
2018 7th European Workshop on Visual Information Processing (EUVIP)
26-28 November, 2018, Tampere, Finland

978-1-5386-6897-9/18/$31.00 ©2018 IEEE

Fast Motion Estimation Algorithm with Efficient
Memory Access for HEVC Hardware Encoders

Farhad Pakdaman1,2, Moncef Gabbouj2, Mahmoud Reza Hashemi1, and Mohammad Ghanbari1,3

1 School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran

2 Laboratory of Signal Processing, Tampere University of Technology, Tampere, Finland
3 School of Computer Science and Electronic Engineering, University of Essex, UK

e-mail: {farhad.pakdaman, moncef.gabbouj}@tut.fi, {farhad.pakdaman, rhashemi, ghan}@ut.ac.ir, ghan@essex.ac.uk

Abstract— The encoding process in the HEVC standard is
several times more complex than the previous standards. Since
motion estimation is responsible for most of this complexity, the
new Test Zone (TZ) search is usually adopted as the fast search
algorithm, to alleviate the complexity. However, the TZ search
requires a high rate of access to the off-chip memory, which
contributes heavily to the total consumed encoding power. In this
paper we demonstrate that the process of finding the best starting
search point in this algorithm, does not allow effective reduction
of memory access in hardware encoders. As a solution, a new fast
motion estimation algorithm is proposed which estimates a
proper single starting search point, in addition to an adaptively
reduced search range, based on available information from the
coded neighboring blocks. The experimental results show that
this algorithm on average can reduce the required memory access
for ME by ~78% and reduce the integer ME time by ~70%, with
only 1.1% Bjontegaard Delta (BD) Rate.

Keywords— Video coding, HEVC, Memory access reduction,
Fast motion estimation

I. INTRODUCTION

The High Efficiency Video Coding (HEVC) standard [1]
can offer a coding efficiency of up to twice the previous
standards, but this efficiency comes at the price of much higher
computational complexity and power consumption. Similar to
the previous standards, the major part of this complexity comes
from the Motion Estimation (ME), which is repeated on block
sizes from 64×64 pixels to 4×4 pixels for each Coding Tree
Unit (CTU), and also with larger search windows, as the main
aim of introducing HEVC is for high resolution video content

As the full search is extremely slow and power consuming,
the Test Zone (TZ) search [2] is usually used as the main fast
integer ME (IME) algorithm in HEVC. The TZ search offers a
fast ME as well as R-D performance almost equal to the full
search. The process of ME in this algorithm consists of two
main steps. In the first step, the algorithm tests six candidates to
find the best starting point for the search. These candidates
include motion vectors (MV) of the neighboring blocks, zero
motion, the median predictor, and the MV of certain parent
block sizes. In the second step, the search is continued with
iterative diamond patterns around the best starting point and a
refinement process is performed if needed.

Although the TZ search is much faster than the full search,
it is still considered slow and heavy, especially for hand-held

devices with limited processing power. Furthermore, to cover
the large motion intensity, especially in high resolution scenes,
TZ search requires a wide search range to perform well.
Fetching the huge data associated with the search range, it
requires a high rate of access to the off-chip memory, which
consumes about half of the processing power of the encoder
[3]. The state of the art hardware encoders usually adopt a large
on chip SRAM to accommodate the whole search window for a
CTU in the memory, and prevent multiple off-chip accesses for
sub-blocks [4]. However, fetching this wide search window
still imposes a large rate of communications between memory
and the encoder. This approach has two drawbacks: first it
consumes a considerable amount of power, and second, the
high rate of access to memory, can limit the performance of
other processing elements in Multiprocessor Systems on Chip
(MPSoC) environments, where the memory is shared between
processing elements. While several research papers propose
algorithm-level methods to speed-up the TZ search, they ignore
the importance of off-chip communications, and thus do not
succeed in reducing the access to the off-chip memory.

To mitigate this issue, this paper analyzes the TZ search,
from a memory access point-of-view, and concludes the source
of the problem to be the multiple initial predictors of the TZ
search. Then an effective method is introduced to estimate a
single starting search point, and an adaptively reduced search
range, using the information from the previously coded
neighboring blocks. The proposed method is presented at the
algorithm level to maximize the gain and also skip design-
specific differences of hardware encoders.

