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ABSTRACT

Shearlet Transform (ST) is one of the most effective al-

gorithms for the Densely-Sampled Light Field (DSLF) recon-

struction from a Sparsely-Sampled Light Field (SSLF) with a

large disparity range. However, ST requires a precise estim-

ation of the disparity range of the SSLF in order to design

a shearlet system with decent scales and to pre-shear the

sparsely-sampled Epipolar-Plane Images (EPIs) of the SSLF.

To overcome this limitation, a novel coarse-to-fine DSLF re-

construction method, referred to as Mask-Accelerated Shear-

let Transform (MAST), is proposed in this paper. Specific-

ally, a state-of-the-art learning-based optical flow method,

FlowNet2, is employed to estimate the disparities of a SSLF.

The estimated disparities are then utilized to roughly estim-

ate the densely-sampled EPIs for the sparsely-sampled EPIs

of the SSLF. Finally, an elaborately-designed soft mask for

a coarsely-inpainted EPI is exploited to perform an iterative

refinement on this EPI. Experimental results on nine challen-

ging horizontal-parallax real-world SSLF datasets with large

disparity ranges (up to 35 pixels) demonstrate the effective-

ness and efficiency of the proposed method over the other

state-of-the-art approaches.

Index Terms— View Synthesis, Parallax View Genera-

tion, Densely-Sampled Light Field Reconstruction, Shearlet

Transform, Mask-Accelerated Shearlet Transform

1. INTRODUCTION

Densely-Sampled Light Field (DSLF) is a discrete repres-

entation of the 4D approximation of the plenoptic function

parameterized by two parallel planes (camera plane and im-

age plane) [1], where multi-perspective camera views are ar-

ranged in such a way that the disparities between adjacent

views are less than one pixel [2]. As can be seen in Fig. 1 (a),

a horizontal-parallax light field capture system can be con-

sidered as a camera moving along the horizontal axis. All the

parallax views captured by this camera constitute a ground-

truth 3D light field volume as illustrated in Fig. 1 (b). This

volume can then be turned into ground-truth Epipolar-Plane

Images (EPIs), of which an example is shown in Fig. 1 (c).

A Sparsely-Sampled Light Field (SSLF) for this horizontal-

parallax light field dataset consists of views with blue borders.

The virtual cameras represented by dash-line triangles with

yellow color correspond to the target “unknown” views to be
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(a) Horizontal-parallax light field capture system
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(b) Ground-truth 3D light field volume, shape = m×N × n (u : v : s)

u
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(c) Ground-truth EPI ψ, shape = m× n (u : s)

u

s
(d) Sparsely-sampled EPI ε, shape = m× ṅ (u : s)

Fig. 1. Introduction to the DSLF reconstruction problem.

reconstructed, the number of which is decided by the interpol-

ation rate δ. A sparsely-sampled EPI ε from the ground-truth

EPI ψ is presented in Fig. 1 (d). The DSLF reconstruction for

the SSLF can be treated as reconstructing a densely-sampled

EPI f from the sparsely-sampled EPI ε. If the ground-truth

EPI ψ is not densely sampled, it will be necessary to down-

sample the reconstructed densely-sampled EPI f to construct

a target EPI with the same size as ψ (see Sect. 4.1).

Shearlet Transform (ST) [3, 4] is extremely effective in re-

constructing a densely-sampled EPI from a sparsely-sampled

EPI with a large disparity range. This algorithm typically

needs to obtain the disparity range of the sparsely-sampled

EPI to construct a specifically-tailored universal shearlet sys-

tem [3, 5] with decent scales. Besides, the sparsely-sampled

EPI also needs the disparity range information for shear-

ing and padding in order to be correctly processed by this

elaborately-designed shearlet system. Moreover, for DSLF

reconstruction from SSLFs with large disparity ranges, this

algorithm is prone to be time-consuming due to the high num-
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ber of iterations of its iterative thresholding algorithm. There-

