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Abstract—We consider empirical distribution functions of non-
stationary time-series, depending on set length. The local self-
consistent significance level is introduced. The class of time-
series, for which the distribution function of significance level is
stationary, is considered. For example, the signal-to-interference
ratio for random walking subscribers in D2D model of wireless
connection belongs to this class of random processes. We intro-
duce also the so-called Chernoff equivalence of the self-consistent
significance level and derive the formula of averaging levels for
various sets.

Index Terms—D2D communications, non-stationary distribu-
tion function, significance level, stationary point, Chernoff equiv-
alence

I. INTRODUCTION

One of the distinguishing features of 5th generation net-
works is the extremely high density of communicating devices
— up to 1 million per square km [1]. The examples for
such devices are sensors transmitting data on machine-to-
machine (M2M) communications technology, users equipment
for device-to-device (D2D) communications, etc., while the
transceivers can be either fixed or mobile. The network
heterogeneity as well as the mutual location of transceiver
devices should be taken into account when analyzing the
quality of data transmission in a radio channel. Features of

mathematical modeling of M2M traffic servicing in the 5th
generation networks were investigated in [2]–[5], while in [2]
the combination of traffic from M2M-devices with traditional
human-to-human (H2H) traffic was analyzed.

To estimate the Quality of Service for wireless communi-
cations we register the movement of devices that affect the
interference significaly. We consider the signal-to-interference
ratio (SIR) as a key channel quality parameter and trace its
dynamic as a stochastic process. In this paper we construct a
statistical indicator of the disorder in a non-stationary stochas-
tic process. Most statistical criteria either operates directly with
the elements of time-series or assumes the stationarity of the
corresponding distribution functions (see, for example, [6],
[7]). The functional under consideration is presented as a
certain quantile of the sample distribution function of distances
between sample distribution functions (SDF) of the process in
the supremum norm, constructed on disjoint samples of the
time-series. Such approach is effectively applied to the large
length data samples (around several million data).

The goal of constructing such “disorder indicator” for large
data series is to make possible to predict changes in the
behavior of the analyzed system, based on assumption that
first marker of change can be revealed through an analysis



of the evolution of the SDF [8]. In practice, this can be
applied for the time-series of functional values of subscribers
positions, such as signal-to-interference ratio (SIR). These data
represents array of vectors, where each vector corresponds to
a given sender-receiver wireless connection.

The statistical methods, traditionally used to predict dis-
order effect, based on the analysis of the power spectrum of
signal [9], [10], give a very large error, because these methods
can be correctly applied only to stationary stochastic processes,
whereas the SIR series strongly are nonstationary (will be
shown below). In this case, “disorder” must be considered
as a change in the level of non-stationarity of the time-series
with the assumption that each state (such as random walk in
a malls, movement by public transport, etc.) corresponds with
its own unique level of non-stationarity of the SIR data.

SIR is defined as a ratio of the useful signal power at
a given spatial point to sum of signal powers from other
sources. In traditional approach (see e.g. [11], [12]) the signal
power is proportional to r−2, where r is a non-zero distance
between given transmitter and receiver. So the SIR value is
defined as r−2/

∑
k r
−2
k , where kr is a distance between given

receiver and other transmitter. One can see, that SIR indicator
is nonlinear with respect to subscribers positions distribution
function, so the theoretical results may be obtained in some
relatively simple cases, e.g. for a given spatial subscribers
distribution without any moving effects. But in practice we
need to describe non-stationary random walk of receivers
and transmitters, so that the appropriate method for modeling
of statistical characteristics of corresponding ensemble of
trajectories should be developed.

If the SIR value becomes less then definite minimum level,
corresponding to service under consideration, the wireless
connection for associated pair ceases to meet the Quality of
Service (QoS) requirements. The possibility of interruption
of the wireless connection and duration of the valid intervals
of interruption of connection in the provision of a service is
determined by the Quality of Experience (QoE) requirements,
which are defined by international standards. The effect of
interruption can be treated as disorder. More precisely, the
variation of interruption probability is disorder of statistical
properties of subscribers system.

