is chosen offline. Its value affects the structure
of the lattice, and, consequently, the computational complexity of the problem,
as shown in Section IV.



B. Modified Sphere Decoder Algorithm

To solve problem (16) the sphere decoding algorithm

proposed in [7] is refined, as shown in Algorithm 1. This

algorithm operates on a search tree of n levels—generated by

the set U—the branches of which correspond to the elements

of the sequence of control inputs U . According to the sphere

decoding principle, this search tree is traversed in a depth-

first search manner and, consequently, a relatively tight upper

bound is computed at the beginning of the optimization proce-

dure. By doing so, the algorithm can visit only a small subset

of U while optimality is still guaranteed. Specifically, only

the candidate solutions inside a hypersphere (n-dimensional

sphere) of radius ρ centered at the unconstrained solution

Ũunc(k), i.e.,
∥∥∥Ũunc(k)−LU(k)

∥∥∥
2
≤ ρ(k) , (17)

need to be evaluated.

With regards to the optimization process in question, ma-

trix L generates two n-dimensional lattices. Thanks to the

same lower-triangular structure of R1 and R2, the Euclidean

distances d between LU(k) and Ũunc(k) in both lattices

can be calculated in parallel and added together, see line 4
of Algorithm 1. Thus, the solution set U(k) can be built

component by component, and at each step only a one-

dimensional problem needs to be solved. If the intermediate

distance d′ exceeds the radius ρ, the branch is pruned and the

remaining elements of the associated switching sequence are

not explored; then the algorithm backtracks to find new paths

towards the lower levels of the search tree. Once a complete

switching sequence U(k) is constructed, while constraint (6e)

is met, then it is considered as the tentative solution to (16).

At this point, the radius of the hypersphere is tightened to

d′ and backtracking occurs so that previously unexplored–

and yet not pruned—switching sequences are examined until

the certificate (i.e., proof) of optimality is obtained. The latter

implies that only the optimal solution (i.e., switching sequence

U∗(k)) remains inside the sphere and u∗
abc(k) is applied to

the inverter. The algorithm is evoked with the following initial

values of the arguments

U∗(k) = ModSphDec([ ], 0, 1, ρ2ini(k), Ũunc(k)), (18)

where [ ] is the empty vector, and ρini(k) is the initial radius

of the hypersphere, computed based on an educated guess

U ed(k), as introduced in (40) in [7], i.e.,

ρini(k) =
∥∥∥Ũunc(k)−LU ed(k)

∥∥∥
2
. (19)

IV. PERFORMANCE EVALUATION

The simulation results presented in this section are obtained

based on the MV drive system shown in Fig. 1. The three-

level NPC has a constant dc-link voltage Vdc = 5.2 kV. The

squirrel cage IM has rated values 3.3 kV, 356A, 2MVA,

50Hz nominal frequency, and 0.25 per unit (p.u.) total leakage

inductance. For all cases examined, the sampling interval

Ts = 25 µs and the prediction horizon Np = 10 were

Algorithm 1 Modified Sphere Decoder

1: function MODSPHDEC(U , d2, i, ρ2, Ũunc)

2: for each u ∈ U do

3: ui ← u
4: d′2 ← ‖ũunc,i −L(i,1:i)U1:i‖22 +

‖ũunc,n+i −L(n+i,1:i)U1:i‖22 + d2

5: if d′2 ≤ ρ2 then

6: if i < n then

7: ModSphDec(U , d′2, i+ 1, ρ2, Ũunc)

8: else

9: if U meets constraints (6e) then

10: U∗ ← U

11: ρ2 ← d′2

12: end if

13: end if

14: end if

15: end for

16: return U∗

17: end function

used. Moreover, all results are shown in the p.u. system. The

performance of the proposed sphere decoder is compared with

the sphere decoder in [7], hereafter referred to as “standard

sphere decoder”.

The effectiveness of the proposed method is examined both

under steady state and torque transients. Fig. 3 shows the

steady-state behavior of the drive system while operating

at rated speed and torque at an average device switching

frequency fsw = 200Hz (λu = 0.15). At t = 10ms λu
is changed from 0.15 to 0.01. As a result, fsw increases to

500Hz, and, consequently, the stator current total harmonic

distortion (THD) changes from 5.46% to 3.00%.

Another advantage of the proposed method is that λu can

be adjusted when the load condition varies to keep the same

switching frequency at all operating points. Fig. 4(a) shows the

stator current and Fig. 4(b) the switch positions during torque

transients, i.e., when the reference torque changes from 1 to

0 p.u., and after a quarter of period, back to 1 p.u. (the torque

reference is translated into the corresponding current steady-

state reference). As can be seen, a switching frequency fsw =
200Hz can be maintained under different torque conditions

by appropriately tuning λu. To this end, a lookup table can be

built where the values of λu for different operating conditions

(e.g. torque references) and fsw are stored.

The computational complexity of an ILS problem depends

on the condition of the lattice generator matrix [9]. To have

a well-conditioned one, the columns of the lattice generator

matrix should be close to orthogonal and of (relatively) small

length [18]. The generator matrix of the modified sphere

decoder consists of two parts, i.e., R1 and
√
λu − λoR2.