fore, in this paper, a novel ST-based coarse-to-fine DSLF re-

construction method, referred to as Mask-Accelerated Shear-

let Transform (MAST), is proposed to address these two prob-

lems. The presented MAST method takes full advantage of

a state-of-the-art learning-based optical flow estimation ap-

proach, i.e. FlowNet2 [6], to estimate the disparities of the

whole SSLF for resolving the first problem. In addition,

the estimated disparities are also used to roughly restore a

densely-sampled EPI from a sparsely-sampled EPI via inverse

warping. The iterative estimation refinement algorithm in ST

convergences faster by means of an elaborately-designed soft

mask for the coarsely-inpainted densely-sampled EPI, thus

tackling the second problem. Experimental results demon-

strate the superior performance of MAST over the other state-

of-the-art DSLF reconstruction methods on nine challenging

horizontal-parallax real-world light field datasets with dispar-

ity ranges up to 35 pixels.

2. RELATED WORK

High-quality and high-fidelity Virtual Reality (VR) [7] and

Free Viewpoint Video (FVV) [8] contents fundamentally rely

on DSLFs for the reason that DSLFs can be turned into con-

tinuous light fields via linear interpolation [9]. However, due

to the difficulty of directly capturing a DSLF, a DSLF is typic-

ally reconstructed from a SSLF. The challenging DSLF recon-

struction problem has been tried to be solved by light field an-

gular super-resolution-based approaches, most of which treat

it as novel view synthesis problem and do not consider the

disparity range of the input SSLF. Kalantari et al. propose

a learning-based approach composed of a disparity estim-

ator and a color predictor to synthesize novel views from

four corner sub-aperture views of a micro-lens array-based

light field camera [10]. Wu et al. utilize a residual-learning

method to restore the angular detail of EPIs within a blur-

deblur framework [11]. However, the maximum disparity of

the SSLF that can be handled by this approach is only 5 pixels.

Yeung et al. also design a learning-based view synthesis net-

work consisting of view synthesis and refinement compon-

ents to reconstruct DSLFs [12]. Nevertheless, for different

interpolation rates, their network needs to be retrained. Gao

and Koch utilize a state-of-the-art video frame interpolation

method, i.e. adaptive Separable Convolution (SepConv) [13],

and a fine-tuning strategy enhancing the convolution kernels

of SepConv to reconstruct DSLFs in a recursive way [14].

3. METHODOLOGY

3.1. DSLF reconstruction using ST

The shearlet transform approach for DSLF reconstruction is

originally proposed in [3] and extended in [4] with computa-

tional acceleration. Given a coarsely-sampled EPI ε ∈ R
m×ṅ

from a SSLF as shown in Fig. 1 (d), ST reconstructs a desired

densely-sample EPI f ∈ R
m×n̈ by an iterative inpainting al-

gorithm using the sparse representation of f in shearlet do-

main. The sampling interval of the desired EPI f for rearran-

ging the rows of the input decimated EPI ε is denoted by τ

as illustrated in Fig. 2 (a). Since the desired EPI f to be re-

constructed is densely sampled, it is apparent that τ > drange
and drange stands for the disparity range of the input decim-

ated EPI ε, i.e. drange = dmax − dmin. It should be noted

that a pre-shearing process relying on dmin is typically neces-

sary for the input decimated EPI ε in order to make sure that

the new d′min = 0 and d′max = drange. Besides, the vertical

sizes of the input decimated EPI ε and reconstructed densely-

sampled EPI f meet the condition that n̈ = (ṅ− 1)τ + 1.

The reconstruction of the desired densely-sampled EPI f
is typically performed via an iterative inpainting process with

t iterations, corresponding to the intermediate reconstructed

EPI result fi, i ∈ [1, t] ∩ Z. Besides, the shearlet analysis

transform for reconstructing f is defined as S : R
m×n̈ →

R
η×m×n̈ and the shearlet synthesis transform is denoted by

S∗ : R
η×m×n̈ → R

m×n̈. Additionally, f0 stands for the

coarse estimation of f , which is a zero-padded EPI for the in-

put decimated EPI ε, i.e. f0(: τ :, :) = ε as shown in Fig. 2 (a).

