

An Explicitly Parallel Architecture for Packet

Processing in Software Defined Networks

Hesam Zolfaghari

Electrical Engineering Unit

Tampere University

Tampere, Finland

hesam.zolfaghari@tuni.fi

Davide Rossi

Department of Electrical, Electronic,

and Information Engineering

University of Bologna

Bologna, Italy

davide.rossi@unibo.it

Jari Nurmi

Electrical Engineering Unit

Tampere University

Tampere, Finland

jari.nurmi@tuni.fi

Abstract— Programmable data plane is a key enabler of

Software Defined Networking. By making networking devices

programmable, novel networking services and functions could

be realized by means of software running on these devices. In

this paper, we present a lightweight packet processor that could

process the packets on the fly as they arrive. As we will see, the

area of this packet processor is smaller than a packet parser

employing Ternary Content Addressable Memory. As an added

benefit, the designed packet processor could also reduce the

traffic to the lookup tables on the chip. Moreover, its use is not

limited to switches and routers. It could also be used in the

Network Interface Cards and offload packet processing tasks.

Despite its packet processing capabilities, packet processor

instances required for sustaining aggregate throughput of 640

Gbps have area equivalent to the packet parser instances in the

Reconfigurable Match Tables Architecture.

Keywords— On-the-fly packet processing, programmable data

plane, Explicit Parallelism, Packet Processor

I. INTRODUCTION

Networking gear has traditionally been fixed-function and
tied to a specific set of protocols. Recently, the benefits of
programmable data plane have forced the industry and
academia to design programmable networking devices.
Commercially available programmable packet processing
systems are Barefoot Tofino [1], Intel FlexPipe [2] and
Netronome Agilio [3]. Benefits of programmability in the data
plane are as follows:

• Support for newer networking protocols

• Simpler networking devices

• Telemetry and network troubleshooting

• Offloading computation to the network

With programmable data plane, support of different
network protocols is made possible by means of software
updates. The architectures presented in [4], [5] and [6] are all
programmable. All it takes for a device to provide new
functionality is to run the required software. Although it
sounds counter-intuitive, programmable networking devices
are architecturally simpler considering the range of
functionality that they could provide. If this range of
functionality were to be provided using conventional design
principles, a large amount of protocol-specific state must be
permanently stored.

One of the strongest driving forces of deploying
programmable data plane is the rich set of telemetry and
network troubleshooting facilities. In [7], [8] and [9] network
state is embedded into the packets and later on used for
diagnostics and telemetry. With the data plane being
programmable, any internal state of the device which is of
significance to the network could be written to the packet and
later on used for analysis. In fact a network administrator-

defined header could be inserted into the packet to carry such
state. Finally, the latest trend in programmable data plane is
in-network computing. In this paradigm, computational tasks
are offloaded by networking devices. For instance, in [10], the
programmable network device is used as a neural network
accelerator.

The packet parsing and packet processing subsystems are
the main components of networking devices such as switches
and routers. Earlier, we designed a programmable packet
parser in [11] and [12]. In this programmable packet parser,
the output format is identical to that of the packet parser in [1],
[4] and [5]. The internal architecture of our parser, however,
is fundamentally different. Rather than a state machine that
relies on a Ternary Content Addressable Memory (TCAM) to
derive the next state, our parser uses a program control unit.
In this paper, we have augmented the parser with functional
units for packet processing. As a result, it is a Packet Processor
and we refer to it as such in this paper. As we will see, for an
aggregate throughput of 640 Gbps, the total area of our Packet
Processor instances equals that of the packet parsers in
Reconfigurable Match Tables (RMT) architecture while
providing wide range of packet processing capabilities in
addition to packet parsing.

This paper is organized as follows. In section II the
motivation for this architecture is elaborated. In section III the
architecture is presented followed by a packet processing
example in section IV. Finally, the evaluation results will be
presented in section V.

II. MOTIVATION

The set of packet processing operations that must be
performed on a packet can be categorized under two classes:

• Standardized operations

• Deployment-specific operations

Standardized operations are the ones that must be
performed on a packet because the protocol standard instructs
to do so. For instance, in IPv6, a packet’s Hop Limit must be
examined and if its value is zero, the packet must be discarded.
The packet parser could do this as the packet is arriving.
However, the treatment for a packet that has a given
Destination Address is deployment specific. For instance, it
could lead to the packet being discarded or the packet being
forwarded to all egress ports. The packet parser in its
conventional form could not be involved with this level of
packet processing unless it has a lookup table at its use, in
which case it could do almost any deployment-specific packet
processing.

