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Abstract. High Efficiency Video Coding (HEVC) doubles the coding efficiency 

of the prior Advanced Video Coding (AVC) standard but tackling its huge com-

plexity calls for efficient HEVC codec implementations. The recent advances in 

Graphics Processing Units (GPUs) have made programmable general-purpose 

GPUs (GPGPUs) a popular option for accelerating various video coding tools. 

Massively parallel GPU architectures are particularly well suited for hardware-

oriented full search (FS) algorithm in HEVC integer motion estimation (IME). 

This paper analyzes the feasibility of a GPU-accelerated FS implementation in 

the practical Kvazaar open-source HEVC encoder. According to our evaluations, 

implementing FS on AMD Radeon RX 480 GPU makes Kvazaar 12.5 times as 

fast as the respective anchor implemented entirely on an Intel 8-core i7 processor. 

However, the obtained speed gain is lost when fast IME algorithms are put into 

use in the anchor. For example, executing the anchor with hexagon-based search 

(HEXBS) algorithm is almost two times as fast as our GPU-accelerated proposal 

and the benefit of GPU offloading is reduced to a slight coding gain of 1.2%. Our 

results show that accelerating IME on a GPU speeds up non-practical encoders 

due to their enormous inherent complexity but the price paid with practical en-

coders tends to be too high. Conditional processing schemes of fast IME algo-

rithms can be efficiently executed on processors without any substantial coding 

loss over that of FS. Nevertheless, we still believe there might be room for ex-

ploiting GPU on IME acceleration but GPU-parallelized fast algorithms are 

needed to get value for additional implementation cost and power budget. 

Keywords: High Efficiency Video Coding (HEVC), HEVC encoder, Graphics 

Processing Unit (GPU), Integer motion estimation (IME), Full-search (FS)   

1 Introduction 

High Efficiency Video Coding (HEVC/H.265) [1] is currently the state-of-the-art video 

coding standard. It adopts the conventional hybrid video coding scheme (inter/intra 

prediction, transform coding, and entropy coding) [2] used in the prior video coding 

standards since H.261. Thanks to its new coding tools and extended block partitioning 

scheme, HEVC is able to increase coding efficiency by 40% over the preceding Ad-

vanced Video Coding (AVC/H.264) standard [3] for the same objective visual quality. 

However, these new features also introduce computational overhead of about 40% [2].  

There are currently three noteworthy open-source HEVC encoders: HEVC Test 

Model (HM) [4], x265 [5], and Kvazaar [6]. HM supports all HEVC coding tools and 
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is able to achieve high coding efficiency but it is far too slow for practical use. Kvazaar 

and x265 are practical solutions, of which academic Kvazaar was chosen for this work. 

The complexity of HEVC is particularly leveraged in the inter prediction due to its 

numerous prediction modes and block partitions that have to be evaluated during the 

rate-distortion (RD) optimization. This paper focuses on integer motion estimation 

(IME) that is used in HEVC inter prediction to remove temporal redundancy of video 

scenes by searching the best matching block between the current and reference blocks. 

IME is only included in the encoder and it is one of the most complex coding tools in 

practical HEVC encoders [5], [6]. In software encoders, the complexity of IME can be 

primarily tackled by multithreading and single instruction multiple data (SIMD) opti-

mizations. Further speedup can be pursued by offloading IME from a central pro-

cessing unit (CPU) to external hardware such as graphics processing units (GPUs) 

which are considered in this paper.  

GPUs have gained a lot of traction over the past decade. Especially, general purpose 

GPU (GPGPU) programming has made GPUs a popular option for accelerating various 

video coding tools. Particularly, several GPU implementations have been proposed for 

IME [7]-[13].The current high-end GPUs are massively parallel platforms with single 

instruction multiple threads (SIMT) model and their computational capabilities are 

much higher than those of CPUs.  

