
Decorrelation-based Piecewise Digital Predistortion:

Operating Principle and RF Measurements

Mahmoud Abdelaziz, Lauri Anttila, Alberto Brihuega, Markus Allen, and Mikko Valkama

Department of Electrical Engineering, Tampere University, Finland

Contact email: lauri.anttila@tuni.fi

Abstract—In this paper, we propose a new closed-loop learning
architecture for digital predistortion (DPD) with piecewise (PW)
memory polynomial models. The technique is targeted specifically
for power amplifiers (PAs) that exhibit strong nonlinear behavior
and nonlinear memory effects, such as those implemented with
gallium nitride (GaN) technology. The learning algorithm is based
on a computationally simple decorrelating learning rule, which is
applied on each PW polynomial model separately. Measurements
with LTE-A signals on a basestation GaN PA show that the
proposed technique clearly outperforms the reference closed-
loop memory polynomial DPD, in terms of reducing the adjacent
channel emissions.

Index Terms—5G, digital predistortion, GaN power amplifiers,
linearization, adaptive filters, nonlinear signal processing.

I. INTRODUCTION

Energy efficiency is one of the key requirements in wireless

communication systems, in particular when it comes to the

transmitter power amplifier (PA), where much of the overall

power is consumed. Gallium nitride (GaN) PA technology, for

example, has proven to be an excellent choice in terms of

the PA energy efficiency [1], [2]. Moreover, GaN PA devices

can occupy a much smaller area for a given transmit power

compared to rival technologies such as laterally diffused metal-

oxide-semiconductor (LDMOS) [3]. These two advantages are

quite relevant for the ongoing developments in the wireless

communications industry, e.g., 5G technology and satellite

communications, as well as radar.

On the other hand, efficient and compact PAs, such as GaN

PAs, typically exhibit very strong nonlinear characteristics and

strong nonlinear memory effects [3]–[6]. These induce in-

band and out-of-band distortion to the transmit signal that can

lead to violations of the error-vector magnitude (EVM) and

adjacent channel leakage ratio (ACLR), that are imposed by

regulatory bodies. Digital predistortion (DPD) is one of the

most efficient and widely used PA linearization techniques.

However, when the PA becomes highly nonlinear and incor-

porates strong nonlinear memory, classical DPD approaches

require a significant number of parameters to be learned which

leads to high complexity and possible numerical problems [7].

Moreover, polynomial models with high nonlinearity orders

have poor extrapolation properties which is a disadvantage

when linearizing highly nonlinear PAs [8].

Piecewise (PW) polynomial-based models have been shown

to be quite effective in modeling and predistorting PAs with

strong nonlinear effects [8], [9]. Moreover, the PA input/output

characteristics can indeed vary over the range of the input

power level thus making the modelling and predistortion a

relatively difficult task when a single global model is used

for the whole input amplitude range. This problem is very

common in energy efficient PA architectures, e.g., Doherty

and envelope tracking (ET) architectures [8]. It thus becomes

more practical and efficient to use PW models for modelling

and predistorting such PAs.

In this paper we introduce a novel learning algorithm for

DPD with PW polynomial-based models with memory. The

proposed closed-loop learning algorithm is based on a compu-

tationally simple decorrelation-based learning rule [10], which

is applied to learn the PW regions separately. The DPD main

path processing is also performed in parallel, for each region

separately, before combining the predistorted signals at the

DPD output. This simple and parallel DPD structure enables

high performance implementations by exploiting the parallel

computing capabilities of, e.g., field programmable gate arrays

(FPGA) [11] or graphics processing units (GPU) [12]. We

leave these implementation aspects for future work while focus

in this paper on the DPD learning and processing algorithms.

We also present practical RF measurements using a medium-

power basestation GaN PA to demonstrate the effectiveness of

the proposed solution.

This paper is organized as follows. Section II describes the

DPD main path processing. Section III introduces the novel

PW DPD solution utilizing decorrelation-based learning. Sec-

tion IV reports the RF measurement results. Finally, Section

V concludes the paper.

II. DPD MAIN PATH PROCESSING

The DPD main path processing in this paper is based on

injecting a properly filtered version of the nonlinear distortion

products at the PA input with opposite phase, such that the

nonlinear distortion cancels out at the PA output [13], as shown

in Fig. 1. The nonlinear distortion of the PA is modeled using

PW polynomial models [14], i.e, each region is modeled using

a separate polynomial with memory, which we refer to in

this paper as a submodel [9]. Accordingly, the DPD model

is also a PW model with memory. In this paper, we assume

the generalized memory polynomial (GMP) per submodel

because of its flexibility and efficiency in modeling strong

nonlinear memory effects [15], [16], though in general any

other submodel can be used.

The DPD output signal x̃(n), with GMP for each submodel,
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Fig. 1: Block diagram of the proposed PW DPD solution with decorrelation-based learning.

reads

x̃(n) = x(n) +

N
∑

i=1

P
∑

p=1

p odd

G
∑

g=−G

αi
p,g,n ?