Our packet parser reads the header of the incoming packet
in units of maximum 4 bytes wide. Throughout the time of a
packet’s arrival at which point the packet parser is involved,
many packet processing tasks could be performed. For

instance, validity checking of a packet and field modifications
that do not depend on the outcome of table lookups could be
already done. By doing so, by the time the packet has fully
arrived, packet processing has been partially done. This
greatly reduces the time required for processing of packets, as
the packets spend less time in the packet processing device.
Processing of header fields during the course of parsing comes
at a negligible cost.

In addition, the parsers in the RMT architecture have their
output multiplexed into a serial pipeline. This means that if
new packets are constantly arriving through the ingress ports,
the output of the parser has to wait until its turn for entering
the pipeline comes. With 16 parser instances and one packet
processing pipeline, this waiting could last as long as 16 cycles
during which a lot could be done. By starting packet
processing already at the time the packet starts arriving, this
waiting time is exploited for packet processing.

In order to enhance the chance of being able to perform all
the required processing for a packet, the concept of packet
flows is fully exploited. The parser is equipped with tiny
binary lookup tables that contain the lookup result for the most
recently arrived packets. The lookup result is retrieved from
the main processing pipeline which contains lookup tables. If
a match is found in the tiny lookup tables, the corresponding
action that could not have otherwise been possible could be
performed in the Packet Processor. In this case the packet
could bypass the main packet processing pipeline. Even if a
match is not found, the packet enters the main pipeline in
partially processed form which means that it requires less
processing time.

III. ARCHITECTURE

The packet processing system comprises a programmable
packet parser and a programmable packet processor. The two
entities work in harmony for on-the-fly packet processing.
The architecture of the programmable packet parser is
discussed in detail in [12]. It extracts the header fields of the
incoming packets and writes them to a storage location called
Original Header Word (OHW) entries. These entries are
marked R16-R31. The programmable Packet Processor does
not wait for the packet parser to fully parse a packet before it
starts processing of the packet. It starts as soon as an entry is
written to the OHW. Fig. 1 illustrates a high-level view of the
Packet Parser and the Packet Processor.

The packet processor is comprised of 4 Groups of
Functional Units (GFU). Each GFU has 8 functional units
which are sufficient for processing a number of header fields.
Together, these GFUs perform all the processing required for
the headers of an arriving packet. Fig. 2 illustrates a GFU. As
we can see, each GFU contains two ALUs, two shifters, a
Merge Unit, a Load and Store unit, a Lookup Table and a
Parameters Unit. The Load and Store Unit, Lookup Table and
Parameter Unit are stateful units. For instance, it is possible to
store the number of packets associated with a specific search
key in the memory located in the Load and Store Unit. All the
other units are stateless units.

The complete instruction set contains 64 instructions.
Depending on their semantics and the functional unit which
executes them, there are 8 classes of instructions. Instruction
classes have been outlined in TABLE I.

Fig. 1. High-level view of the Packet Parser and the Packet Processor

Fig. 2. A Group of Functional Units (GFU)

Merge Word instruction is used to merge the
corresponding bytes of a 32-bit word into a target word in the
specified manner. For each byte in the target word, there is a
choice of two from the corresponding byte position of the two
source words. It is used for forming search keys and finalizing
the words of a header. Save Search Key in conjunction with
Load and Store instructions allow to save a key generated
during processing of a packet and associate data with it so that
they could be later on retrieved if the same search key is
encountered. Bit Extract instruction is useful for reading flag
bits such as Explicit Congestion Notification (ECN) bits. Load
Parameter is used for inserting four different types of values:

Incoming packet

Packet

Parser

Original

Header

Words

Packet

Processor

M
o

d
ified

 H
ead

er W
o

rd
s

ALU

ALU

Shifter

Shifter

Merge

Unit

Load

&Store

Lookup

Table

Param.

