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ABSTRACT

We study the residual coding by JPEG 2000 in a recently pro-
posed light field compression method, WaSP, with the goal of
optimizing the performance with respect to a weighted PSNR
criterion, which is the objective performance criterion utilized
in the JPEG Pleno Light Field standardization. In WaSP the
residual view is encoded by using JPEG 2000. In here we
show that instead of encoding by JPEG 2000 the RGB resid-
ual view (using the rate-distortion optimization performed by
JPEG 2000 for the RGB image), one can obtain better results
by performing first an RGB to YCbCr color transformation
and reallocating the given bitrate to each color component
optimally with respect to the weighted PSNR criterion. Then
JPEG 2000 is called separately for each YCbCr component
with the selected bitrates. We experiment with the proposed
scheme inside the WaSP codec, and show that the weighted
PSNR results are improved by nearly as much as 1 dB when
compared to the default RGB encoding by JPEG 2000.

Index Terms— Light field compression, residual coding,
image coding, rate-distortion optimization.

1. INTRODUCTION

Recording and rendering light fields involve a huge amount of
data and hence the necessity of dedicated compression meth-
ods for light field data. The current standardization work for
JPEG Pleno Light Field [1] is centered around the compres-
sion of an N × M array of subaperture images, acquired
with a high density camera array, or with a plenoptic camera.
The call for proposals for the new standard [2] has defined a
weighted average of the sum of the individual PSNRs of the
views as one objective performance criterion, where PSNR of
the color components are weighted with fixed numbers, based
on perceptual quality considerations. Although the final eval-
uation of the proposed compression methods in the standard-
ization process will be done through subjective testing, the
intermediate development stages are based on objective crite-
ria. The weighted PSNR and SSIM are the recommended cri-
teria within the JPEG Pleno Light Field project [2] [3]. The
good correlation between the proposed objective criteria and

the subjective evaluation results was shown in [4], which eval-
uated four light field compression methods.

In the light field compression literature there is a rich body
of publications transforming the initial light field array of views
into a pseudo-temporal sequence of views and compressing
the sequence using efficient video coding methods such as
HEVC or multi-view HEVC [5] [6]. The rate allocation mech-
anism built-in in the underlying video compression tools are
implicitly used in most proposals, which leads to a good per-
formance of the overall compression scheme. One step fur-
ther, specific mechanisms for light field images were recently
proposed for optimizing the bit rate allocation for each view
(pseudo- frame) in the underlying HEVC codec [7] [8].

In the 80th meeting, the JPEG Pleno work group adopted
our light field codec WaSP [9] as the initial verification soft-
ware of the upcoming standard. In the 81st meeting an im-
proved version of WaSP was selected to continue as the latest
version of the verification software. The codec represents an
unification of most useful features of the earlier codecs pre-
sented in [10] and [11], which were compressing first several
reference angular views, and then encoding conditionally on
these references all other views called intermediate views.

In the light field codec WaSP the intermediate views are
reconstructed by first warping several neighbor reference views
to the location of the current side view, then merging the
warped versions to obtained a predicted version of the cur-
rent side view, and then by encoding the residuals between
the original side view image and its predicted version. We
call residual view the image of the above residuals, and we
encode this residual view by JPEG 2000 [9].

WaSP added a new mechanism of ”inter-view” encod-
ing of the reference views, by using a hierarchical scheme
for warping-prediction and residual encoding of the reference
views, which was shown to provide a performance on par
with the encoding by HEVC the pseudo-temporal sequence of
views. However, WaSP uses JPEG 2000 [12] as the underly-
ing codec for each reference view and for each residual view,
which is justified by the backward compatibility requirement
in the call for proposals [2].

As a new development, a different option of coding will



be added for the reference views in the next verification model
of JPEG Pleno Light Field project, based on 4D DCT trans-
forms, [13]. Still, the residual view coding by JPEG 2000
remains a main feature of the verification model. In this pa-
per we study the ways to increase the weighted PSNR per-
formance of the overall WaSP scheme, by improving the bit
allocation for the individual color components in JPEG 2000
encoding of the views. The results are evaluated under a
weighted PSNR criterion, as defined in the JPEG Pleno Light
Field call for proposals.

