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Abstract— Programmable data plane is a key enabler of 

Software Defined Networking. By making networking devices 

programmable, novel networking services and functions could 

be realized by means of software running on these devices. In 

this paper, we present a lightweight packet processor that could 

process the packets on the fly as they arrive. As we will see, the 

area of this packet processor is smaller than a packet parser 

employing Ternary Content Addressable Memory. As an added 

benefit, the designed packet processor could also reduce the 

traffic to the lookup tables on the chip. Moreover, its use is not 

limited to switches and routers. It could also be used in the 

Network Interface Cards and offload packet processing tasks. 

Despite its packet processing capabilities, packet processor 

instances required for sustaining aggregate throughput of 640 

Gbps have area equivalent to the packet parser instances in the 

Reconfigurable Match Tables Architecture. 

Keywords— On-the-fly packet processing, programmable data 

plane, Explicit Parallelism, Packet Processor  

I. INTRODUCTION  

Networking gear has traditionally been fixed-function and 
tied to a specific set of protocols. Recently, the benefits of 
programmable data plane have forced the industry and 
academia to design programmable networking devices. 
Commercially available programmable packet processing 
systems are Barefoot Tofino [1], Intel FlexPipe [2] and 
Netronome Agilio [3]. Benefits of programmability in the data 
plane are as follows: 

• Support for newer networking protocols 

• Simpler networking devices 

• Telemetry and network troubleshooting 

• Offloading computation to the network 

With programmable data plane, support of different 
network protocols is made possible by means of software 
updates. The architectures presented in [4], [5] and [6] are all 
programmable. All it takes for a device to provide new 
functionality is to run the required software. Although it 
sounds counter-intuitive, programmable networking devices 
are architecturally simpler considering the range of 
functionality that they could provide. If this range of 
functionality were to be provided using conventional design 
principles, a large amount of protocol-specific state must be 
permanently stored.  

One of the strongest driving forces of deploying 
programmable data plane is the rich set of telemetry and 
network troubleshooting facilities. In [7], [8] and [9] network 
state is embedded into the packets and later on used for 
diagnostics and telemetry. With the data plane being 
programmable, any internal state of the device which is of 
significance to the network could be written to the packet and 
later on used for analysis. In fact a network administrator-

defined header could be inserted into the packet to carry such 
state. Finally, the latest trend in programmable data plane is 
in-network computing. In this paradigm, computational tasks 
are offloaded by networking devices. For instance, in [10], the 
programmable network device is used as a neural network 
accelerator. 

The packet parsing and packet processing subsystems are 
the main components of networking devices such as switches 
and routers. Earlier, we designed a programmable packet 
parser in [11] and [12]. In this programmable packet parser, 
the output format is identical to that of the packet parser in [1], 
[4] and [5]. The internal architecture of our parser, however, 
is fundamentally different. Rather than a state machine that 
relies on a Ternary Content Addressable Memory (TCAM) to 
derive the next state, our parser uses a program control unit. 
In this paper, we have augmented the parser with functional 
units for packet processing. As a result, it is a Packet Processor 
and we refer to it as such in this paper. As we will see, for an 
aggregate throughput of 640 Gbps, the total area of our Packet 
Processor instances equals that of the packet parsers in 
Reconfigurable Match Tables (RMT) architecture while 
providing wide range of packet processing capabilities in 
addition to packet parsing. 

This paper is organized as follows. In section II the 
motivation for this architecture is elaborated. In section III the 
architecture is presented followed by a packet processing 
example in section IV. Finally, the evaluation results will be 
presented in section V. 

II. MOTIVATION 

The set of packet processing operations that must be 
performed on a packet can be categorized under two classes: 

• Standardized operations 

• Deployment-specific operations 

Standardized operations are the ones that must be 
performed on a packet because the protocol standard instructs 
to do so. For instance, in IPv6, a packet’s Hop Limit must be 
examined and if its value is zero, the packet must be discarded. 
The packet parser could do this as the packet is arriving. 
However, the treatment for a packet that has a given 
Destination Address is deployment specific. For instance, it 
could lead to the packet being discarded or the packet being 
forwarded to all egress ports. The packet parser in its 
conventional form could not be involved with this level of 
packet processing unless it has a lookup table at its use, in 
which case it could do almost any deployment-specific packet 
processing.  