The complexity of IME is strongly dependent on the used block-matching algorithm 

(BMA). The well-known full search (FS) is the simplest, but the most computation-

intensive BMA, which exhaustively tests all candidate blocks in the search area. In 

addition, numerous fast BMAs such as hexagon-based (HEXBS) [14] and test zone (TZ) 

[15] algorithms have been developed over the years. They are much faster than FS but 

they also suffer from somewhat reduced search quality. In addition, their irregular ex-

ecution flows and arbitrary memory accesses can be executed with CPUs but the nature 

of GPUs requires regular execution and data flow. 

In this paper, we present a GPU implantation of the BMA of the practical Kvazaar 

HEVC. The FS is chosen as BMA due to the regular data flow and its low control 

overhead which make it a promising candidate for massively parallel GPU architec-

tures.  

The rest of this paper is structured as follows. Section 2 explains the previous work. 

An overview of the HEVC IME process is given in Section 2.1, the concepts behind 

GPU programming are described in Section 2.2, and prior art is surveyed in Section 

2.3. Section 3 describes our GPU-accelerated FS implementation in Kvazaar. Section 

4 presents the performance results of our solution, compares them with those of prior 

art, and discusses why the results were not as good as one might expect. Finally, Section 

5 concludes the work. 

2 Related Work 

In HEVC encoding, each frame is partitioned into coding tree units (CTUs) of 64×64 

samples. The coding tree of HEVC utilizes a quadtree structure to partition the CTUs 

into smaller coding units (CUs), called nodes in a quadtree, as illustrated in Fig. 1 (a). 
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In HEVC, the size of CUs is equal to 2N×2N, where N ∈ {32, 16, 8, 4}. The HEVC 

encoder starts by predicting the blocks from their environment (in time and space).  

2.1 Integer Motion Estimation in HEVC 

The IME process determines integer motion vectors (MVs) in inter prediction. It is 

one of the most computation-intensive operation in HEVC encoding. In IME, CUs may 

be split into prediction units (PUs) of smaller size with the limitation of width and 

height being at least 4 pixels. A PU represents a picture region that shares the identical 

prediction information. The horizontal and vertical components of a MV describe the 

displacement of the PU in the reference frame. CUs can be divided into one, two, or 

four rectangular-shaped PUs called partition modes.  

Fig. 2 shows all possible partition modes and associated luma PU shapes specified 

for the inter-coded CU of size 2N×2N. The supported mode set includes two Square 

modes (2N×2N and N×N), two symmetric motion partition (SMP) modes (2N×N and 

N×2N), and four asymmetric motion partition (AMP) modes (nL×2N, nR×2N, 2N×nU, 

and 2N×nD). Fig. 1 (b) exposes an example of the final partitioning of a CTU into PUs. 

The gray, blue, and red blocks represent the Square, SMP, and AMP partition mode, 

respectively. 

The IME process tries to minimize the rate-distortion cost of the MV, which is com-

posed of two variables: 1) a distortion between the reference and the encoded PU and 

2) a bit cost of the MV. The most common metric for measuring the distortion is the 

sum of absolute differences (SAD) computation between the two blocks. The bit cost is 

yielded with the advanced motion vector prediction (AMVP) [2] where the MV of in-

terest is compared with its MV predictors (MVPs) that are derived from the MVs of 

 
Fig. 1. (a) Partitioning of a CTU structure. (b) Example partitioning of a single CTU. 
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spatially and temporally neighboring PUs. After IME, the result is refined in a quarter 

pixel domain with fractional motion estimation (FME).  

Three BMAs are considered in this work: full search (FS), hexagon-based (HEXBS) 

and Test Zone (TZ). FS algorithm, which is the simplest but the most computation-

intensive BMA, exhaustively tests all candidate blocks in the search area. HEXBS [14] 

algorithm selects recursively the best corner of the hexagon until the best location is the 

center. TZ [15] algorithm combines diamond search and raster search. 