The underlying codec for each reference view is consid-
ered in WaSP to be JPEG 2000. JPEG 2000 has a very precise
capability of allocating a given rate to any color component
of an image. Consequently, the bit allocation problem is for-
mulated as follows. Given a bitrate R allocated for one view,
find the optimal split of bitrate into R1 and 2R2, where R1

is used for the luminance component and R2 is used for each
chrominance component. So the main algorithmic improve-
ment to the baseline version of WaSP is to find a suitable split
curve, R1(R) for each encoded reference or residual view.
We note that we are allocating for each of Cb and Cr com-
ponents the same number of bits, since in general their rate-
distortion properties are very similar, but the same technique
can be used for allocating separately the bitrates for Cb and
Cr, if one accepts a slight increase of complexity.

In the first part of the paper we generate ideally optimal
R1(R) curves (optimal under the weighted PSNR criterion)
for the models extracted from experimental data of PSNR-
Rate obtained by JPEG compression of each color compo-
nent at a given view. We then perform a similar study when
the optimality criterion is the weighted MSE criterion (which
is the default criterion when JPEG 2000 optimizes its bitrate
when encoding jointly an RGB image). We compare the two
ideally optimal curves and notice that the optimal split for
high bitrates is very different for the two optimality criteria
(weighted PSNR and weighted MSE). That leads to a sim-
ple practical algorithm for obtaining an improved weighted
PSNR performance, by testing experimentally at each view
several split ratios.

In the Sections II and III we intend to precisely model the
fidelity-rate curves obtained with JPEG 2000 for each indi-
vidual color component and obtain a very dense set of points
(PSNR-Rate), close to the ones obtained by the internal opti-
mization of JPEG 2000 codec, without the need of extensively
running the JPEG 2000 codec. We show in Subsection 2.3
that a high polynomial model for the dependency (log MSE-
log rate) is better suited than the linear model (log MSE-log
rate) used for example in [8].

We apply this technique for independently coding of the
reference views, and then also for the coding of prediction
residuals of dependent (intermediate) views. We notice dif-
ferent patterns of the R1(R) curves, different in the two cases
(weighted PSNR and weighted MSE).

We present in Section II the modeling problem and then

we show in Section III the method for obtaining the optimal
rate allocation for the models found in Section II and exem-
plify the obtained rate allocation for two cases: first, encod-
ing of reference images, independently by JPEG 2000, and
second, encoding the residual images (obtained after warping
and prediction) by JPEG 2000. In Section IV we give the ex-
perimental algorithm used for improving the split in WaSP, as
a fast bit allocation strategy, which picks from several alloca-
tion rules the winner according to the JPEG Pleno weighted
PSNR criterion. We show in Section V experimental results
obtained over four light field datasets. We finish with conclu-
sions in Section 6.

2. MODELLING PSNR-VS.-RATE

We present a modeling tool for the fidelity-rate curve obtained
with JPEG 2000 for each individual color component, in the
Y , Cb, and Cr space, and we will use it for analyzing the in-
dependent encoding of an image and then also for encoding
an image residual. The need to analyze the two cases sepa-
rately arises because the JPEG 2000 compressor was intended
for encoding of original photographic images, for which its
rate-distortion performance was optimized, while in the sec-
ond case, of encoding the residual of a current image (ob-
tained after subtracting the optimally merged warped predic-
tions from the current image), the compression of the residual
image is expected to be more difficult, mainly due to the loss
of smoothness for the residual image.

2.1. The modeling problem

In this section we exemplify the modeling problem with PSNR-
rate or distortion-rate plots obtained over the angular views of
the lenslet dataset “Bikes” [14], each view having dimensions
nr × nc. The color RGB to YCbCr transformation is chosen
here to be performed according to ITU-R BT.709-6 recom-
mendation.

We denote Y , Cr, and Cb the color component images. We
define a set of “test” bitrates Ri, i = 1, . . . , nbr, spread log-
arithmically over the range of interest [0.01; 5] bits per pixel
(hence the total budget for each color component is given by
nrncRi).

For defining the performance criteria we denote

MSEY (Ri) =
1

nrnc

nr∑
ir=1

nc∑
ic=1

(Yir,ic − Ỹir,ic(Ri))2,

where Ỹ is obtained by compressing the signal component
image Y with JPEG 2000 using nrncRi bits, and similarly
we define MSECr

(Ri) and MSECb
(Ri).

The componentwise PSNRs are defined by

PSNRY (Ri) = 10 log10
22M

MSEY (Ri)
, (1)



where M is the bitdepth of the initial image (in our experi-
ments all images haveM = 10 bits per pixel), and in a similar
manner we define PSNRCr

(Ri) and PSNRCb
(Ri).