The kinetic approach to non-stationary SIR modeling for
ensemble of subscribers has been developed in the works [13]–
[15]. It was supposed, that he distribution function density
(DFD) of the differences of subscribers positions is satisfied to
the Fokker-Planck equation. This equation is used to generate
subscribers trajectories and corresponding SIR values. The
non-stationary effects were controlled by special parameters of
kinetic equation, so-called drift and diffusion. In practice these
parameters are unknown and we must estimate the closeness
of empirical SDF for various SIR time-series samples.

The problem under consideration in the present paper is
to analyze the dependence of non-stationary level on the
sample length. It is rather essential problem, because the
disorder should be recognized very quickly, i.e. for the samples
of small lengths, but to SDF estimation it is necessary to

Fig. 1. Self-consistent significance level for stationary distributions

use sufficiently large lengths. So we need to formulate the
optimization method to determine the sample length or to
compare the statistical properties of non-stationary samples
of different lengths.

II. SELF-CONSISTENT SIGNIFICANCE LEVEL

It is well known [16], [17], that the problem of belonging
to two SDF for the same general set can be solved with the
use of non-parametric statistics of Kolmogorov-Smirnov test

SN = sup
x
|F1,N (x)− F2,N (x)| , (1)

for which the following asymptotic representation is valid:

lim
N→∞

P

{
0 <

√
N

2
SN < z

}
= K(z), (2)

where K(z) is a tabulated Kolmogorov function (see e.g. [17])
and N is a sample length. Here FN (x) is a sample distribution
function of a stochastic variable ξ, which represents a value
x from the sequence of events in a sample window of length
N . In formula (2) the significance level Q is approximated by
1−K(z). Let ε be a distance between samples in the supre-
mum norm, defined by (1). Now consider a self-consistent
significance level for the sample of length N :

Q(ε) ≡ 1−K

(√
N

2
ε

)
= ε. (3)

In the stationary case self-consistent significance level ε =
ε0(N) will be a solution of the equation (3) and doesn’t
depend on a form of F . This solution is unique because of
the monotonicity of the function K(z). Tabulated values of
ε0(N) can be found in [8] (see fig. 1).

For non-stationary SDF, the distribution of distances be-
tween samples with defined length is different from the statis-
tics (2). We can construct the empirical distribution function
GN (ρ) for the distances ρ(N) between two independent
samples with length N :

ρ(N) = ‖F1,N (x)− F2,N (x)‖C . (4)



Let us call the numerical solution of the following equation

GN (ρ) = 1− ρ (5)

as self-consistent stationary level (SCSL) ρ∗(N). It will be the
probability that distance between samples of length N is more
than ρ∗. If it happens, that ρ∗(N) > ε∗(N), then such series
are non-stationary. The value ρ∗(N) is the correct significance
level for statistical hypothesis about properties of these time-
series samples.

If we assume that the value of the SCSL is a characteristic
of this stochastic process, then a change in it can be interpreted
as a “disorder”. In this case, the practical question arises about
the length of the window where such index is considered.

III. CHERNOFF EQUIVALENCE FOR SIGNIFICANCE LEVEL

Suppose that we have self-consistent significance level for
the time-series of length Ltot as a solution of equation (5) for
two nearest independent samples from the main data set. It
should be taken into account that Ltot � 2N and it is possible
to fit enough N segments with length N on Ltot, so that
we can actually collect statistics for building the distribution
GN (ρ). For this length Ltot in some cases of ρ∗(N) the
distance between two nearest samples from the main data set
is greater than ρ∗(N). If now in a certain sliding window of
length L the proportion of events where distances between two
nearest samples from the main data set of length N turned out
to be larger than the value ρ∗(N), then in this window we can
register a disorder situation. To achieve such conclusion, it is
required that the SCSL of the nonstationary series must be a
stochastic variable with a stationary distribution.