Our packet parser reads the header of the incoming packet 
in units of maximum 4 bytes wide. Throughout the time of a 
packet’s arrival at which point the packet parser is involved, 
many packet processing tasks could be performed. For 



instance, validity checking of a packet and field modifications 
that do not depend on the outcome of table lookups could be 
already done. By doing so, by the time the packet has fully 
arrived, packet processing has been partially done. This 
greatly reduces the time required for processing of packets, as 
the packets spend less time in the packet processing device. 
Processing of header fields during the course of parsing comes 
at a negligible cost.  

In addition, the parsers in the RMT architecture have their 
output multiplexed into a serial pipeline. This means that if 
new packets are constantly arriving through the ingress ports, 
the output of the parser has to wait until its turn for entering 
the pipeline comes. With 16 parser instances and one packet 
processing pipeline, this waiting could last as long as 16 cycles 
during which a lot could be done. By starting packet 
processing already at the time the packet starts arriving, this 
waiting time is exploited for packet processing. 

In order to enhance the chance of being able to perform all 
the required processing for a packet, the concept of packet 
flows is fully exploited. The parser is equipped with tiny 
binary lookup tables that contain the lookup result for the most 
recently arrived packets. The lookup result is retrieved from 
the main processing pipeline which contains lookup tables. If 
a match is found in the tiny lookup tables, the corresponding 
action that could not have otherwise been possible could be 
performed in the Packet Processor. In this case the packet 
could bypass the main packet processing pipeline. Even if a 
match is not found, the packet enters the main pipeline in 
partially processed form which means that it requires less 
processing time. 

III. ARCHITECTURE 

The packet processing system comprises a programmable 
packet parser and a programmable packet processor. The two 
entities work in harmony for on-the-fly packet processing. 
The architecture of the programmable packet parser is 
discussed in detail in [12]. It extracts the header fields of the 
incoming packets and writes them to a storage location called 
Original Header Word (OHW) entries. These entries are 
marked R16-R31. The programmable Packet Processor does 
not wait for the packet parser to fully parse a packet before it 
starts processing of the packet. It starts as soon as an entry is 
written to the OHW. Fig. 1 illustrates a high-level view of the 
Packet Parser and the Packet Processor. 

The packet processor is comprised of 4 Groups of 
Functional Units (GFU). Each GFU has 8 functional units 
which are sufficient for processing a number of header fields. 
Together, these GFUs perform all the processing required for 
the headers of an arriving packet. Fig. 2 illustrates a GFU. As 
we can see, each GFU contains two ALUs, two shifters, a 
Merge Unit, a Load and Store unit, a Lookup Table and a 
Parameters Unit. The Load and Store Unit, Lookup Table and 
Parameter Unit are stateful units. For instance, it is possible to 
store the number of packets associated with a specific search 
key in the memory located in the Load and Store Unit. All the 
other units are stateless units. 

The complete instruction set contains 64 instructions. 
Depending on their semantics and the functional unit which 
executes them, there are 8 classes of instructions. Instruction 
classes have been outlined in TABLE I. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. High-level view of the Packet Parser and the Packet Processor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. A Group of Functional Units (GFU) 

Merge Word instruction is used to merge the 
corresponding bytes of a 32-bit word into a target word in the 
specified manner. For each byte in the target word, there is a 
choice of two from the corresponding byte position of the two 
source words. It is used for forming search keys and finalizing 
the words of a header. Save Search Key in conjunction with 
Load and Store instructions allow to save a key generated 
during processing of a packet and associate data with it so that 
they could be later on retrieved if the same search key is 
encountered. Bit Extract instruction is useful for reading flag 
bits such as Explicit Congestion Notification (ECN) bits. Load 
Parameter is used for inserting four different types of values: 
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TABLE I.  INSTRUCTION SET 

Instruction 

Class 

Operations Mnemonic 

Condition 

Evaluation 

Check for equality, 

greater than or less 

than conditions 

CEQ, CG, CL 

Arithmetic 

and Logic 

Arithmetic and 

Logic operations 

ADD, SUB, AND, 

OR, NOT, 

MOVE, XOR, 

NAND 

Shift Logical left and 

right in 1-, 4-, 8- 

and 16-bit units 

SHL1, SHL4, 

SHL8, SHL16, 

SHR1, SHR4, 

SHR8, SHR16 

Merge Merge the 

corresponding 

bytes of two words 

MERGE0000, 

MERGE0001, …, 

MERGE1111 

Lookup Search key lookup 

and lookup table 

maintenance 

Save Search Key, 

Lookup 

Bit 

Extraction 

Extract the 

specified bit within 

a byte  

BE0, BE1, … , 

BE7 

Load and 

Store 

Load and Store 

operations 

Load, Store 

Load 

Parameter 

Insert header 

template, 

processing operand, 

status or field value 

Load Param(i) 