Unit

Operand 1

Operand 1

Operand 1

Operand 1

Operand 1

Operand 2

Operand 2

Operand 2

Operand 2

Operand

Operand

Opcode

Opcode

Opcode

Opcode

Opcode

Opcode

Opcode

Opcode

Modified

Header

Word

Entries

Operand 2

TABLE I. INSTRUCTION SET

Instruction

Class

Operations Mnemonic

Condition

Evaluation

Check for equality,

greater than or less

than conditions

CEQ, CG, CL

Arithmetic

and Logic

Arithmetic and

Logic operations

ADD, SUB, AND,

OR, NOT,

MOVE, XOR,

NAND

Shift Logical left and

right in 1-, 4-, 8-

and 16-bit units

SHL1, SHL4,

SHL8, SHL16,

SHR1, SHR4,

SHR8, SHR16

Merge Merge the

corresponding

bytes of two words

MERGE0000,

MERGE0001, …,

MERGE1111

Lookup Search key lookup

and lookup table

maintenance

Save Search Key,

Lookup

Bit

Extraction

Extract the

specified bit within

a byte

BE0, BE1, … ,

BE7

Load and

Store

Load and Store

operations

Load, Store

Load

Parameter

Insert header

template,

processing operand,

status or field value

Load Param(i)

• Header templates such as header words for Internet
Control Message Protocol (ICMP)

• Unique values for fields intended to contain unique
values such as a connection identifier

• System status such as status of queues

• Operands for functional units

The functional units receive up to two operands from four
different sources:

• Modified Header Word (MHW) entries in the GFU
(R0-R15)

• Original Header Word (OHW) entries (R16-R31)

• Certain entries of Modified Header Word in other
GFUs (R32-R63)

• An immediate value

There is one OHW space which is shared by all GFUs. All
operands from the OHW entries are subject to extraction as a
result of which an 8- or 16-bit field within the 32-bit word is
extracted and zero-extended to 32 bits prior to execution.
Alternatively, the selected 32-bit OHW entry could be
operated upon without any field extraction.

In addition to the operands, the functional units receive a
one-bit predicate input from the 16-bit condition status (r0-
r15) to which the result of condition evaluation instructions
and lookup result is written. Each GFU has an independent

condition status word. The predicate input is used for
conditional execution. Fig. 3 illustrates the inputs to the ALU.

Fig. 3. Inputs to the ALU

There is an MHW space per GFU. MHW storage is a
multiport register file in which each functional unit has its own
writing space. This means that no other functional unit could
write to the range of locations reserved for the functional unit
in question. Two entries are reserved per functional unit
within the GFU. In contrast, any functional unit could read
from the writing space of both itself and all other functional
units. If the nature of a given header allows, each functional
unit produces a result that is read on the next cycle by another
functional unit and this process goes on until the header is
fully processed. This is an ideal scenario and also requires that
the software written for the program also makes use of the
functional units properly. The datapath of each GFU contains
logic for operand forwarding. Thus, the functional units need
not wait for the input to be written to the MHW if another
functional unit has produced the value in the preceding clock
cycle. Independent GFUs could also communicate, but it
requires a number of cycles from the time a functional unit in
a GFU has produced the result until another functional unit in
another GFU could read that value because there is no cross-
GFU forwarding. OHW entries contain arriving header words
written by the parser.

A. Data Types

All data types are 32 bits wide. The parsing subsystem
could read from a buffer of incoming packets in 8-, 16- and
32-bit units but writes them to 32-bit entries within the OHW
storage. Therefore, everything that the packet processing
subsystem reads from this space is 32 bits wide.

B. Memories

There are four different memory blocks in each GFU:

• Memory for holding the search key entries in the
binary lookup table

• Memory for holding one-time-usable values

• Memory for holding parameter values

• Memory for load and store operations

C. Program Control

There are three key mechanisms for ensuring correct
program flow.

R0-R15

R16-R31

R32-R63

R0-R15

R16-R31

R32-R63

Immediate

Value

r0-r15

(Predicate)

ALU

Evaluate
Clock

Opcode

Sel

Sel

• Branches based on header field values

• Branches based on results produced by the Packet
Processor

• Conditional execution performed by the functional
units of the Packet Processor

The functionality for both branches mentioned above is
provided by the program control unit of the packet parser. The
purpose of branches based on results produced by the
functional units of the Packet Processor is to avoid a long
stream of instructions whose execution result is not written to
the MHW entries. Such streams of instructions waste cycles
and prevent functional units from being used for other
instructions.