Studying the local value of the SCSL – that is, the value
obtained over the whole interval L, which is substantially
smaller than the original data set Ltot, the question can arise
about the fluctuations of this local SCSL relative to the base
self-consistent stationary level of the whole data set. It is
important to understand that the SCSL of the whole data
set ρ∗tot(N) is not the average value of the sequence of
SCSL ρ∗n(N,L) (each element of the sequence ρ∗n(N,L) is
constructed for a certain group of two nearest samples of
length N from the main data set in windows of length L).
Let us consider the function

ΨN (ρ) = 1−GN (ρ). (6)

Suppose that SDF GN (ρ) approximate the differentiable
function G(ρ) of the corresponding general data set. Then the
function ΨN (ρ) has such properties: ΨN (0) = 1, Ψ

′

N (0) =
−aN ≤ 0. In this case, there exist a limit

lim
n→∞

(
ΨN

( ρ
n

))n
= e−ρaN ≡ ΦN (ρ). (7)

Following the definitions given in [18]–[20] for operator
functions, the limit function ΦN (ρ) will be called Chernoff
equivalent function to ΨN (ρ) (that is, the significance level
of the distribution GN (ρ)). We will write this equivalence as
ΦN (ρ)

Ch∝ ΨN (ρ). Obviously, |ΦN (ρ)−ΨN (ρ)| = o(ρ).

According to [19], if there is a set (finite or infinite) of
functions Ψk

N (ρ) in the form of (6), each of them is equivalent
in the sense of (7) to the function ΦkN (ρ) with a coefficient
(−akN ) in the exponent. If we specify a set of corresponding
non-negative coefficients pk so, that

∑
k pk = 1, then the mean

function Ψ̄N (ρ) =
∑
k pkΨk

N (ρ) is equivalent in the sense
of (7) to the function ΦN (ρ) = e−ρāN , where

āN =
∑
k

pka
k
N . (8)

Consider a sequence of disjoint intervals of length L.
For each interval k, we construct an empirical distribution
GkN (ρ, L) of distances between two nearest samples of length
N from the main data set. Let it be n of such intervals, so
that nL = Ltot is the total length of the sequence. Then the
distribution of distances, constructed over the entire data, is
the average distribution obtained by averaging over individual
samples:

GN (ρ, Ltot) =
1

n

n∑
k=1

GkN (ρ, L),

Ψ̄N (ρ) =
∑
k

pkΨk
N (ρ) = 1−GN (ρ, Ltot), pk =

1

n
.

(9)

Using the results of [19], we can prove the following the-
orem about stationary points of distributions with continuous
densities.

Theorem. Let the distributions of random variables have
continuous densities and let some non-negative measure be
given on the set of these stochastic variables. Then the
stationary point of the function will be Chernoff equivalent
to the average level of significance of the given distributions,
with accuracy up to second order of an infinitesimal, coincides
with invers value of the mean value of the reciprocals of the
stationary points of the functions Chernoff equivalent to levels
of the significance of these distributions:

1
˜̄ρ(N)

=

n∑
k=1

pk
ρ̃k(N)

≡ 1
¯̃ρ(N)

. (10)

The formula (10) is important, because it allows to reduce
considerably the number of calculations while studying the
behavior of SCSL on unions of data sets in different tasks
of Big Data analysis. Let us briefly describe the results of a
numerical analysis for simulating SIR data.

IV. NUMERICAL SIMULATION RESULTS

We generate a set of Ltot = 106 data for n = 10 subscriber
positions in a unity plane with reflecting boundary conditions
according to kinetic method, developed in works [13]–[15].
The time step is equal to unit, and distribution function
of coordinate differences at initial moment is taken to be
symmetrical with respect to zero with small dispersion, so
that the average time of boundary destination is equal to 1000
steps. The one half of the data corresponds to certain values of
drift u1(x, t) and diffusion λ1(t) ≥ 0 in Fokker-Plank equation



Fig. 2. SCSL time-series fragment of average SIR value for ρ∗k(5000, 30000)

for the sample distribution function density of coordinates
differences x, y, which varies independently:

∂f(x, t)

∂t
+ div(u(x, t)f(x, t))− λ(t)

2

∂2f(x, t)

∂x2
= 0,

∂f(y, t)

∂t
+ div(u(y, t)f(y, t))− λ(t)

2

∂2f(y, t)

∂y2
= 0.