The rest of the paper is organized as follows: in section II
we summarize the related published methods, section III
analyzes the memory access of the TZ search and explains why
the conventional methods fail to solve it. Our proposed method
is presented in section IV, and experimental results are
provided in section V. Finally, we conclude the remarks in
section VI.

II. RELATED WORK

Several researchers have tried different methods to reduce
the complexity load of ME algorithms. Hu and Yang [5]
employ statistical inference on each search point, to decide if it
should be considered in TZ search. Yang, Yang, and Jiang [6]
proposed to start the search with the more probable horizontal
and vertical motions. Researchers in [7] propose a GPU-based

solution to exploit the parallelism for speeding-up ME. As
quad-tree structure of the HEVC forces ME on several block
sizes, several researches [8][9] investigated fast block
partitioning to avoid ME on unnecessary block sizes.

An effective approach to reduce the complexity of the TZ
search is to adaptively reduce the required search range, for
each block. Dai et al. [10] proposed a method that decides the
search range based on the distribution of the MV difference in
previously coded blocks. In [11] the standard deviation of the
motion vector predictors is used alongside block size-
dependent parameters to decide the search range. Researchers
in [12] however, obtain an Adaptive Search Range (ASR)
through a weighted average of MVs from neighboring blocks,
such that blocks with higher similarity in depth intensity
receive higher weights. The method presented in [13] also uses
MV from the collocated block in previously coded block to set
the search range. Proposed method in [14] reduces the number
of search directions after the second round of diamond search
in TZ search, because statistics indicate that after the second
round, the best direction barely changes between two
consecutive rounds.

Although all the above mentioned methods reduce the
complexity and power consumption of the HEVC encoding, it
should be noted that in modern hardware systems, the power
consumption for communications is gaining on computations.
As a result, accessing the off-chip memory, consumes about
half of the total encoding power [3]. While the above-
mentioned methods [10]-[14] reduce the search range which
potentially can reduce the access to the memory as well, in
section III we explain why using multiple initial predictors,
prevents them from effectively reducing the access to off-chip
memory.

A direct approach to reduce the off-chip communication in
the encoder, is to compress the reconstructed frames before
writing them into the off-chip memory [3][15]. This way, lower
access rate is required for obtaining the reference frames.
However this approach has two main shortcomings: first,
lossless compression has a limited compression ratio, and
second, random access to the reference frames will be
complicated, because of the serial nature of lossless coding. A
hardware approach is to avoid repeated access to the shared
parts of the reference window between the neighboring blocks.
To do so, researchers proposed data reuse schemes [16][17]
which can greatly reduce the off-chip memory access. However
this approach requires a considerable increase of on-chip
SRAM, which is expensive and not available for all
implementations [4].

A scheduling approach is presented in [18] to reduce the
memory access, where authors propose to accumulate the
requests to nearby memory locations, such that the number of
total access to the memory is reduced. Moreover, Sinangil et al.
investigated the trade-off between memory access and coding
efficiency, through analyzing the memory requirements of
different partitioning schemes [19]. They show that memory
access and on-chip area can be saved significantly, if certain
block sizes are ignored in hardware. However, their approach
results in considerable loss of coding efficiency.

Most of the presented approaches either ignore the

importance of memory access and concentrate on the
computational complexity, or provide solutions at the
hardware-level that have limited potential in mitigating the
problem. In what follows, we present our algorithm-level
solution, which tackles the problem from the source, and hence
provides better memory access reduction.

III. MOTIVATION

To have a better perspective of the off-chip memory access,
Fig. 1 presents an abstract architecture of a nominal hardware
HEVC encoder, which is common among different
implementations [4][14]. To encode each block of a frame, that
block, and its associated search window in the reference frame,
should be fetched from the off-chip memory, into the pre-fetch
SRAM. This operation usually takes place before the encoding
process of the previous block is finished, to cover the latency of
accessing the off-chip memory. Then through different stages
of the encoding pipeline, this data will be fed into the on-chip
SRAMs, as parts of the memory sub-system, to serve as
module specific memories. This way considerable off-chip
traffic and bandwidth is saved, through the fast and power-
efficient on-chip communication. After the encoding process is
done, the reconstructed blocks are stored off-chip again, to
serve as the reference for the upcoming frames.