D. Packet Processing Metadata

The metadata is a data structure containing information
regarding the packet under processing. The rest of the system
uses the metadata of a packet for further decisions regarding a
packet. Metadata fields are outlined in Table II.

TABLE II. METADATA FIELDS

Metadata Field Width

(bits)

Purpose

Incoming Port 6 Indicates the port

through which the

packet has arrived.

Processing Status 2 Indicates whether

processing is done and

also whether the packet

requires further

processing in the main

pipeline.

Discard 1 Specifies if the packet

should be discarded.

Destination 2 Specifies if the packet

should be sent to:

-Main processing

pipeline

-Outgoing port

-Control Plane

-Internal Buffer

Destination Port

Bitmap

64 Specifies the outgoing

port(s) through which

the packet must be

transmitted.

IV. ILLUSTRATED EXAMPLE

In this section, we illustrate how this architecture
processes IPv4 packets. We have specifically chosen IPv4
because it constitutes a great portion of Internet traffic. In
addition, it requires quite a lot of processing even in the
absence of header options. We will demonstrate how this
programmable architecture can handle this workload without
any protocol-specific hardware.

At a minimum, once an IPv4 packet arrives at a router, the
checksum must be verified to detect possible errors during
transmission. The Time to Live (TTL) field must be evaluated
to see if the packet can continue its path or if it must be
discarded. If it can continue, the value of TTL must be
decremented and as a result of this, the checksum must be

recalculated. The Destination Address field of the header must
be used as a key to lookup into the forwarding table to
determine the outgoing port(s) for the packet. In this
illustrated example, we assume that the packets carry no
header options. But to increase the workload to some extent,
we perform some additional integrity checking on the header.
Fig. 4 contains the packet processing functions to execute on
this Packet Processor.

1
2
3
4
5
6

7
8
9

10
11
12
13
14
15

void process_ipv4_packet(ipv4_packet *p)
{
 verify_ipv4_packet(p);
 check_TTL(p -> TTL);
 update_checksum(p);
 lookup_destination_address(p ->
Destination_Address);
 check_DF(p -> flags);
}
void verify_ipv4_packet(ipv4_packet *p)
{
 verify_version(p);
 verify_IHL(p);
 verify_Total_Length(p);
 verify_checksum(p);
}

Fig. 4. Source code for processing IPv4 packets

As we can see, it contains functions for verifying the
contents of Version, Internet Header Length (IHL) and Total
Length fields. In order to clarify the contents of these
functions, Fig. 5 illustrates the contents of the function that
checks the value of TTL.

1
2
3
4
5
6
7

void check_TTL(ipv4_packet *p)
{
 if(p -> TTL == 0)
 {
 insert_ICMPv4_header(BAD_HEADER);
 drop(p);
 }
}

Fig. 5. Source code for checking the TTL field

The compiler or the programmer must decide how to assign

these functions to the processing resources of the system. The

processing resources of this architecture are:

• GFUs

• Functional units within each GFU

• Registers

We assign all integrity checking functions other than
checksum checking to GFU 0. Checksum calculation and
update could share the intermediate results for more efficient
execution, therefore we assign both functions to GFU 1. We
assign checking of Don’t Fragment (DF) flag to GFU 2 and
finally GFU 3 performs address lookup. Tables III, IV, V and
VI contain the instructions that will be executed at each clock
cycle in GFUs 0, 1, 2 and 3 respectively. t0 is the time at which
the first header word of the incoming IPv4 header is written to
the OHW storage. It should be noted that the tables contain the
instructions that are executed in each of the GFUs and not the

complete source code written for processing of IPv4 packets.
Furthermore, any instruction that uses a given OHW entry as
operand must be scheduled for execution at least 2 cycles after
the packet parser has written it to the corresponding OHW
entry. This is to ensure that the operand fetch logic has
retrieved the correct value.