By taking as initial image data the central subaperture im-
age (SAI) of the lenslet dataset “Bikes”, the collected plots
PSNRY (Ri), PSNRCb

(Ri), and PSNRCr (Ri) are shown
in Fig. 1. One can notice that one effect of the multipli-
cation by the color matrix of the original RGB components
(that were initially rather similar in terms of PSNR-vs.-Rate)
is that the chroma components Cr, and Cb have a much higher
PSNR than the Y component, at a given Ri. In the follow-
ing we will use only two models: first PSNRY (Ri), for the
component Y , and second PSNRC(R̃i), accounting for the
two chroma components, PSNRC(R̃i) = (PSNRCr

(Ri)+
PSNRCb

(Ri)), where R̃i = 2Ri.

2.2. A polynomial model for PSNR

After testing several alternatives, we found a suitable model
in the form of a polynomial in the log-bitrate. Let denote
by PSNR(Ri) the criterion of interest, e.g., PSNR(Ri) =
PSNRY (Ri). Starting from the experimental data available,
{PSNR(R1), . . . , PSNR(Rnbr

)}, we estimate a model of
the following form

PSNR(R) =

nP∑
i=0

Ai · (logR)i,

where nP is the degree of the polynomial, taken nP = 6 for
a reasonably good fit, and log denotes the natural logarithm.
We obtain by least squares the estimates of the parameters
Â0, . . . , ÂnP

from the given data, and obtain the particular
criterion PSNR(R) =

∑nP

i=0 Âi(logR)
i.

With the estimated model we can generate an approxima-
tion of PSNR(R) for a much finer grid of bitrates in the
initial range. We illustrate in Fig. 1 the model points, rep-
resented using the continuous line, showing a very precise
match to data. This model, polynomial in the logarithm of
the rate, is much more precise than a polynomial model on
the rate (the later one matches well the data at lowest rates
but starts to deviate significantly from the data for the large
rates). Since the two chroma components have very similar
curves, we choose to treat them in a single term, cumulating
PSNRC(R̃i) = PSNRCr (Ri) +PSNRCr (Ri), which re-
quires R̃i = 2Ri bits.

For the rate-fidelity type of criterion optimization we need
the derivatives of the criterion PSNR with respect to the rate,
which can be found easily from the model as:

∂PSNR

∂R
=

nP∑
i=1

iÂi(logR)
i−1 1

R
. (2)

2.3. The corresponding polynomial model for MSE

Since the PSNR model showed a very good match to exper-
imental data, we extract from it a model for the MSE. It is

simple to consider the PSNR-MSE relationship to get

logMSE(R) =
20M log 2− PSNR log 10

10

=

nP∑
i=0

Ci(logR)
i,

with the coefficients {Ci} resulting in a straightforward man-
ner from {Ai}. So this model is a “log-log polynomial” model,
representing the logarithm of MSE as a polynomial of the log-
arithm of the rate. We should note that such a polynomial
model of order nP = 1 has the equivalent form MSE(R) =
αRβ , which is the model class used in [8]. However the lin-
ear matching in the plots of Fig. 7 (represented in log-log co-
ordinates) will not provide a good approximation, while the
nP = 6 is seen there to provide very close matching.

The derivative of the MSE model with respect to rate is

d

dR
MSE(R) =

d

dR
exp(

nP∑
i=0

Ci(logR)
i)

= exp(

nP∑
i=0

Ci(logR)
i)

nP∑
i=1

iCi(logR)
i−1 1

R
(3)

3. OPTIMIZING THE ALLOCATION OF
COMPONENT BITRATE FOR PSNR-RATE AND

MSE-RATE

3.1. The optimization problem for PSNR optimization

We want to find for a given bitrateR the optimal split between
the luminance and chroma components, so that the weighted
PSNR is maximized

max {αPSNRY (R1) + β(PSNRCb
(R2) + PSNRCr

(R2))}
Subject to R1 + 2R2 = R

where the scalars α and β are given, e.g., in the current JPEG
Pleno call for proposals the values were set to α = 6

8 and
β = 1

8 [3]. Such a criterion was shown to correlate well the
objective criterion values to the MOS obtained in subjective
testing for several light field coding schemes [4].

Denoting by {Â1
i } the model parameters for luminance,

i.e., J1(R) = PSNRY (R) =
∑nP

i=0 Â
1
i (logR)

i, and by
{Â2

i } the model parameters for the combined chroma crite-
rion, i.e., PSNRC(R̃) =

∑nP

i=0 Â
2
i (log R̃)

i, the weighted
criterion becomes

maxαPSNRY (R1) + βPSNRC(R̃2)

Subject to R1 + R̃2 = R.