 
 

• Header templates such as header words for Internet 
Control Message Protocol (ICMP)  

• Unique values for fields intended to contain unique 
values such as a connection identifier 

• System status such as status of queues 

• Operands for functional units 

The functional units receive up to two operands from four 
different sources: 

• Modified Header Word (MHW) entries in the GFU 
(R0-R15) 

• Original Header Word (OHW) entries (R16-R31) 

• Certain entries of Modified Header Word in other 
GFUs (R32-R63) 

• An immediate value 

There is one OHW space which is shared by all GFUs. All 
operands from the OHW entries are subject to extraction as a 
result of which an 8- or 16-bit field within the 32-bit word is 
extracted and zero-extended to 32 bits prior to execution. 
Alternatively, the selected 32-bit OHW entry could be 
operated upon without any field extraction.  

In addition to the operands, the functional units receive a 
one-bit predicate input from the 16-bit condition status (r0-
r15) to which the result of condition evaluation instructions 
and lookup result is written. Each GFU has an independent 

condition status word. The predicate input is used for 
conditional execution. Fig. 3 illustrates the inputs to the ALU. 

 

Fig. 3. Inputs to the ALU 

There is an MHW space per GFU. MHW storage is a 
multiport register file in which each functional unit has its own 
writing space. This means that no other functional unit could 
write to the range of locations reserved for the functional unit 
in question. Two entries are reserved per functional unit 
within the GFU. In contrast, any functional unit could read 
from the writing space of both itself and all other functional 
units. If the nature of a given header allows, each functional 
unit produces a result that is read on the next cycle by another 
functional unit and this process goes on until the header is 
fully processed. This is an ideal scenario and also requires that 
the software written for the program also makes use of the 
functional units properly. The datapath of each GFU contains 
logic for operand forwarding. Thus, the functional units need 
not wait for the input to be written to the MHW if another 
functional unit has produced the value in the preceding clock 
cycle. Independent GFUs could also communicate, but it 
requires a number of cycles from the time a functional unit in 
a GFU has produced the result until another functional unit in 
another GFU could read that value because there is no cross-
GFU forwarding. OHW entries contain arriving header words 
written by the parser. 

A. Data Types 

All data types are 32 bits wide. The parsing subsystem 
could read from a buffer of incoming packets in 8-, 16- and 
32-bit units but writes them to 32-bit entries within the OHW 
storage. Therefore, everything that the packet processing 
subsystem reads from this space is 32 bits wide. 

B. Memories 

There are four different memory blocks in each GFU:  

• Memory for holding the search key entries in the 
binary lookup table 

• Memory for holding one-time-usable values 

• Memory for holding parameter values 

• Memory for load and store operations 

C. Program Control 

There are three key mechanisms for ensuring correct 
program flow. 
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• Branches based on header field values 

• Branches based on results produced by the Packet 
Processor 

• Conditional execution performed by the functional 
units of the Packet Processor 

The functionality for both branches mentioned above is 
provided by the program control unit of the packet parser. The 
purpose of branches based on results produced by the 
functional units of the Packet Processor is to avoid a long 
stream of instructions whose execution result is not written to 
the MHW entries. Such streams of instructions waste cycles 
and prevent functional units from being used for other 
instructions. 

D. Packet Processing Metadata 

The metadata is a data structure containing information 
regarding the packet under processing. The rest of the system 
uses the metadata of a packet for further decisions regarding a 
packet. Metadata fields are outlined in Table II. 

TABLE II.  METADATA FIELDS 

Metadata Field Width 

(bits) 

Purpose 

Incoming Port 6 Indicates the port 

through which the 

packet has arrived. 

Processing Status 2 Indicates whether 

processing is done and 

also whether the packet 

requires further 

processing in the main 

pipeline. 

Discard 1 Specifies if the packet 

should be discarded. 

Destination 2 Specifies if the packet 

should be sent to: 

-Main processing 

pipeline 

-Outgoing port 

-Control Plane 

-Internal Buffer 

Destination Port 

Bitmap 

64 Specifies the outgoing 

port(s) through which 

the packet must be 

transmitted. 