[

|xi(n− g)|p−1xi(n)
]

(1)

where x(n) is the complex baseband input signal, which

is divided into N regions whose corresponding samples are

denoted by xi(n), indicating the ith region. P is the DPD

nonlinearity order, G is the maximum envelope delay, and

? denotes the convolution operation between the DPD filter

αi
p,g,n of order L, and the corresponding GMP basis func-

tion (BF) ui
p,g(n) = |xi(n − g)|p−1xi(n). For notational

convenience, each submodel is considered to have the same

parameterization. However, as we also do in the experiments

in Section IV, different parameterizations can be used for the

different submodels. Since the basis functions ui
p,g(n) within

each submodel are generally mutually correlated, the BFs can

be orthogonalized by means of, e.g., Cholesky or singular

value decomposition in order to improve the convergence

speed and stability of the learning algorithm [14], [17]. We

refer to the orthogonalized BFs as sip,g(n).
A successful linearization of the proposed DPD is based

on proper optimization of the DPD filter coefficients per

submodel αi
p,g,n, as well as a proper division of the baseband

samples x(n) into N distinct regions. These two learning

aspects are addressed in the next section.

III. PROPOSED DPD LEARNING

The DPD learning is divided into two separate problems.

The first problem is to identify the boundaries of each region

for which a separate submodel will be obtained. The second

problem is the actual estimation of the DPD coefficients per

submodel.

A. Learning the centroids of the PW regions

The algorithm used in this paper for partitioning the data

samples into distinct regions (clusters) is known in the liter-

ature as the K-means clustering algorithm which minimizes

the variance within each cluster [14]. The initial centroids

(means) of the clusters are chosen randomly from the training

data based on the magnitudes of the input samples. Then the

following two steps are iterated until convergence:

• Each training data point is identified to the cluster whose

centroid is closest to it, in the Euclidean sense

• Each centroid is then updated with the value of the new

mean of the corresponding cluster.

A more efficient way to perform the clustering would consider

the PA characteristics in addition to the magnitudes of the

instantaneous PA input samples. We leave this to our future

work.

B. Closed-loop learning of the PW-DPD coefficients

The DPD parameter optimization task is formulated such

that the correlation between the nonlinear distortion at the

PA output and the basis functions representing the nonlin-

ear distortion is minimized iteratively [10]. In the proposed

method, the adaptive learning is performed independently

for each region. Consequently, the N adaptive DPD engines

are executed in parallel, each using the data samples of the

corresponding region for learning, as illustrated in Fig. 1.
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(b) RF measurement setup block diagram. (c) GaN PA used in the measurements.

Fig. 2: RF Measurement setup and GaN PA.

Let z(n) denote the baseband equivalent signal at the

output of the feedback observation receiver, which captures

the nonlinear distortion at the output of the PA. z(n) can be

thus written as

z(n) = F (n) ? x(n) + d(n), (2)

where F (n) is the effective linear filter, while d(n) is the

effective distortion due to the PA.

The error signal e(n) that is used to update the DPD filter

coefficients is given by

e(n) = F̂ (n) ? x(n)− z(n), (3)

where F̂ (n) is the estimate of F (n), and it can be obtained

in practice by means of, e.g., least-squares estimation.

Then, assuming a DPD filter memory order of L for each

orthogonal basis function sip,g(n), and an estimation block

size of M samples, we combine all the samples and the

corresponding DPD filter coefficients, within processing block

m, into the following vectors and matrices:

sip,g(nm) = [sip,g(nm) ... sip,g(nm − L)], (4)

Si
p,g(m) = [sip,g(nm)T ... sip,g(nm +M − 1)T ]T , (5)

Si(m) = [Si
1,−G(m) Si

3,−G(m) ... Si
P,−G(m) ...

Si
1,0(m) Si

3,0(m) ... Si
P,0(m) ...

Si
1,G(m) Si

3,G(m) ... Si
P,G(m)], (6)

α
i
p,g(m) = [αi

p,g,0(m) αi
p,g,1(m) ... αi

p,g,L(m)], (7)

ᾱ
i(m) = [αi

1,−G(m)αi
3,−G(m) ...αi

P,−G(m) ...

α
i
1,0(m)αi

3,0(m) ...αi
P,0(m) ...

α
i
1,G(m)αi

3,G(m) ...αi
P,G(m)]T , (8)

where nm denotes the index of the first sample within block

m.

The block-adaptive decorrelation-based DPD coefficient up-

date in the ith region, with learning rate µ, then reads

ᾱ
i(m+ 1) = ᾱ

i(m)− µ [ei(m)HSi(m)]T , (9)

where ei(m) = [ei(nm) ... ei(nm + M − 1)]T and Si(m)
denote the error signal vector and the filter input data matrix,

respectively, all within the processing block m. The updated

DPD coefficients ᾱ
i(m + 1) are then used to filter the

next block of M samples, and the process is iterated until

convergence.