Since R2 is by definition constant (in our case R2 = S),

only the columns of R1 can be manipulated (through λo)

with the goal to meet the aforementioned criteria. To show the

effect of λo on the structure of the lattice generator matrix,
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Fig. 3: Simulated waveform of steady-state operation with online adjustment of the switching
frequency. For t < 10ms, the switching frequency fsw is 200Hz, whereas for t ≥ 10ms
fsw = 500Hz.
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Fig. 5: The transformed coordinate system (lattice) of the first predicted step in ab-plane for fsw = 250 Hz.
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(a) Modified sphere decoder with λo = 0.001.
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(b) Modified sphere decoder with λo = 0.05.
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(c) Standard sphere decoder.

Fig. 6: Probability distribution of the number of nodes explored by the sphere decoder algorithm for fsw = 250 Hz. The average number of nodes explored
is indicated by the solid vertical line. The 95, 98, and 99 percentiles are shown as dashed, dashed-dotted, and dotted vertical lines, respectively.

and thus the computational complexity of (16), the following

test is conducted. First, λu is set equal to 0.12 such that

fsw = 250Hz results. By choosing λo = 0.001 the lattice

generated by R1 is shown in Fig. 5(a), where the black solid

circles correspond to the ab-phase switch positions of the first

prediction step. For comparison purposes, the lattice generated

by V (see (12)) when λu = 0.12 is shown in Fig. 5(c).

As can be observed, the lattice in Fig. 5(a) is much more

skewed than that in Fig. 5(c). Moreover, the lattice points in the

former case are very close to each other. As a consequence, the

hypersphere centered at Ũunc is very likely to include more

lattice points when a lattice as in Fig. 5(a) exists. In other

words, the sphere decoding algorithm has to evaluate more

candidate solutions since the bounding is less effective. Thus,

the modified ILS problem (16) with λo = 0.001 is ill-posed.

This conditioning of the problem, however, can be improved

by increasing λo. In doing so, the diagonal entries of H1—

and thus ofR1—become relatively larger than the off-diagonal

ones. Consequently, R1 and the lattice generated by it get

closer to being orthogonal, as can be seen in Fig. 5(b) where

λo is set to 0.05. As can be observed, the generated lattice

is close to that shown in Fig. 5(c), implying that the search



TABLE I: Number of nodes explored by the modified and standard sphere
decoder for fsw = 250Hz.

Number of Modified Modified
Standard

nodes explored λo = 0.001 λo = 0.05

µa 43 37 35

µm 536 299 266

process is significantly sped up. The latter is verified in Table I,

where the computational complexity—in terms of the number

of nodes µ explored by the sphere decoder at each time step—

of the aforementioned three cases is investigated. Specifically,

the average µa and maximum µm number of the explored

nodes are presented. As can be seen, the modified sphere

decoder needs to visit slightly more nodes than the standard

sphere decoder when λo = 0.05. Moreover, given that from an

implementation point of view, the maximum number of nodes

explored is the decisive quantity [9], it can be concluded that

the 12% increase in the visited nodes is not detrimental. To

further explore the computational complexity of the discussed

cases, Fig. 6 illustrates the probability distribution of the

number of nodes explored. The solid, dashed, dash-dotted

and dotted lines indicate the 50, 95, 98, and 99 percentiles

of the number of nodes explored, respectively. As can be

observed, these lines are shifted towards the higher number

of nodes in the case of the modified sphere decoder with

λo = 0.001, see Fig. 6(a). On the other hand, when λo = 0.05,

the percentiles exist at similar numbers as those of the standard

sphere decoder, see Figs. 6(b) and 6(c), respectively.

V. CONCLUSIONS

This paper proposes a modified sphere decoder for online

weighting factor adjustment. To this end, the integer least-

square (ILS) problem is reformulated and a new lattice gen-

erator matrix is introduced. Thanks to the proposed method,

the drive system can operate at the same average switching

frequency over the whole operating region while avoiding

demanding computations. Furthermore, as shown, by appropri-

ately manipulating the lattice generator matrix of the modified

ILS problem, the computational burden of the proposed sphere

decoder is very close to that of the algorithm in [7]. It

can be concluded that the proposed approach facilitates the

implementation of the sphere decoding algorithm on a real-

time system.

APPENDIX

The matrices of the continuous-time model (3) are

F =




− 1
τs

0 Xm

τrD
ωr

Xm

D

0 − 1
τs
−ωr

Xm

D
Xm

τrD
Xm

τr
0 − 1

τr
−ωr

0 Xm

τr
ωr − 1

τr


,

G =
vdc
2

Xr

D




1 0

0 1

0 0

0 0


K, C =

[
1 0 0 0

0 1 0 0

]
.

The matrices in (9) are

Υ=




CB 02×3 · · · 02×3

CAB CB · · · 02×3

...
...

...

CANp−1B CANp−2B · · · CB



,E=




I3

03×3

03×3

...

03×3



,

Γ=




CA

CA2

...

CANp



,S=




I3 03×3 · · · 03×3

−I3 I3 · · · 03×3

03 −I3 · · · 03×3

...
...

...

03×3 03×3 · · · I3



.
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