The reconstruction of fi during iteration i is performed us-

ing the double relaxation method [4], which has been demon-

strated to be faster and more robust than the original hard-

thresholding algorithm in [3]:

f̂i = S∗

(

Tλi

(

S
(

fi + α(f0 −M ◦ fi)
)

)

)

,

f̃i = f̂i + β1(f̂i − fi−1) ,

fi+1 = f̃i + β2(f̃i − fi−2) ,

(1)

where

β1 =
sum

(

(f0 − f̂i) ◦M ◦ (f̂i − fi−1)
)

sum
(

(f̂i − fi−1) ◦M ◦ (f̂i − fi−1)
) ,

β2 =
sum

(

(f0 − f̃i) ◦M ◦ (f̃i − fi−2)
)

sum
(

(f̃i − fi−2) ◦M ◦ (f̃i − fi−2)
) .

(2)

Here, sum(·) returns the sum of all the elements in the input

matrix, α is a parameter for adjusting the convergence speed,

‘◦’ denotes the element-wise (Hadamard) product and M is a

logical measuring matrix as shown in Fig. 2 (c), where ideally

ft ◦M = f0. In addition, Tλi
(·) is a hard-thresholding oper-

ator [15] for the threshold value λi, which linearly decreases

from λmax to λmin with iteration i increasing from 1 to t.
As can be seen from (1) and (2), the computation time of the

ST approach above is linearly dependent on the maximum it-

eration number t. A reliable f0, i.e. coarse estimation of f ,

makes it feasible to accelerate ST with a smaller t.
3.2. Mask-Accelerated Shearlet Transform (MAST)
In order to make a more reliable estimation of f0 w.r.t. the

desired densely-sampled EPI f , one of the state-of-the-art

learning-based optical flow methods, i.e. FlowNet2 [6], is

utilized to estimate bidirectional flow between adjacent views

in a horizontal-parallax SSLF, Dsslf = {Ii|1 6 i 6 ṅ},

of which the corresponding unknown DSLF is denoted by

Ddslf = {Ĩr|1 6 r 6 n̈}. Since a horizontal-parallax SSLF

does not have vertical motions of image objects between any

two neighboring views, only the horizontal component of the
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Fig. 2. The coarse estimation, measuring matrix (soft mask) and estimation refinement for a densely-sampled EPI f .

optical flow displacement vector is kept after the bidirec-

tional flow estimation. The bidirectional flow between Ii
and Ii+1 in the Dsslf is represented by Fi→i+1 and Fi+1→i.

A forward-backward consistency constraint [16] between

Fi→i+1 and Fi+1→i is applied here to roughly remove the in-

accuracies caused by occlusions and large motions of image

objects. Let ṙ = (r − 1)%τ 1 and i = 1 + (r − ṙ − 1)/τ , the

estimated bidirectional flow is then used to perform a coarse

estimation of the parallax images in Ddslf as follows2:

Ĩr =















Ii for ṙ = 0 ,
g(Ii, −

ṙ
τ
Fi→i+1) for 0 < ṙ < τ

2 ,

g(Ii+1, −
(τ−ṙ)

τ
Fi+1→i) for τ

2 < ṙ < τ ,
0 for ṙ = τ

2 .

(3)

Here, g(·, ·) is an inverse warping function using bicubic in-

terpolation [17]. The roughly-estimated Ddslf is then turned

into densely-sampled EPIs, such that the coarse estimation f0
of f is partially restored as displayed in Fig. 2 (b). Note that

the large missing areas are caused by the filtering of the unre-

liable optical flows using the bidirectional consistency check.

However, the roughly inpainted areas in f0 are not accurate

enough for directly using ST. Specifically, due to the accumu-

lation error of the optical flow in the interpolation algorithm

in (3), horizontal lines of f0 near the locations, i.e. ṙ = τ
2 ,

have larger inpainting errors than those near the ground-truth

regions, i.e. ṙ = 0. Therefore, a novel ST-based method,

Mask-Accelerated Shearlet Transform (MAST), is proposed

to solve this problem by replacing the measuring matrix in

(1) and (2) with an elaborately-designed soft mask, i.e.

M(r, c) =







1.0 for ṙ = 0 ,
ω(1− 2ṙ

τ
)2 for ṙ > 0 , f0(r, c) > 0 ,

0 for ṙ > 0 , f0(r, c) = 0 ,
(4)

where ω ∈ (0, 1), r ∈ [1, n̈] ∩ Z and c ∈ [1, m] ∩ Z.