 

IV. ILLUSTRATED EXAMPLE 

In this section, we illustrate how this architecture 
processes IPv4 packets. We have specifically chosen IPv4 
because it constitutes a great portion of Internet traffic. In 
addition, it requires quite a lot of processing even in the 
absence of header options. We will demonstrate how this 
programmable architecture can handle this workload without 
any protocol-specific hardware. 

At a minimum, once an IPv4 packet arrives at a router, the 
checksum must be verified to detect possible errors during 
transmission. The Time to Live (TTL) field must be evaluated 
to see if the packet can continue its path or if it must be 
discarded. If it can continue, the value of TTL must be 
decremented and as a result of this, the checksum must be 

recalculated. The Destination Address field of the header must 
be used as a key to lookup into the forwarding table to 
determine the outgoing port(s) for the packet. In this 
illustrated example, we assume that the packets carry no 
header options. But to increase the workload to some extent, 
we perform some additional integrity checking on the header. 
Fig. 4 contains the packet processing functions to execute on 
this Packet Processor. 
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void process_ipv4_packet(ipv4_packet *p) 
{ 
 verify_ipv4_packet(p); 
 check_TTL(p -> TTL); 
 update_checksum(p); 
 lookup_destination_address(p -> 
Destination_Address); 
 check_DF(p -> flags); 
} 
void verify_ipv4_packet(ipv4_packet *p) 
{ 
 verify_version(p); 
 verify_IHL(p); 
 verify_Total_Length(p); 
 verify_checksum(p);  
} 

Fig. 4. Source code for processing IPv4 packets 

As we can see, it contains functions for verifying the 
contents of Version, Internet Header Length (IHL) and Total 
Length fields. In order to clarify the contents of these 
functions, Fig. 5 illustrates the contents of the function that 
checks the value of TTL. 
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void check_TTL(ipv4_packet *p) 
{ 
 if(p -> TTL == 0) 
 { 
                       insert_ICMPv4_header(BAD_HEADER); 
                       drop(p); 
 } 
} 

Fig. 5. Source code for checking the TTL field 

The compiler or the programmer must decide how to assign 

these functions to the processing resources of the system. The 

processing resources of this architecture are: 

• GFUs  

• Functional units within each GFU 

• Registers 

We assign all integrity checking functions other than 
checksum checking to GFU 0. Checksum calculation and 
update could share the intermediate results for more efficient 
execution, therefore we assign both functions to GFU 1. We 
assign checking of Don’t Fragment (DF) flag to GFU 2 and 
finally GFU 3 performs address lookup. Tables III, IV, V and 
VI contain the instructions that will be executed at each clock 
cycle in GFUs 0, 1, 2 and 3 respectively. t0 is the time at which 
the first header word of the incoming IPv4 header is written to 
the OHW storage. It should be noted that the tables contain the 
instructions that are executed in each of the GFUs and not the 



complete source code written for processing of IPv4 packets. 
Furthermore, any instruction that uses a given OHW entry as 
operand must be scheduled for execution at least 2 cycles after 
the packet parser has written it to the corresponding OHW 
entry. This is to ensure that the operand fetch logic has 
retrieved the correct value.   

TABLE III.  INSTRUCTIONS EXECUTED IN GFU 0 

Time Operation 

t0 - 

t1 - 

t2 R4 <- SHR4 R16(3) 

t3 r0 <- R4 CEQ 0x04 

R3 <- R16(3) AND 0x0F 

t4 (r0) R14 <- Param(15); 

r4 <- R3 CG 0x04; 

R4 <- SHL4 R3 

t5 (r4) R14 <- Param(15); 

r0 <- R16(4) CEQ R4; 

r4 <- R16(4) CG R4 

t6 r15 <- r0 OR r4 

t7 r15 <- NOT r15 

t8 (r15) R14 <- Param(15)  

 

 In GFU 0, the value of Version field is obtained to be 
compared with the immediate value of 4. Similarly, the value 
of IHL is obtained to ensure that it is greater than or equal to 
5. IHL is then shifted left four bits to derive the header size in 
bytes. Then it is compared with the value of Total Length to 
ensure that the entire size of the packet is greater than or equal 
to the header size in bytes. If any of the above-mentioned 
conditions is not fulfilled, ICMP bad header is inserted. 