2.2 GPU Architecture and Programming 

There are two key differences between CPU and GPU programming: the SIMT nature 

of the GPU and the memory architectural differences. An overview of the GPU memory 

architecture is depicted in Fig. 3. Unlike CPUs that usually have a few dozen of cores 

at most, GPUs consist of thousands of less powerful cores. In GPUs, these cores are 

grouped up to units that are called Multiprocessors (MP) in this work. Each GPU ven-

dor has a different number of cores in a single MP, ranging typically from 8 to 64. A 

single MP has only a single instruction decoder for all cores and all of them execute the 

same instruction at the same time. When branching takes place, all the cores of a MP 

execute all branches, including unnecessary branches. To achieve the best performance, 

GPU programs should avoid branching whenever possible.  

CPUs and GPUs have a similar memory structure including a central memory, a 

couple levels of cache, and registers which are closest to the cores. However, the 

memory architecture of CPUs is optimized for low latency, whereas the memory archi-

tecture of GPUs is optimized for high throughput by extending the width of the global 

memory. When all the cores in a single MP request a memory access in a single clock 

cycle, the operation is coalesced into a single access as long as all the cores refer to a 

single continuous block of memory. Memory access coalescing is an important aspect 

when designing a GPU-friendly algorithm. Additionally, GPUs can directly access the 

central memory of CPUs through the PCIe-bus, but the transfer speeds are fairly low. 

The local memory, which doubles as L1 cache, is shared between the cores of a single 

 
Fig. 2. PU modes in HEVC. 
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MP and can be used for fast data sharing. The programmer has direct control over 

memory allocation in the local memory, unlike the caches of a CPU. Nevertheless, the 

local memory size is typically limited to a few dozens of kilobytes per MP.  

Work Items are the base elements of GPU programs. A single Work Item runs on a 

single core of a MP. Work Items are used to form a Work Group. A single Work Group 

is assigned to a single MP and each Work Group keeps this assignation until the end of 

its execution. A single MP can belong to multiple Work Groups simultaneously, as long 

as there are enough resources, registers, and local memory for each Work Group. Hav-

ing multiple Work Groups at the same time allows hiding the latency of the high-

throughput global memory. As context switch is a light operation on a GPU, once a 

Work Group has executed a memory operation, the MP can schedule another Work 

Group to run. This stresses the importance of reducing the amount of resources used 

per Work Group. 

Currently, there are two notable options for GPGPU programming: CUDA and 

OpenCL. CUDA is a proprietary language maintained by NVIDIA and it only works 

for NVIDIA’s GPUs. On the other hand, OpenCL is an open standard maintained by 

the Khronos Group. OpenCL is intended for programming many different platforms, 

including GPUs. All major desktop GPU vendors (NVIDIA, AMD, and Intel) provide 

an OpenCL driver for their GPUs. Due to these advantages, OpenCL was chosen for 

this work over CUDA. OpenCL works on event-based system, where the events can be 

used as dependencies between multiple tasks. The event system allows the programmer 

to schedule multiple tasks at the same time while making sure that they are executed in 

the correct order. 

2.3 Previous Studies 

For the time being, several efforts have shown successful hardware acceleration of IME 

in HM [7]-[9] and in practical HEVC encoder x265 [10]-[13].  

 
Fig. 3. The memory architecture of a GPU. 
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Even though the work in [7] is based on the AVC standard, it is the first approach 

implementing hierarchical SAD calculation completely on a GPU. The search algo-

rithm is FS and 4×4 blocks are used as a basis for the SAD calculation. The optimal 

SAD cost is searched using parallel reduction for each block size. The work in [8] is an 

extension of [7] for HEVC. The same hierarchical SAD calculation is used as a base. 

In addition, FME is performed on the GPU. Both implementations acquire about hun-

dred times speedup when compared with respective CPU-only implementations. Con-

versely, the solution in [9] implements a nested diamond search that is similar to the 

TZ search. This solution is GPU friendly, but unlike [8], it cannot use hierarchical SAD 

calculation. The speedup is comparable to [8] with slightly higher quality. 