Using the Lagrange multiplier method, the extended criterion
becomes

maxαPSNRY (R1) + βPSNRC(R̃2) + λ(R−R1 − R̃2)



Fig. 1. (Left) The PSNR vs. Rate for the Y , Cb, and Cr components of the central angular view of dataset ”Bikes” [14]. The
markers are showing the experimental values obtained with JPEG 2000 and the full lines are showing the output of the corre-
sponding log-polynomial models. (Right) The corresponding models PSNRY (Ri) and PSNRC(Ri) ( since PSNRCb

(Ri)
and PSNRCr

(Ri) are very similar, they are grouped together as PSNRC(R̃i) = (PSNRCr
(Ri) + PSNRCb

(Ri))).

Fig. 2. The derivatives of PSNR vs. Rate for the Y , and
combined C components at the central angular view of dataset
”Bikes”. For optimal allocation, the correspondence R̃2(R1)
is found by tracing the horizontal line λ at all values λ ∈
[λMIN ;λMAX ] and taking the crossing with the second curve
as R1 and the crossing with the first curve as R̃2(R1).

Fig. 3. The optimal allocationR1/R versusR, where the total
available rate is R = R1 + 2R2(R1) = R1 + R̃2(R1), with
the corresponding R1 and R̃2 found from the plots of Fig. 2.
The same shape, monotonically increasing, was obtained by
the optimization process for all views encoded by WaSP as
reference views in the analyzed light fields in Section 5.

with the necessary optimality conditions

α
∂PSNRY (R1)

∂R1
= λ

β
∂PSNRC(R̃2)

∂R̃2

= λ.

For the polynomial log-bitrate model

α

nP∑
i=1

iÂ1
i (logR1)

i−1 1

R1
= λ,

β

nP∑
i=1

iÂ2
i (log R̃2)

i−1 1

R̃2

= λ. (4)

Fig. 2 shows the two weighted curves

α

nP∑
i=1

iÂ1
i (logR1)

i−1 1

R1
,

β

nP∑
i=1

iÂ2
i (log R̃2)

i−1 1

R̃2

,

and the way the parametrization by λ in (4) leads to obtain-
ing the optimal R̃2(R1). Since the total available rate is R =
R1 + R̃2(R1), we obtain the optimal dependency R(R1) =

R1

R1+R̃2(R1)
. This relationship is show in the more convenient

representation R1/R versus R in Fig. 3. It shows what is the
optimal ratio between luminance bitrate and available bitrate,
depending on the available bitrate for that view. This quan-
tity is the relevant one in the partitioning an available rate of
R bits between the components Y , Cr, and Cb, with R1 bits
to Y , and R̃2/2 bits to each of Cr, and Cb. In practice, one
can obtain the curve R1(R) by collecting statistics from the
following faster process: at a given rate R, one can run the
JPEG 2000 coding with R1 for luminance and (R − R1)/2
for each chrominance component, for a range of values ofR1,



Fig. 4. (Top) The PSNR vs. Rate for the Y , Cb, and Cr com-
ponents at one side view of the dataset ”Bikes”. The side view
is reconstructed starting from the predicted version obtained
by warping the central view plus the encoded residual com-
ponent images, obtained at the shown rates. The lines have
the same significance as in Fig. 1.

say R1 ∈ {0.6, 0.7, . . . , 0.9}, and observe for which value of
R1, say R̂, one obtains the largest weighted PSNR. Repeating
the process for several R values one will obtain points R̂1(R)
approximately sitting on the curve from Fig. 3. Since the
curve in Fig. 3 is monotonically smooth, one will need only
few points, e.g., R1 ∈ {0.6, 0.7, . . . , 0.9}, to obtain a good
approximation of Fig. 3. In all cases of reference views that
we studied with the modelling-optimality approach from this
section we found the same monotonically shape as in Fig. 3,
so that the practical approach may provide the needed charac-
teristic R1(R) only using a few running of the JPEG 2000.

3.2. The optimization problem for reconstruction by pre-
diction plus residuals

We study now the case of optimally encoding the residuals
using the weighted PSNR criterion. For exemplifying we use
one of the side views from dataset Bikes, for a given predic-
tion image obtained by warping the central view to the loca-
tion of this side view [9].