TABLE IV.  INSTRUCTIONS EXECUTED IN GFU 1 

Time Operation 

t0 - 

t1 - 

t2 R0 <- R16(4) + R16(6) 

t3 R0 <- R0 + R17(4) 

t4 R0 <- R0 + R17(6) 

t5 R0 <- R0 + R18(4); R3 <- MOVE R0 

t6 R0 <- R0 + R18(6); R3 <- R3 + R19(4) 

t7 R0 <- R0 + R19(4); R3 <- R3 + R19(6) 

t8 R0 <- R0 + R19(6); R3 <- R3 + R20(4) 

t9 R0 <- R0 + R20(4); R3 <- R3 + R20(6) 

t10 R0 <- R0 + R20(6); R2 <- R18(3) - 0x01 

t11 R4 <- SHR16 R0; R6 <- SHL16 R2 

t12 R0 <- R0 + R4; R6 <- SHL8 R6 

t13 R1 <- NOT R0; R8 <- R18(7) MERGE R6 

t14 r0 <- R1 CEQ 0x00; R7 <- SHR16 R8 

t15 (NOT r0) R14 <- Param(15); R3 <- R3 + R7 

t16 R6 <- SHR16 R3 

t17 R3 <- R3 + R6 

t18 R9 <- R8 MERGE R3 

 

In GFU 1, all 16-bit words of the header are added together 
for verifying the checksum. These additions take 10 cycles 
because the addition result must be accumulated and  there are 
at least 10 items to be added together. R0 holds the summation 
result. At t5 addition result calculated up to that point is copied 

into R3 so that the calculation of the new checksum could 
begin in parallel. As we can see, during t5-t11 at each cycle 
there are two ALU or two shift operations occurring without 
conflict.  

At t10, TTL is decremented and stored in R2. The 
decremented TTL value which is one byte wide is then shifted 
all the way to take the most significant byte position. This 
takes two clock cycles. Then it is merged with the third word 
of the header so that it contains the updated TTL. Then a copy 
of this updated word is shifted right 16 bits for updating the 
checksum. Once the updated checksum is calculated, it is 
merged with the updated TTL and the unchanged Protocol 
field at t18. 

TABLE V.  INSTRUCTIONS EXECUTED IN GFU 2 

Time Operation 

t0 - 

t1 R14 <- Param(15)  

t2 r4 <- R16(4) CG R14  

t3 r14 <- BE5 R17(1) 

t4 r15 <- r4 AND r14 

t5 (r15) R15 <- Param(14) 

 

GFU 2 executes instructions for checking the DF flag. At 
t1, R14 is loaded with the value of maximum allowed packet 
size. The router has previously calculated this using Path 
MTU Discovery. At the following clock cycle, the value of 
Total Length field which contains the size of the entire packet 
in bytes is compared with the value of R14. At the next clock 
cycle, the DF flag is extracted for evaluation. At t4, the two 
conditions of packet size being larger than maximum allowed 
packet size and DF flag being set are subject to an AND 
operation. At t5, ICMP Destination Unreachable is inserted if 
the compound condition calculated in the preceding cycle 
turns out to be true. 

TABLE VI.  INSTRUCTIONS EXECUTED IN GFU 3 

Time Operation 

t0 - 

t1 - 

t2 - 

t3 - 

t4 - 

t5 - 

t6 R12 <- Lookup R20(7) 

t7 -  

t8  (r6) R10 <- Load R12 

 

GFU 3 performs lookup operation. At t6, Destination 
Address field of the arrived packet is submitted to the lookup 
table in the GFU for lookup. It takes one cycle until a matching 
entry is found and it takes another cycle to derive the address 
of the entry which contains the associated data which in this 
case is the set of ports to which the packet must be sent. The 
associated entry is loaded at t8 if a match has been found. 

V. EVALUATION 

In this section we present the implementation results. The 
Packet Processor has been implemented in VHDL. We have 
synthesized it on 28 nm UTBB FD-SOI technology in worst-
case operating conditions (1.0V, ss, 125°C) using Synopsys 



Design Compiler J-2014.09-SP4. Power analysis was also 
performed in worst-case operating conditions at the supply 
voltage of 1.0V (ss, 125°C). We have verified that all timing 
constraints are met for operation at the frequency of 2.0 GHz. 

Table VII contains the area of the packet processing units 
called atoms in [6] and the equivalent functional units of our 
Packet Processor. Since the atoms perform only field 
modification and not lookup, we have also excluded the effect 
of the lookup tables on the values of table VII. It should be 
noted that we have not implemented the atoms in [6]. Instead 
we have provided the area results for the aggregate of 
functional units which provide functionality equivalent to the 
atoms in [6]. The atoms in [6] were synthesized to a 32-nm 
standard cell library. Using (1), we convert their area to 
equivalent 28 nm values so that we could compare them with 
the results of our own implementation. 