(11)

The second half of data is generated under drift parameter
u2(x, t) and diffusion coefficient λ2. It is noticeable that the
self-consistent stationary level of coordinate differences data is
4 times higher than the stationary level of significance ε0(N)
for the first part and 2 times higher for the second. For each
pair of generated non-stationary trajectories we calculate SIR
value as a function of time step according to formula

s12(t) = S (r1(t), r2(t)) =
1/ |r12(t)|2∑n
j=3 1/ |r1j(t)|2

, (12)

where r2
ij(t) is a quadrat of distance between two points of

separate trajectories at a given time moment t in a plane,
subscriber “1” is receiver and subscribers “2” and others are
transmitters. One should note, that s12(t) 6= s21(t), so the
SIR function is not symmetrical with respect to subscriber
numbers. We shall consider average over ensemble SIR value,
defined as

s̄(t) =
1

n(n− 1)

∑
i,j

sij(t). (13)

We take a minimal window length, in which the disorder
indicator is calculated, equals to L = 30000. The sample
length for calculation SDF is assumed to be N = 5000.
The typical example of SCSL time series for SIR values is
presented in fig. 2.

It is sufficient to notice, that for each part of initial data
of coordinate differences the SCSL time-series is stationary
in accordance with the method of trajectories generation. The
empirical distributions of SCSL for the first quarter of data
and for the second quarter are closely enough (see fig. 3).

The C-norm differences between df1 (first quarter of data),
df2 (second quarter) and df (first half of data) are satisfied

Fig. 3. Empirical distributions SCSL for time-series ρ∗k(5000, 30000)

Fig. 4. Stationary SIR probability densities

to Kolmogorov criterion (2-3). For the second half of data we
have analogous picture. But the difference between DF for the
first and the second parts is sufficienly large. The stationary
densities, corresponding to the first and the second parts of
data set, are presented in fig. 4.

The stationary point of significance level of SIR distribution
Ψ5000(ρ), corresponding to first part of data, is equal to
ρ∗tot(5000) ≈ 0, 21. The stationary point for Chernoff equiv-
alent function Φ5000(ρ) is equal to ρ̃tot(5000) ≈ 0, 20, and
its estimation, obtaining by the averaging formulas (8),(10),
is approximately equal to ˜̄ρtot(5000) ≈ 0, 19. For the sec-
ond part of data we have analogously ρ∗tot(5000) ≈ 0, 15,
ρ̃tot(5000) ≈ 0, 14 and also ˜̄ρtot(5000) ≈ 0, 14. So we
numerically demonstrated, that Chenoff equivalence leads to
approximately the same results, as the exact formula (6),
applying to various subsets.

V. CONCLUSIONS

In this paper we proved the theorem, concerning statistical
application of the special quantum theoretical notation, which
is known as Chernoff equivalence. It allows us to significantly
reduce the volume of calculation for analysis of very complex



statistical object: variation between sample distribution func-
tion of the distances between sample distribution functions of
non-linear functional of stochastic trajectories.

In particularly, it appears, that two sets of data with various
non-stationary levels can be statistically separated in suffi-
ciently narrow sliding window. The disorder indicator in the
form of Chernoff equivalent self-consistency level ˜̄ρ has a
stationary distribution function for each subset with the same
non-stationary level, as a main sample of data. In other words,
the type of non-stationary behavior of the data does not change
during the period of time when the physical system is in the
same (may be, non-stationary) condition.

This disorder indicator can be used for the practical solution
of the problem of optimal non-stationary stochastic control.
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