An example soft mask corresponding to f0 is illustrated in

1Here, ‘%’ stands for the modulo operation.
2Assume that τ%2 = 0 for this Ddslf.

Fig. 2 (d). It can be seen that this mask suppresses the contri-

butions of f0 in the regions which are not inpainted or meet

the condition that ṙ is close to τ
2 ; however, it enhances the

contributions from the ground-truth nearby areas, thus effect-

ively improving the initialization of the densely-sampled EPIs

for the iterative double relaxation-based ST in Sect. 3.1.

4. EXPERIMENTS

4.1. Experimental settings

Datasets. The high density camera array dataset [18] is a

real-world 4D light field dataset that can be utilized to eval-

uate light field angular super-resolution methods with large

disparity ranges. Nine different scenes in this dataset are cap-

tured by a high-resolution and high-definition DSLR camera

in a precise gantry system, such that nine corresponding light

field sub-datasets are built. Eight of these sub-datasets have

an angular resolution of 101× 21. The remaining one has an

angular resolution of 99×21. The spatial resolution of all the

sub-datasets is 3976 × 2652 pixels. The raw images in each

sub-dataset have black areas near the image borders, which is

due to the calibration, and large disparities between neighbor-

ing views, which make it difficult to use these raw images as

ground-truth light field data directly. To overcome this limit-

ation, a cutting and scaling strategy is proposed as shown in

Fig. 3 (j). In particular, a bottom-right 16 : 9 image is cut from

a raw image with preserving 95% of the width of this raw

image. The cut image is then resized to 1024 × 576 pixels

using bicubic interpolation. Finally, only the top 97 images

after the process of the cutting and scaling strategy for each

sub-dataset are kept and used as the ground-truth horizontal-

parallax light field dataset Dµ, µ ∈ [1, 9]∩Z. In other words,

Dµ = {Iµ
j |1 6 j 6 n}, Iµ

j ∈ R
m×N , where n = 97,

m = 1024 and N = 576. The middle image, i.e. Iµ
49, of

each ground-truth 3D light field dataset Dµ is exhibited in

Fig. 3 (a)-(i). The SSLF Dsslf
µ from Dµ is generated by using

an interpolation rate δ (= 16) as shown in Fig. 1 (a) and (c),

such that Dsslf
µ = {Iµ

i |1 6 i 6 ṅ}, ṅ = (n − 1)/δ + 1.



(a) D1: Books and charts (b) D2: Lego city (c) D3: Lightfield production (d) D4: Plants (e) D5: Table in the garden

(f) D6: Table top I (g) D7: Table top II (h) D8: Table top III (i) D9: Workshop

95%5%

16 : 9

(j) Cutting and scaling

Fig. 3. The middle views of nine evaluation datasets and (j) illustrates the image cutting and scaling strategy in Sect. 4.1.

Table I. The minimum and average per-view PSNR results (in dB, explained in Sect. 4.1) for the performance evaluation of

different DSLF reconstruction methods on nine light field evaluation datasets.

Minimum per-view PSNR value (dB) of DSLF reconstruction on Dµ

Method D1 D2 D3 D4 D5 D6 D7 D8 D9

SepConv (L1) [13] 23.324 20.341 23.912 25.059 27.080 28.344 20.419 21.208 26.369

PIASC (L1) [14] 23.311 20.343 23.915 25.065 27.092 28.396 20.416 21.208 26.377

ST [4] 28.881 22.725 26.252 27.718 29.418 32.485 23.186 23.518 28.710

MAST 30.167 22.965 26.866 27.920 29.541 32.448 23.119 23.847 29.001

Average per-view PSNR value (dB) of DSLF reconstruction on Dµ

Method D1 D2 D3 D4 D5 D6 D7 D8 D9

SepConv (L1) [13] 26.220 22.569 26.251 27.645 28.719 29.868 22.929 23.500 28.546

PIASC (L1) [14] 26.231 22.587 26.281 27.697 28.777 29.921 22.941 23.529 28.595

ST [4] 30.122 24.107 28.294 29.487 30.358 33.361 24.431 25.417 30.605

MAST 31.286 24.214 28.740 29.356 30.371 33.768 24.226 25.390 30.624

Table II. The average computation time of reconstructing a

densely-sampled EPI (RGB channels) using ST and MAST.