 Area in 28 nm = Area in 32 nm × (28/32)2 (1) 

TABLE VII.  AREA COMPARISON OF ATOMS IN [6] AND EQUIVALENT 

FUNCTIONAL UNITS IN THIS WORK 

Atom Area in [6] 
(μm2) 

Area in 
this work 
(μm2) 

Saving 
(%) 

Stateless 1059 700 34 

ReadWrite 191 90 53 

ReadAddWrite 330 245 26 

Predicated 
ReadAddWrite 

605 418 31 

IfElse 
ReadAddWrite 

753 630 16 

Subtract 1164 834 28 

 

The Stateless atom could only perform arithmetic, logic, 
relational and conditional operations on operands. The 
Read/Write atom has the smallest area among the stateful 
atoms. The distinctive feature of atoms with higher area is the 
addition of logic levels for predication and logic for 
performing predicate-specific actions. From the perspective of 
functionality, the functional units in this work are far superior 
to the atoms because as we can see from Table 4 and Table 5 
of [6], the functional unit in the stateful atoms performs either 
addition or addition and subtraction. The rest of the logic is 
for evaluating the predicate. In our architecture, with two 
ALUs in each GFU, action associated with each outcome for 
the predicate could be done in parallel using different 
functional units. It should also be noted that our architecture 
runs at 2.0 GHz while the architecture in [6] runs at 1.0 GHz.  

 Table VIII contains the area results of different 
components of a single instance of our Packet Processor. The 
table presents area also in terms of number of gates so that the 
results could be more easily compared with the results in [4] 
and [5]. For each component, the equivalent gate count is 
obtained by dividing the total cell area by the area of the 
smallest cell used in the technology. It should be noted that 
memories have an independent read port for each Packet 
Processor instance and hence they could be shared without 
contention. In other words, they need not be replicated per 
Packet Processor instance. In order to be able to make a 

precise comparison between the area of this Packet Processor 
and the Packet Parser in RMT, we must answer the critical 
question of how many Packet Processor instances are required 
for sustaining the target aggregate throughput of 640 Gbps. 
Assuming that the packets at each port arrive on a 10 Gbps 
link and that the packets are all minimum-sized, a new packet 
will arrive every 67 nanoseconds. Equivalently, there are 
around 15 M packets per port per second. 

TABLE VIII.  AREA FIGURES FOR A SINGLE PACKET PROCESSOR 

INSTANCE SYNTHESIZED TO 28 NM UTBB-FDSOI 

Component Area (µm2) Area (gate count 
× 1000) 

Packet parsing 
logic 

5193 11 

Packet parsing 
parameter 
memories 

96593 197 

Program Control 
Logic 

342 0.7 

Packet 
processing 

functional units 

56612 116 

Operand storage, 
fetch and 

forwarding 

75896 155 

Instruction 
memory 

344650 704 

We also assume that all Layer-2 functionality is performed 
by an interface between the link and the Packet Processor 
which performs IPv4 routing. As we saw in section IV, the 
processing takes 19 cycles which in a 2.0 GHz system is 
equivalent to 9.5 nanoseconds. Therefore, one Packet 
Processor instance per 6 ports is sufficient for sustaining the 
line rate. However, we assign a Packet Processor per 4 ports 
in case some of the packets require further processing. 
Assuming that these Packet Processors will be in the same port 
configuration as in [5], 16 Packet Processor instances are 
sufficient to sustain the 640 Gbps throughput. The sum of the 
area of 16 instances is roughly 5.4 M gates which is slightly 
smaller than the area of the packet parser instances in [5].  

VI. CONCLUSION AND FUTURE WORK 

In this paper we presented a fully programmable 
architecture for protocol-independent packet processing. We 
have seen that by enhancing the previously designed packet 
parser with packet processing functionality which comes at a 
marginal cost, a great deal of packet processing could be done 
on the packets even if a match is not found in the tiny lookup 
tables. As for future work, we would like to enhance the 
throughput of the system and fine-tune it for high-end 
workloads and applications. In addition, requirement for use 
of more advanced functional units with the aim of supporting 
as wide range of protocols while maintaining protocol-
independence must be investigated.  
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