TABLE III. INSTRUCTIONS EXECUTED IN GFU 0

Time Operation

t0 -

t1 -

t2 R4 <- SHR4 R16(3)

t3 r0 <- R4 CEQ 0x04

R3 <- R16(3) AND 0x0F

t4 (r0) R14 <- Param(15);

r4 <- R3 CG 0x04;

R4 <- SHL4 R3

t5 (r4) R14 <- Param(15);

r0 <- R16(4) CEQ R4;

r4 <- R16(4) CG R4

t6 r15 <- r0 OR r4

t7 r15 <- NOT r15

t8 (r15) R14 <- Param(15)

 In GFU 0, the value of Version field is obtained to be
compared with the immediate value of 4. Similarly, the value
of IHL is obtained to ensure that it is greater than or equal to
5. IHL is then shifted left four bits to derive the header size in
bytes. Then it is compared with the value of Total Length to
ensure that the entire size of the packet is greater than or equal
to the header size in bytes. If any of the above-mentioned
conditions is not fulfilled, ICMP bad header is inserted.

TABLE IV. INSTRUCTIONS EXECUTED IN GFU 1

Time Operation

t0 -

t1 -

t2 R0 <- R16(4) + R16(6)

t3 R0 <- R0 + R17(4)

t4 R0 <- R0 + R17(6)

t5 R0 <- R0 + R18(4); R3 <- MOVE R0

t6 R0 <- R0 + R18(6); R3 <- R3 + R19(4)

t7 R0 <- R0 + R19(4); R3 <- R3 + R19(6)

t8 R0 <- R0 + R19(6); R3 <- R3 + R20(4)

t9 R0 <- R0 + R20(4); R3 <- R3 + R20(6)

t10 R0 <- R0 + R20(6); R2 <- R18(3) - 0x01

t11 R4 <- SHR16 R0; R6 <- SHL16 R2

t12 R0 <- R0 + R4; R6 <- SHL8 R6

t13 R1 <- NOT R0; R8 <- R18(7) MERGE R6

t14 r0 <- R1 CEQ 0x00; R7 <- SHR16 R8

t15 (NOT r0) R14 <- Param(15); R3 <- R3 + R7

t16 R6 <- SHR16 R3

t17 R3 <- R3 + R6

t18 R9 <- R8 MERGE R3

In GFU 1, all 16-bit words of the header are added together
for verifying the checksum. These additions take 10 cycles
because the addition result must be accumulated and there are
at least 10 items to be added together. R0 holds the summation
result. At t5 addition result calculated up to that point is copied

into R3 so that the calculation of the new checksum could
begin in parallel. As we can see, during t5-t11 at each cycle
there are two ALU or two shift operations occurring without
conflict.

At t10, TTL is decremented and stored in R2. The
decremented TTL value which is one byte wide is then shifted
all the way to take the most significant byte position. This
takes two clock cycles. Then it is merged with the third word
of the header so that it contains the updated TTL. Then a copy
of this updated word is shifted right 16 bits for updating the
checksum. Once the updated checksum is calculated, it is
merged with the updated TTL and the unchanged Protocol
field at t18.

TABLE V. INSTRUCTIONS EXECUTED IN GFU 2

Time Operation

t0 -

t1 R14 <- Param(15)

t2 r4 <- R16(4) CG R14

t3 r14 <- BE5 R17(1)

t4 r15 <- r4 AND r14

t5 (r15) R15 <- Param(14)

GFU 2 executes instructions for checking the DF flag. At
t1, R14 is loaded with the value of maximum allowed packet
size. The router has previously calculated this using Path
MTU Discovery. At the following clock cycle, the value of
Total Length field which contains the size of the entire packet
in bytes is compared with the value of R14. At the next clock
cycle, the DF flag is extracted for evaluation. At t4, the two
conditions of packet size being larger than maximum allowed
packet size and DF flag being set are subject to an AND
operation. At t5, ICMP Destination Unreachable is inserted if
the compound condition calculated in the preceding cycle
turns out to be true.

TABLE VI. INSTRUCTIONS EXECUTED IN GFU 3

Time Operation

t0 -

t1 -

t2 -

t3 -

t4 -

t5 -

t6 R12 <- Lookup R20(7)

t7 -

t8 (r6) R10 <- Load R12

GFU 3 performs lookup operation. At t6, Destination
Address field of the arrived packet is submitted to the lookup
table in the GFU for lookup. It takes one cycle until a matching
entry is found and it takes another cycle to derive the address
of the entry which contains the associated data which in this
case is the set of ports to which the packet must be sent. The
associated entry is loaded at t8 if a match has been found.