IV. RF MEASUREMENT RESULTS

In this section, RF measurement results are reported to

demonstrate and validate the operation of the proposed PW-

DPD solution.

A. Measurement Setup

The algorithm is tested using a medium-power basestation

Doherty GaN power amplifier and compared against the

classical decorrelation-based DPD from [10]. The PA (model

no. RTH26008N-30) used in the measurements is designed

to operate over the frequency range 2620 - 2690 MHz, with



28 dB gain and +44 dBm 1-dB compression point. Two LTE-

based waveforms are considered in the RF measurements. The

first one has LTE 20 MHz channel-like parameterization, that

is, 1200 active subcarriers and 15 kHz subcarrier spacing,

while the second waveform consists of two 20 MHz LTE-

like component carriers with the same parameterizations as

the first one. The subcarrier modulation is 16-QAM for both

waveforms.

The National Instruments (NI) PXIe-5840 vector signal

transceiver (VST) used in the RF measurements includes both

a vector signal generator (VSG), and a vector signal analyzer

(VSA). The I/Q samples are first generated locally on the host

processor, and then transferred to the VSG to perform RF I/Q

modulation at the desired power level at the PA input. The

VST RF output is then connected to the input port of the

GaN PA, whose output port is connected to the VST RF input

through a high power attenuator, implementing the observation

receiver, as illustrated in Fig. 2. The VSA performs RF I/Q

demodulation and ADC to bring the signal back to digital

baseband.

B. Number of DPD Filter Coefficients

In order to compare the complexity of the PW-GMP and the

classical GMP DPD models, the number of model coefficients

is quantified. One of the main advantages of adopting a PW

solution is the fact that the parameterization of each region

can be chosen differently, which allows for better optimization

of the complexity-performance trade-off, by adopting simple

models in the “well-behaving” regions, and more complex in

those exhibiting more severe nonlinear behavior.

The number of coefficients of a GMP model is given by

ncoeff
Classical = (L+ 1) + (2G+ 1)(L+ 1)(P − 1)/2 (10)

On the other hand, the number of coefficients of the PW-GMP

is given by

ncoeff
PW =

N
∑

i=1

(Li + 1) + (2Gi + 1)(Li + 1)(Pi − 1)/2, (11)

which accounts for the different parameterization in each

submodel. The total number of coefficients utilized by each

DPD model are gathered in Table. II, along with the adopted

GMP parameters. Four regions are utilized by the PW-GMP,

as also shown in Fig. 3, and their parameters are listed by

order, that is, from region one to four.

C. DPD Performance and Analysis

We now evaluate the linearization performance of both DPD

solutions. The decorrelation-based learning utilizes 20 block-

level iterations with 20,000 samples per block in both DPD

solutions. The considered P , L and G are shown in Table II.

Fig. 4 illustrates the normalized spectra when the considered

closed-loop DPD solutions are adopted, and their correspond-

ing AM/AM responses are illustrated in Fig. 3. As it can

be observed, the PW DPD solution outperforms the classical

GMP DPD by a large margin, despite having comparable

computational complexity.

Fig. 3: RF measurement example showing the AM/AM re-

sponse of the GaN PA with and without DPD at +39.5 dBm

TX power. Classical decorrelation-based DPD is compared

to the proposed PW decorrelation-based DPD. The region

boundaries and centroids are also shown using the vertical

solid and dotted lines, respectively.

Fig. 4: RF measurement example showing the normalized

spectra at the GaN PA output with and without DPD at

+39.5 dBm TX power. Classical decorrelation-based DPD is

compared to the proposed PW decorrelation-based DPD.

A more challenging linearization scenario is considered in

Fig. 5, where an LTE-A signal with two 20 MHz component

carriers is transmitted. The PW DPD solution outperforms the

classical GMP again by a wide margin. The ACLR results for

the two scenarios are given in Table II.



TABLE I: Parameterization and Number of Coefficients

P L G ncoeff

Classical GMP 11 4 3 180

Piecewise GMP 7/3/5/9 2/2/2/2 2/1/2/2 192

TABLE II: ACLR L/R results

20 MHz signal 40 MHz signal

No DPD 28.46 / 29.41 28.91 / 31.67

Decorr. DPD 37.63 / 36.72 34.91 / 34.76

PW Decorr. DPD 45.24 / 44.39 42.24 / 41.35

Fig. 5: RF measurement example showing the normalized

spectra at the GaN PA output with and without DPD at

+39.5 dBm TX power. Classical decorrelation-based DPD is

compared to the proposed PW decorrelation-based DPD.

V. CONCLUSIONS

We proposed a new closed-loop learning solution for DPD

with piecewise memory polynomial based models. The tech-

nique was evaluated on a basestation Doherty GaN PA with

LTE-A signals in terms of the adjacent channel emissions,

and was found to provide good linearization and to clearly

outperform the classical GMP DPD with similar complexity.

Piecewise models combined with closed-loop learning offer

an effective solution for linearizing modern power-efficient

and highly nonlinear PAs, such as those implemented in GaN

technology.
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