In [10]-[12], a refinement search is performed on the CPU, after the GPU search 

part, to improve quality. The implementation of [10] is similar to that of [8] with the 

exception of the refinement search. Both IME and FME are refined on the CPU by 

using pre-calculated SADs transferred from the GPU to the CPU. Because the FME is 

done before the IME refinement, the FME has to be conducted on a larger area than 

usually would be necessary. The complexity of the refinement search is reduced in [11] 

by using a CPU to calculate only the best five search points found by a GPU. Instead 

of FS, [12] uses a regular search pattern that allows hierarchical SAD calculation. How-

ever, the refinement search cannot use the pre-calculated SADs for MVs that have not 

been calculated on the GPU. The approach of [13] is different since MV refinement is 

performed on the GPU instead of CPU. This is achieved by performing the IME in three 

steps where the first step selects an approximate MV for each block by using a sub-

sampled picture. In the second step, the approximate MVs are used as the MVPs and 

updated accordingly. Finally, the updated approximate MVs are used in the FME level 

search as the MVPs. 

3 Proposed GPU Acceleration Scheme for FS in Kvazaar 

In this paper, we propose a GPU-accelerated FS IME that is based on [8] and [10]. The 

core principle of the algorithm is hierarchical SAD calculation with SAD reuse and the 

refinement search. Unlike in [8] and [10], we use 8×8 as a block size for SAD calcula-

tion since 4×4 blocks are not used in any presets of Kvazaar. 

The MVPs in IME make PUs dependent on the previous PUs of the frame, so calcu-

lating all PUs at the same time reduces prediction accuracy by default. However, this 

is also the case with all previous works. Both [10] and our method utilize a pre-calcu-

lated table of bit costs and zero MV as the sole MVP. A refinement search is done on 

the CPU by using the SADs calculated on the GPU. Unlike [10], we use search range 

(the maximum displacement of the PU) of [-32, 32] instead of [-64, 64], since they do 

not have significant difference in quality but the latter is four times slower.  

Algorithm 1 describes the proposed algorithm at high level. Choosing the granularity 

of the algorithm is important to gain the maximum benefit of the GPU. Choosing PU 

as the granularity would be an optimal choice for data dependencies according to 

AMVP algorithm. Nevertheless, this granularity would be too 
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fine grain and the GPU would not have enough work for each MP. Next logical granu-

larity level would be CTU level since the CTUs from the reference frame have to be 

fully processed before starting the current CTU. However, it is still too fine grain for 

efficient GPU implementations. CTU row level is the first level that is able to fully 

saturate the GPU and is selected for this work. Going to a coarser granularity would 

increase the waiting time for the GPU and decrease the performances.  

The process can be split into 1) the data transfer between the GPU and CPU and 2) 

the GPU computation on each MP, as described in Sections 3.1 and 3.2, respectively. 

3.1 CPU Implementation and Data Synchronization 

Following Algorithm 1, the current frame is first read by the encoder and fully sent to 

the global memory of the GPU (line 1). Conversely, the reference frames are moved at 

a CTU row at a time. Because the MVs may point outside of the CTU, when an encod-

ing of a row starts, the row below the current row of the reference frame is sent to the 

global memory (lines 2-3). For the first row, both the current row and the row below 

are sent. For the same reason, the reference rows are then expanded by copying the 

Algorithm 1. Overview of the proposed method 

1 Send the frame to be compressed to GPU 

2 FOR EACH CTU Row index i: 

3  Send CTU Row i + 1 of the reference to GPU 

4  Expand reference 

5  FOR EACH 8×8 block: 

6   Assign block to MP 

7   Load frame to local memory 

8   Load reference from search area to local memory 

9   FOR EACH MV in Search Area: 

10    Calculate SAD 

11    Save SAD to global memory 

12 

13 FOR EACH PU size: 

14  FOR EACH PU in CTU row: 

15   Assign each PU to MP 

16   FOR EACH MV in Search Area: 

17    Combine SAD cost from the SADs calculated 

18    For the 8×8 blocks 

19    Save SAD to local memory 

20    Keep track of the smallest SAD cost 

21   Parallel reduction to find the smallest SAD 

22   From the search area assigned to the MP 

23   Save 9×9 SADs around the best MV to global memory 

24 

25   Refinement search on CPU by calculating accurate 

26   bit cost using the pre calculated SADs 
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edge pixels (line 4). A visual overview of the data transfers and computations is de-

picted in Fig. 4. 