V. EVALUATION

In this section we present the implementation results. The
Packet Processor has been implemented in VHDL. We have
synthesized it on 28 nm UTBB FD-SOI technology in worst-
case operating conditions (1.0V, ss, 125°C) using Synopsys

Design Compiler J-2014.09-SP4. Power analysis was also
performed in worst-case operating conditions at the supply
voltage of 1.0V (ss, 125°C). We have verified that all timing
constraints are met for operation at the frequency of 2.0 GHz.

Table VII contains the area of the packet processing units
called atoms in [6] and the equivalent functional units of our
Packet Processor. Since the atoms perform only field
modification and not lookup, we have also excluded the effect
of the lookup tables on the values of table VII. It should be
noted that we have not implemented the atoms in [6]. Instead
we have provided the area results for the aggregate of
functional units which provide functionality equivalent to the
atoms in [6]. The atoms in [6] were synthesized to a 32-nm
standard cell library. Using (1), we convert their area to
equivalent 28 nm values so that we could compare them with
the results of our own implementation.

 Area in 28 nm = Area in 32 nm × (28/32)2 (1)

TABLE VII. AREA COMPARISON OF ATOMS IN [6] AND EQUIVALENT

FUNCTIONAL UNITS IN THIS WORK

Atom Area in [6]
(μm2)

Area in
this work
(μm2)

Saving
(%)

Stateless 1059 700 34

ReadWrite 191 90 53

ReadAddWrite 330 245 26

Predicated
ReadAddWrite

605 418 31

IfElse
ReadAddWrite

753 630 16

Subtract 1164 834 28

The Stateless atom could only perform arithmetic, logic,
relational and conditional operations on operands. The
Read/Write atom has the smallest area among the stateful
atoms. The distinctive feature of atoms with higher area is the
addition of logic levels for predication and logic for
performing predicate-specific actions. From the perspective of
functionality, the functional units in this work are far superior
to the atoms because as we can see from Table 4 and Table 5
of [6], the functional unit in the stateful atoms performs either
addition or addition and subtraction. The rest of the logic is
for evaluating the predicate. In our architecture, with two
ALUs in each GFU, action associated with each outcome for
the predicate could be done in parallel using different
functional units. It should also be noted that our architecture
runs at 2.0 GHz while the architecture in [6] runs at 1.0 GHz.

 Table VIII contains the area results of different
components of a single instance of our Packet Processor. The
table presents area also in terms of number of gates so that the
results could be more easily compared with the results in [4]
and [5]. For each component, the equivalent gate count is
obtained by dividing the total cell area by the area of the
smallest cell used in the technology. It should be noted that
memories have an independent read port for each Packet
Processor instance and hence they could be shared without
contention. In other words, they need not be replicated per
Packet Processor instance. In order to be able to make a

precise comparison between the area of this Packet Processor
and the Packet Parser in RMT, we must answer the critical
question of how many Packet Processor instances are required
for sustaining the target aggregate throughput of 640 Gbps.
Assuming that the packets at each port arrive on a 10 Gbps
link and that the packets are all minimum-sized, a new packet
will arrive every 67 nanoseconds. Equivalently, there are
around 15 M packets per port per second.

TABLE VIII. AREA FIGURES FOR A SINGLE PACKET PROCESSOR

INSTANCE SYNTHESIZED TO 28 NM UTBB-FDSOI

Component Area (µm2) Area (gate count
× 1000)

Packet parsing
logic

5193 11

Packet parsing
parameter
memories

96593 197

Program Control
Logic

342 0.7

Packet
processing

functional units

56612 116

Operand storage,
fetch and

forwarding

75896 155

Instruction
memory

344650 704

We also assume that all Layer-2 functionality is performed
by an interface between the link and the Packet Processor
which performs IPv4 routing. As we saw in section IV, the
processing takes 19 cycles which in a 2.0 GHz system is
equivalent to 9.5 nanoseconds. Therefore, one Packet
Processor instance per 6 ports is sufficient for sustaining the
line rate. However, we assign a Packet Processor per 4 ports
in case some of the packets require further processing.
Assuming that these Packet Processors will be in the same port
configuration as in [5], 16 Packet Processor instances are
sufficient to sustain the 640 Gbps throughput. The sum of the
area of 16 instances is roughly 5.4 M gates which is slightly
smaller than the area of the packet parser instances in [5].