Average computation time (s)

Method τ = 32 τ = 48
ST [4] 7.966 14.867

MAST 2.813 5.073

The DSLF to be reconstructed is Ddslf
µ = {Ĩµ

r |1 6 r 6 n̈},

n̈ = (ṅ− 1)τ + 1 as described in Sect. 3.

Disparity estimation. The horizontal disparities between

neighboring views in each Dsslf
µ are calculated via the optical

flow algorithm in Sect. 3.2. The estimated minimum disparity

dmin, maximum disparity dmax and disparity range drange
are illustrated in Fig. 5. The sampling interval τ should be as

small as possible in order to save computation time for both

ST and MAST, while it has two constraints that τ%δ = 0 and

τ > drange (see Sect. 3.1). Therefore, it can be seen from

the figure that the best sampling interval τ for datasets Dµ,

µ ∈ {1, 2, 7} is 32 and for the other six datasets, τ = 48.

Evaluation criteria. The per-view PSNR for a ground-truth

dataset Dµ and the reconstructed Ddslf
µ from Dsslf

µ for it is

described as below:

MSEµ
j =

1

3 ·m ·N

m
∑

x=1

N
∑

y=1

∥

∥

∥

∥

Ĩµ
τ(j−1)

δ
+1

(x, y)− Iµ
j (x, y)

∥

∥

∥

∥

2

2

,

PSNRµ
j = 10 log10

(

2552

MSEµ
j

)

.

(5)
The minimum and average per-view PSNRs constitute the

evaluation criteria for the evaluation of different DSLF recon-

struction methods on a dataset Dµ.

Implementation details. For a dataset Dµ, the construction

of a specifically-designed universal shearlet system [3] with ξ
scales relies on the sampling interval τ of it, i.e. ξ = ⌈log2 τ⌉.

The parameter ω in (4) is set to 0.1. The maximum threshold

value λmax and minimum threshold value λmin are set to 8
and 0.04, respectively. Note that these two values are for the

case of using a normalized coarsely-sampled EPI ε, i.e.

ε =
ε− min(ε)

max(ε)− min(ε)
, (6)

where max(·) and min(·) return the maximum value and the

minimum value of an input matrix, respectively. The recon-

structed f using this normalized ε is then rescaled back to

original range of values via

f =
(

max(ε)− min(ε)
)

f + min(ε) . (7)

Besides, for the maximum iteration number of ST, t = 100
and for that of MAST, t = 30. Regarding the parameter con-

trolling the convergence speed in (1), α = 30. Both ST and

MAST are implemented by using CUDA and executed on an

Nvidia GeForce GTX Titan X 12GB GPU.

4.2. Results and analysis
The proposed method and baseline approaches are evaluated

quantitatively and qualitatively as follows:

Quantitative evaluation. The minimum and average per-

view PSNR values of using different DSLF reconstruction

methods on different horizontal-parallax light field datasets
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of D1 (Ground-truth) (b) SepConv (L1) [13] (27.624 dB) (c) ST [4] (30.225 dB)
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Fig. 4. The visualization of the DSLF-reconstruction quality of using different methods.

Fig. 5. The disparity estimations of Dµ.

are presented in Table I. It can be seen from the minimum per-

view PSNR data that the proposed MAST method achieves

the best performance on most of the datasets except for D6

and D7. However, on these two datasets, the minimum per-

view PSNR values of ST are only 0.037 dB and 0.067 dB

higher than those of MAST. With regard to the average per-

view PSNR data at the bottom of Table I, MAST still out-

performs the other baseline methods on most datasets except

for D4, D7 and D8, which demonstrates the effectiveness

of the proposed DSLF reconstruction approach again. The

computation efficiency of both ST and MAST is evaluated

in terms of computation time as shown in Table II. The pro-

posed MAST is significantly faster than ST, i.e. MAST re-

quires only ≈ 35% computation time of ST, which is mainly

because MAST has 30 refinement iterations while ST needs

100 iterations for the DSLF reconstruction on the challenging

horizontal-parallax real-world light field datasets. This also

demonstrates that MAST is much more efficient than ST for

D1 D2 D3 D4 D5 D6 D7 D8 D9

20

25

30

35

40
P
S
N
R
(d
B
)

SepConv (L1)

PIASC (L1)

ST

MAST

Fig. 6. The minimum per-view PSNR results on Dµ.