The rest of the execution is split into two halves: the calculation of SAD (lines 9-11) 

and the reuse part (lines 13-23). For each CTU row, the expansion task, a SAD calcu-

lation, and reduction tasks are launched at the same time. The SAD calculation depends 

on the expansion, whereas the reduction depends on the SAD calculation.  

After the GPU has finished the reduction task (line 21), the resulting MVs are trans-

ferred back to the central memory of the CPU (line 23). Additionally, some SAD values 

around the MV are moved to the central memory for refinement search. The refinement 

search is finally performed like regular FS except that SAD values are read from the 

memory.  

Fig. 5 depicts the Bjøntegaard Delta Bit Rate (BD-rate) of the video according to 

the refinement area size over the case that omits the refinement search entirely. The 

more the BD-rate is negative, the more higher coding efficiency. The results show that 

increasing the range of returned SADs improves the coding efficiency. The experi-

mental set-up and metrics are fully detailed in Section 4. The improvement comes from 

the fact that on CPU, the MVPs can be used to accurately calculate the bit cost of the 

MV. On the other hand, Fig. 6 depicts the effect of the range of SADs returned to the 

relative encoding speed in frames per second (fps). The relative FPS is linearly depend-

ent on the range while the quality changes roughly logarithmically. In order to perform 

the refinement search with the pre-calculated SADs, some overhead is introduced. The 

overhead can be seen from the trend line of Fig. 5 at the SAD range 0, which would be 

 
Fig. 4. Overview of the data transfers and computations. 
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1.00 without overhead. The results of Fig. 5 and 6 show that the quality improvement 

for larger ranges is low when compared to the increase in encoding time. According to 

this observation, the range is fixed to four in the rest of this work. 

 

 

3.2 GPU Implementation and Computation 

As explained in the previous section, the IME implementation on a GPU consist of two 

distinct steps: calculation of the SADs for each 8×8 block (lines 5-11 of Algorithm 1), 

and combining the SADs to calculate the optimal MV for each PU (lines 12-23). All 

the Work Groups are run parallel on the GPU. Each 8×8 block of the current frame is 

loaded to the local memory of the MP. The size of the reference area depends on the 

search range, which is fixed to [-32, 32] in this work, corresponding to a search area of 

72×72 pixels. In order to reduce the local memory usage, only portion of the referenced 

 
Fig. 5. Coding quality as a function of the search range of SADs.   

 
Fig. 6. Relative encoding speed as a function of the search range of SADs. 
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area is saved to the local memory at a time. Each core of a MP calculates SADs in a 

stride of the width of the Work Group and each SAD value is saved into the global 

memory. The SAD calculation is finished once all SAD costs are saved to the global 

memory. 

The reduction task to find the optimal MV is launched for each PU size. One Work 

Group is responsible for calculating the optimal MV for one PU. Similarly to the SAD 

calculation, the cores work in strides. Each core loads the values related to a single PU 

from the global SAD array and combine them to a single SAD value (lines 18-19). The 

estimated bit cost is added to the SAD to get the total RD cost of the MV. As each core 

calculates the combined SADs on its stride, they keep track of the lowest total cost. 

Additionally, the SAD values are saved to the local memory so that they can be sent 

back to the CPU for the refinement search. After all combined SADs have been calcu-

lated, each core has its own lowest total cost. A parallel reduction is performed to find 

the global minimum among the cores. At each step of the reduction, the amount of cores 

working is halved until there is only one core that compares the two last values to find 

the global minimum. Finally, the best MV and the SADs around the best MV are moved 

from the local memory to the global memory. 