The resulting PSNR values for the color components of
the reconstructed image are shown in Fig. 4, as functions
of the bitrates used for each color component. The deriva-
tives shown in Fig. 5 are now having a different relation-

Fig. 5. The derivatives of PSNR vs. Rate for the Y , and
combined C components at a side view reconstructed from a
warped version plus encoded residuals, with the shown bi-
trates. The correspondence R̃2(R1) is found similarly to the
procedure shown in Fig. 2.

Fig. 6. The optimal allocation R1/R versus R, where the
total available rate is R = R1 + 2R2(R1) = R1 + R̃2(R1),
with the corresponding R1 and R̃2 found from the plots of
Fig. 5. Similar shapes were observed when encoding side
views conditional on reference views for the dataset ”Bikes” .

ship than the ones observed in Fig. 2. Especially important
is the fact that for a large range of values of the parameter
λ, namely those above the line marked λMAX in Fig. 4,
there is a single intersection with the derivative curve, and
therefore bitrate should be allocated only to the correspond-
ing color component, in this instance the luminance compo-
nent. The allocation of the bitrate for R1 is shown for this
case in Fig. 6, where at the left range of the total rate R
the whole bitrate is allocated to luminance, while the chromi-
nance components are skipped from encoding. This happens
at the low bitrates, where it pays off to improve only the lu-
minance of the predicted view, leaving the predicted chromi-
nance components untouched. After the bitrate R becomes
larger, it becomes optimal to improve also the chrominance
components, since nonzero bitrates will be allocated to their
residuals. As in the discussion for Fig. 3, one can obtain ex-



perimentally the dependency from Fig. 6, by performing a
few JPEG encoding with a small number of R and R1 values,
since the shape is very regular, being composed of a constant
segment at R1/R = 1 and then a monotonically increasing
smooth curve. The quick decreasing transition between the
two curves is reflecting the transition between the two phases
of the characteristics from Fig. 5, and it is optimal only for
a very limited range of rates R, so one could neglect it, and
replace it with the R1R = 1, without dramatic loss.

3.3. The optimization problem for weighted MSE crite-
rion

We now address the problem of optimal allocation when the
criterion is a weighted MSE. We note that this is the case in
the optimization done in JPEG 2000 [15], so this is the op-
timal allocation performed implicitely in the baseline WaSP,
which we want to improve.

We now formulate the similar problem, of finding for a
given bitrate R the optimal split between the rates for lumi-
nance and chroma components, so that the weighted MSE is
minimized

min {γMSEY (R1) + δ(MSECb
(R2) +MSECr (R2))}

Subject to R1 + 2R2 = R

where the scalars γ and δ are given. Denoting MSE1(R) =
MSEY (R) and MSE2(R̃) = MSECb

(R) +MSECr
(R),

with R̃2 = 2R2, it is easy to derive similarly to the PSNR
problem that the necessary optimum conditions will be now:

γ
∂MSE1(R1)

∂R1
= λ

δ
∂MSE2(R̃2)

∂R̃2

= λ (5)

and finding of the optimal solution will follow the same pro-
cedure, now using the conditions (5). The necessary condition
of the optimality for the pair of rates R1 and R̃2 is

∂MSE1(R1)

∂R1
=
δ

γ

∂MSE2(R̃2)

∂R̃2

. (6)

It is interesting to see what is the connection between the
optimal weighted PSNR and optimal MSE solutions. Since
the criteria are connected as:

∂PSNR1

∂R1
=
−∂10 log10(MSE1)

∂R1

=
−10
log 10

∂ log(MSE1)

∂R1

=
−10

MSE1 log 10

∂MSE1

∂R1
(7)

when we require at a certain λ that

∂PSNR1(R1)

∂R1
=
β

α

∂PSNR2(R̃2)

∂R̃2

,

that is equivalent of requiring that

∂MSE1(R1)

∂R1
=
β

α

MSE1(R1)

MSE2(R̃2)

∂MSE2(R̃2)

∂R̃2

.

Comparing to equation (6), we see that the weighted PSNR
solution is equivalent to a weightedMSE solution, where the
weights δ

γ are replaced with varying weights β
α
MSE1(R1)

MSE2(R̃2)
.

We exemplify in Figs. 7-9 the same elements as in Figs.
1-3, this time for the optimality criterion being the weighted
combination of MSE. We take the MSE weights in the way
they are usually set, with equal weights for all components,
γ = 1 and δ = 1. One can see that the optimal allocation of
the bitrate R to component Y is different than the one shown
in Fig. 3, especially at the high bitrates. So, when the criterion
of interest is weighted PSNR, one should utilize the type of
allocation from Fig. 3, instead the one from Fig. 9.