DSLF reconstruction. Note that the computation time of op-

tical flow estimation and inverse warping parts of MAST can

be ignored compared with the computation time of the iterat-

ive EPI-refinement process since both of them are performed

in real-time.

Qualitative evaluation. The minimum per-view PSNR data

for all the DSLF reconstruction methods on different light

field evaluation datasets are plotted in Fig. 6. It is apparent

that both SepConv and PIASC have almost the same min-

imum per-view PSNR results on all the datasets, which are

much lower than ST and MAST. This suggests that the two

DSLF reconstruction methods using the state-of-the-art video

frame interpolation technology are not appropriate for DSLF

reconstruction from SSLFs with large disparity ranges. Be-

sides, the proposed MAST approach outperforms ST on most

of the challenging light field datasets, which indicates that

MAST is more effective than ST for DSLF reconstruction.

The reconstructed images using different DSLF reconstruc-



tion methods are visualized and compared in Fig. 4. Since

SepConv and PIASC have similar DSLF reconstruction per-

formance, only SepConv is compared here. For the top row,

the image parts of the checkerboard and Siemens star on I1
73

of D1 are chosen as the interesting areas to be compared.

It can be seen from Fig. 4 (b) that the reconstructed check-

erboard using SepConv has serious blur artifacts, which is

mainly because the the size of repetitive check patterns of the

checkerboard is much smaller than the disparities of it, such

that SepConv is incapable of knowing the true motion of this

checkerboard. As can be seen from Fig. 4 (c), the recovered

checkerboard using ST is slightly better than that of using

SepConv, while the reconstructed Siemens star has obvious

artifacts. In Fig. 4 (d), the proposed MAST method achieves

the best reconstruction performance with visually correct and

sharp results, which proves the effectiveness of the proposed

MAST method composed of optical-flow-based coarse estim-

ation and mask-assisted iterative estimation refinement for

EPIs. Regarding the bottom row Fig. 4, part of the tablecloth

with foreground and the Fraunhofer IIS logo are selected as

the interesting areas from I6
25 of D6. Both of the reconstruc-

ted results in Fig. 4 (f) using SepConv are blur, which, on the

one hand, is caused by the small size of the repetitive pattern

of the tablecloth; on the other hand, the size of the convolution

kernels of SepConv is only 51 × 51, restricting the perform-

ance of it in handling DSLF reconstruction from SSLFs with

large disparity ranges. The DSLF reconstruction results of ST

in Fig. 4 (g) do not have this kind of “blur” problem. However,

the reconstructed tablecloth area has evident artifacts, which

are well handled by the proposed MAST method as illustrated

in Fig. 4 (h). It implies that the optical-flow-based coarse es-

timation and mask-assisted iterative estimation refinement in

MAST are beneficial to improving the final DSLF reconstruc-

tion performance.

5. CONCLUSION

This paper presents a novel coarse-to-fine method, MAST, for

DSLF reconstruction from SSLFs with large disparity ranges.

The proposed MAST method fully leverages a state-of-the-

art optical flow estimation method, i.e. FlowNet2, to roughly

estimate a densely-sampled EPI from a sparsely-sampled

EPI. Based on the coarsely-inpainted densely-sampled EPI

and the inevitable error accumulation of any optical flow al-

gorithm, a soft mask is elaborately designed for the iterat-

ive hard-thresholding-based estimation refinement approach

in ST. Experimental results show that MAST achieves bet-

ter performance than the other state-of-the-art DSLF recon-

struction methods on nine challenging real-world horizontal-

parallax light field datasets with large disparity ranges (up to

35 pixels). Moreover, MAST is a time-efficient algorithm that

is nearly three times faster than ST.
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