4 Performance Analysis   

Our experiments are performed on an Intel i7-5960x 8-core processor with 16 GB of 

RAM and AMD Radeon RX 480 GPU. Different encoder configurations are bench-

marked with the well-known Bjøntegaard Delta Bit Rate (BD-rate) metric [16] which 

represents average increment in bit rate (in percent) for the same Peak Signal-to-Noise 

Ratio (PSNR). The test set is composed of the 24 HEVC common test sequences [17] 

whose resolutions range from 2560×1600 to 416×240.  

4.1 Coding Efficiency and Speed 

Table 1 compares the coding efficiency and speed of the GPU-accelerated Kvazaar 

(version 1.0) veryslow preset over a corresponding Kvazaar anchor configuration im-

plemented entirely on a CPU. The results are reported by executing the anchor with 

three different BMAs: FS, TZ, and HEXBS. The negative BD-rate results mean that 

our solution achieves better coding quality than the anchor (FS, TZ or HEXBS). In 

Table I, green and red results correspond to positive and negative results, respectively.  

Implementing FS on a GPU makes Kvazaar up to 12.5 times as fast as the anchor 

with an average BD-rate degradation of 1.28%. The highest quality degradation comes 

from screen content videos of the test set. The GPU acceleration also performs rela-

tively poorly with sequences having a lot of static content. In these cases, the anchor 

https://ark.intel.com/products/82930/Intel-Core-i7-5960X-Processor-Extreme-Edition-20M-Cache-up-to-3_50-GHz
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FS only checks the zero vector most of the time and stops the search because the pre-

diction is good enough whereas the GPU-accelerated FS always checks every possible 

candidate.  

Furthermore, the obtained speed gain is lost when TZ and HEXBS are put into use 

in the anchor. With TZ, our GPU-accelerated approach is not more than 15% faster 

anymore. The good news is that our proposal achieves a slight BD-rate gain due to 

deployment of fast BMA in the anchor. With HEXBS, the gain increases to 1.18% but 

the anchor is almost two times as fast as our GPU-accelerated solution. 

4.2 Comparison with Previous Work 

The state-of-the-art techniques, presented in Section 2.3, can be split into two catego-

ries: techniques implemented on HM and x265. Because there are no previous attempts 

to accelerate Kvazaar on a GPU, our solution can only be compared with those made 

for HM and x265. However, comparing the speedup figures of our proposal with those 

of HM optimization techniques is challenging because HM is not intended for practical 

or real-time use. Therefore, only coding quality can be compared. Instead, comparing 

our results with those of x265 is relevant since both Kvazaar and x265 are practical 

encoders. Though, only the magnitude of speedup can be fairly compared in this case.  

Among the existing solutions, the approach presented in [10] is closest to ours. It 

outperforms our proposal with quality but not with speedup. In [12], the FME was also 

implemented on a GPU which could explain the existing speedup gap. A quality differ-

ence between these two solutions is assumed to be caused by an inherent difference 

between the internals of x265 and Kvazaar.  

The basic idea of [11] is also similar to ours but the speedup is slightly higher than 

that of [10], with similar effect to quality. However, neither mentioned the anchor ver-

sion of x265, which makes accurate comparison of the speedups difficult.  

The speedup obtained in [12] is really close to ours. Even though the speedup is 

higher than in [10], again, the anchor versions of x265 were not mentioned. The com-

parison of coding quality is also a bit difficult since they did not use the standard BD-

rate, computed with four Quantization Parameter (QP) values, but they only reported 

the difference in bit rate and PSNR with a single QP value. Their solution had only a 

Table 1. Proposed GPU-accelerated Kvazaar vs. original Kvazaar with different IME algorithms. 

 Full search Test Zone Hexagon based 

Class BD-Rate Speed BD-Rate Speed BD-Rate Speed 

HEVC-A 0.43 % 12.18× -1.80 % 1.02× -2.48 % 0.50× 

HEVC-B 0.65 % 12.36× -0.23 % 1.21× -0.55 % 0.51× 

HEVC-C 0.39 % 17.03× -1.24 % 1.75× -1.83 % 0.69× 

HEVC-D -0.04 % 16.78× -1.00 % 1.38× -1.18 % 0.64× 

HEVC-E 0.20 % 6.48× 0.01 % 0.49× 0.00 % 0.36× 

HEVC-F 6.04 % 10.61× 1.89 % 1.05× -1.06 % 0.51× 

Average 1.28 % 12.57× -0.39 % 1.15× -1.18 % 0.53× 
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minimal effect on bit rate, which lets us assume that the coding efficiency of our pro-

posal is at least as high as theirs.  