4. A PRACTICAL SPLIT ALLOCATION
ALGORITHM

In order to obtain a gain in the overall performance of WaSP,
without increasing very much the computational complexity,
we choose to add before the residual encoding step the oper-
ations described in the following algorithm, motivated by the
findings in the previous two sections. The implementation of
JPEG 2000 used here is the free implementation by Kakadu.

1. Given: one angular view A (which is a nr × nc RGB
image) from the light field array, a prediction Â of A based
on the already encoded reference views, and the current rate
R allocated in WaSP for encoding the residual view Ares =
A− Â.

2. Transform the RGB image Ares into the three compo-
nents Y , Cb, and Cr.

3. For ρ ∈ R, set R1 = ρR: encode and decode the three
components by JPEG 2000 with Y using R1 bits, Cb using
(R − R1)/2 bits, and Cr using (R − R1)/2 bits. Transform
the decoded components back in RGB space, denoting Âres

the RGB decoded image. Obtain the reconstructed image as
Arec = Âres + Â. Compute the weighted PSNRY UV (R1)
criterion between the image Arec and A.

4. Pick the R∗
1 for which the maximum PSNRY UV (R

∗
1)

is obtained.
5. Encode also with JPEG 2000 the RGB image using

the default configuration (with parameter “-noweights”), and
evaluate the result as PSNRdefaultY UV (R).

6. Pick the better method by comparingPSNRdefaultY UV (R),
andPSNRY UV (R∗

1), and use it for finally encoding the resid-
ual image.

We note that the set of rates R may contain only a few
points since we expect a smooth behavior of the performance
with respect to R1, as shown in the previous sections. Also,
the set R might contain the important point ρ = R1/R = 1,
which is needed for covering the optimal behavior shown in



Fig. 7. The MSE vs. Rate for the Y , Cb, and Cr components.
The markers are showing the experimental values obtained
with JPEG 2000 and the full lines are showing the output of
the corresponding log-log-polynomial models of order nP =
6.

Fig. 6. We perform in Step 6 the evaluation of the default
RGB encoding by JPEG 2000 for the reason that the RGB
version might obtain better results, because of exploiting ad-
ditional correlations between the components during the inner
operations of JPEG 2000, which the individual calls for each
component in Step 3 are not exploiting. The results are shown
in the next section.

5. EXPERIMENTAL RESULTS

We investigated the effect of having a quasi-optimal alloca-
tion of bitrate for color components in the JPEG Pleno Light
Field verification model. We have used two possible alloca-
tions: the first one is to call JPEG 2000 for the combined
RGB image, where the JPEG 2000 encoder performs inter-
nally the rate allocation to color components and also utilizes
the possible correlations between the components. The sec-
ond method calls JPEG 2000 individually for the Y,Cb, Cr
components, and searches for the best point out of ten possi-
ble ratios R1/R spaced equidistantly between 0.85 and 1.00.
We experimented with a selection of datasets from [14].

In Fig. 10 we show in red the PSNRY UV results for
the JPEG 2000 default rate allocation, and in blue the results
for the presented YCbCr rate allocation. The improvements
by the presented method can be seen especially well at the
higher bit rates where the gain is almost 1 dB on the weighted
PSNR metric.

Fig. 11 illustrates the result on the SSIM metric. The im-
provements can be seen at all bit rates, and as with the PSNR
we can observe an increase in the gain at the higher rates.

Fig. 8. The derivatives of MSE vs. Rate for the Y and com-
bined Cb, and Cr components, weighted by γ = 1 and δ = 1,
respectively. The correspondence R̃2(R1) is found by trac-
ing the horizontal line λ at all values λ ∈ [λMIN ;λMAX ]
and taking the crossing with the second curve as R1 and the
crossing with the first curve as R̃2(R1).

Fig. 9. The optimal allocation R1(R) = R1

R1+2R2(R1)
found

from the plots of Fig. 8.

6. CONCLUSIONS

In this paper we present a rate allocation method for improv-
ing the residual coding performance in WaSP light field codec.
We show that the codec’s performance can be improved by
splitting the residual rate unevenly between the luminance,
and the chrominance components. We report gains of nearly
1dB on the weighted PSNR metric used by the JPEG Pleno
light field work group.
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