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a fully programmable
architecture for protocol-independent packet processing. We
have seen that by enhancing the previously designed packet
parser with packet processing functionality which comes at a
marginal cost, a great deal of packet processing could be done
on the packets even if a match is not found in the tiny lookup
tables. As for future work, we would like to enhance the
throughput of the system and fine-tune it for high-end
workloads and applications. In addition, requirement for use
of more advanced functional units with the aim of supporting
as wide range of protocols while maintaining protocol-
independence must be investigated.

ACKNOWLEDGMENT

We hereby express our gratitude to Mr. Glen Gibb from Barefoot

Networks for the invaluable comments regarding our idea. This

work has been partially supported by the Finnish DELTA doctoral

training network.

REFERENCES

[1] The World's Fastest & Most Programmable Networks

https://www.barefootnetworks.com/resources/worlds-fastest-most-
programmable-networks/

[2] Intel Ethernet Switch Fm6000 Series 10/40 GbE Low Latency
Switching Silicon
https://www.intel.com/content/dam/www/public/us/en/documents/pro
duct-briefs/ethernet-switch-fm6000-series-brief.pdf

[3] Agilio FX SmartNIC https://www.netronome.com/products/agilio-fx/

[4] Gibb, Glen, George Varghese, Mark Horowitz, and Nick McKeown.
"Design principles for packet parsers." In Architectures for Networking
and Communications Systems, pp. 13-24. IEEE, 2013.

[5] Bosshart, Pat, Glen Gibb, Hun-Seok Kim, George Varghese, Nick
McKeown, Martin Izzard, Fernando Mujica, and Mark Horowitz.
"Forwarding metamorphosis: Fast programmable match-action
processing in hardware for SDN." ACM SIGCOMM Computer
Communication Review 43, no. 4 (2013): 99-110.

[6] Sivaraman, Anirudh, Alvin Cheung, Mihai Budiu, Changhoon Kim,
Mohammad Alizadeh, Hari Balakrishnan, George Varghese, Nick
McKeown, and Steve Licking. "Packet transactions: High-level
programming for line-rate switches." In Proceedings of the 2016 ACM
SIGCOMM Conference, pp. 15-28. ACM, 2016.

[7] Kim, Changhoon, Anirudh Sivaraman, Naga Katta, Antonin Bas,
Advait Dixit, and Lawrence J. Wobker. "In-band network telemetry via
programmable dataplanes." In ACM SIGCOMM. 2015.

[8] Jeyakumar, Vimalkumar, Mohammad Alizadeh, Yilong Geng,
Changhoon Kim, and David Mazières. "Millions of little minions:
Using packets for low latency network programming and visibility." In
ACM SIGCOMM Computer Communication Review, vol. 44, no. 4,
pp. 3-14. ACM, 2014.

[9] Handigol, Nikhil, Brandon Heller, Vimalkumar Jeyakumar, David
Mazières, and Nick McKeown. "I know what your packet did last hop:
Using packet histories to troubleshoot networks." In 11th {USENIX}
Symposium on Networked Systems Design and Implementation
({NSDI} 14), pp. 71-85. 2014.

[10] Sanvito, Davide, Giuseppe Siracusano, and Roberto Bifulco. "Can the
network be the AI accelerator?." In Proceedings of the 2018 Morning
Workshop on In-Network Computing, pp. 20-25. ACM, 2018.

[11] Zolfaghari, Hesam, Davide Rossi, and Jari Nurmi. "An Explicitly
Parallel Architecture for Packet Parsing in Software Defined
Networks." In 2018 IEEE 29th International Conference on
Application-specific Systems, Architectures and Processors (ASAP),
pp. 1-4. IEEE, 2018.

[12] Zolfaghari, Hesam, Davide Rossi, and Jari Nurmi. "Low-latency
Packet Parsing in Software Defined Networks." In 2018 IEEE Nordic
Circuits and Systems Conference (NORCAS): NORCHIP and
International Symposium of System-on-Chip (SoC), pp. 1-6. IEEE,
2018.

https://www.barefootnetworks.com/resources/worlds-fastest-most-programmable-networks/
https://www.barefootnetworks.com/resources/worlds-fastest-most-programmable-networks/
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
https://www.netronome.com/products/agilio-fx/