The results of [13] are most interesting since they used a fast BMA as an anchor 

instead of FS. The main accomplishment of [13] was a real-time 4K 60 fps 10-bit en-

coder. However, the experiments were conducted using an old version of x265, whose 

performance is much lower than that of a newer version that would have been available. 

It is questionable whether the quality stays the same when the algorithm is applied to a 

more up-to-date version of x265. Moreover, the proposed solution of [13] is proven 

only on 10-bit video and thus it might not be suitable for general use.  

4.3 Lessons Learned 

Generally speaking, our results do not seem too poor when compared with typical op-

timizations introduced in the literature to an HEVC encoder. However, in our case, the 

overhead of the co-processor has to be counted in. The GPU in our solution has com-

putational power of up to 5.8 TFLOPS and it consumes up to 150W of power. Consid-

ering this overhead, better results than 15% speedup and slightly improved quality can 

be expected.  

In general, FS is not very efficient. As an example, FS checks 4225 different candi-

dates for each PU with a search range of [-32, 32] whereas HEXBS checks a few dozen 

on average with the same search range. Although GPUs are more powerful than CPUs, 

the gap is not large enough to compensate for the inefficiency of the FS algorithm. 

Furthermore, even GPU-friendly fast BMAs might not make GPU acceleration of IME 

worthwhile. In Kvazaar, IME accounts for only about 15% of the total encoding time 

in both ultrafast and veryslow presets, so not more than 15-20% speedup is possible 

even in theory. Moreover, the dependency to MVP makes a perfect offloading difficult 

to achieve. 

The loss in coding efficiency over the anchor FS implementation is as expected. 

However, it is still somewhat higher than those reported for x265 and HM, which can 

be explained by the differences in RD optimization processes of Kvazaar, x265, and 

HM. Nevertheless, our solution outperforms the fast anchor TZ and HEXBS algorithms 

in coding efficiency. 

Overall, quality degradation is not a huge concern for fast IME algorithms compared 

with the speedup they are able to provide. The BD-rate difference between the anchor 

FS and HEXBS is about 2.5%, which would be acceptable even for about 1.5× speedup 

in most applications. In other words, a faster GPU-based IME implementation could 

have worse coding efficiency than HEXBS and it could still be considered successful, 

as long as it has a low overhead. 

Though many prior works have included FME as a part of the GPU acceleration, to 

our best knowledge, nobody has evaluated acceleration of FME on a GPU separately. 

To conclude, it is in theory possible to accelerate Kvazaar veryslow preset by about 

66% since Kvazaar uses about 40% of encoding time on IME and FME. Unfortunately, 

the feasibility of FME on a GPU is not explored to confirm this hypothesis.  
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5 Conclusions 

In this paper, we presented an attempt to accelerate IME of the practical Kvazaar HEVC 

encoder on a GPU. The accelerated BMA was FS whose regular data flow and low 

control overhead make it a promising candidate for massively parallel GPU architec-

tures. Even though our approach was able to accelerate Kvazaar by about 12.5 times at 

a cost of minor quality degradation, the gain was lost when our solution was compared 

with fast BMAs such as HEXBS and TZ algorithms. Furthermore, a closer look at pre-

vious studies revealed that our results are in line with them. 

Despite the fact that our results are discouraging, we still believe HEVC encoder 

acceleration with GPUs could be a viable option but with more GPU-friendly fast 

BMAs. Another potential approach is to offload other coding tools such as FME to-

gether with IME to a GPU and this way reduce data dependencies and syncing between 

CPU and GPU. However, the data dependencies might still prove to be too great of a 

challenge to tackle with the GPU architecture.  
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