As mentioned in related works section above, several
previous works proposed adaptive search range reduction
techniques to reduce the computational complexity of TZ
search. However, they all fail to take advantage of the reduced
search range to effectively reduce the required memory
transactions. The underlying cause for this inefficiency is that,
the first step of the TZ search needs to test six initial motion
vector predictors, to decide the best starting point. This
operation requires fetching six blocks of 64×64 pixels into the
encoder. Only after the best starting point is set, the above
mentioned methods can limit the range of the search process
around the starting point, and thus partially reduce memory
transactions.

Fig. 2 (a) illustrates this phenomenon by example, where an
original search range of 64 pixels is set for a CTU of 64×64
pixels, with six starting points (as in common test conditions
[20]). Since the initial predictors can be spread anywhere in the
original search window, the hardware encoders fetch the whole
search range beforehand (to pre-fetch SRAM in Fig. 1) to avoid
design complications [4][14]. Hence, no memory access

Fig. 1. Abstract architecture of a nominal hardware HEVC encoder

reduction can be achieved. Even if a hypothetical ideal
hardware design could access only these six blocks (associated
with the six initial predictors) instead of the whole search
window, the amount of memory transactions to fetch these
blocks would be 67% of the whole search window, for the
values of this example (6×64×64 pixels, out of 192×192
pixels). Please note that this is in addition to the reduced
refinement search window, which the ideal encoder needs to
fetch after deciding the best starting point. Furthermore, it is
important to note that the SRAM memory of the encoder chip
does not function as a cache memory in a general purpose
processor, and thus the locality of accessed addresses cannot be
exploited for memory access reduction.

Considering another 64×64 pixels for fetching the current
CTU, the required memory transactions of the ASR methods
[10]-[14], for each CTU will be (6+1)×642 + (64+2RSR)2,
where RSR represents the Reduced refinement Search Range.
Hence, even when RSR→0, 8×642 pixels should be accessed.
Comparing this with the case of the common test conditions,
including 192×192 pixels for search window and 64×64 pixels
for the current block, 20% will be the upper bound of memory
access reduction for the ASR methods, in an ideal hardware
encoder.

This example clearly demonstrates that to be able to reduce
the access to the off-chip memory, reducing the search range is
not enough and having a single starting point is vital to benefit
from the search range reduction.

Investigations of methods [10]-[14] reveal that in
homogeneous motion regions, which include the major area of
a frame, MVs of the neighboring blocks have a high correlation
with the motion of the current block. However, in complex
motion areas they tend to be more random and uncorrelated.
Based on the same observation, we propose to use the MV of
three neighboring blocks, to estimate a single starting point for
the TZ search. To do so, instead of accessing the picture block
associated with these MVs to find the best starting point (as in
baseline TZ search), we analyze their coordinates to estimate a
single starting point. Considering the presented example in Fig.
2 (a) with this new method, only the reduced search range
(dotted rectangle) will be required for ME.

IV. PROPOSED METHOD

As explained above, the test for the best starting point is a
major source of memory access in TZ search. To alleviate this,
MVs from neighboring blocks are used to estimate an early
starting point for the search. To do so, MVs of blocks: left
(Pred_A), above (Pred_B) and above-right (Pred_C) of the
current block are used, which are highly correlated to the
motion in current block. Equation (1) estimates an starting
search point (SP) for the current block, where MaxMVx denotes
the maximum value between MVs of the three neighboring
blocks, in x direction and the opposite for MinMVx. ܵ ௫ܲ = 	 ܯݔܽܯ) ௫ܸ ܯ݊݅ܯ+ ௫ܸ) 2⁄ , ܵ ௬ܲ ܯݔܽܯ)	= ௬ܸ + ܯ݊݅ܯ ௬ܸ) 2⁄ (1)

In homogenous motion regions where neighboring blocks
have similar MVs, a small search range is enough to find the
best vector, while in complex motion, a wider search range is
required to compensate for the inaccurate starting point. Since
the variation of the motion in a certain region can indicate the
motion complexity, we define the search range based on the
maximum difference between MVs of the neighboring blocks,
as depicted in (2). This equation considers a rectangular search
window with dimensions according to the size of maximum
difference between MVs in that dimension. ܴܵ௫ = ܯݔܽܯ	 ௫ܸ − ܯ݊݅ܯ ௫ܸ, ܴܵ௬ = ܯݔܽܯ	 ௬ܸ − ܯ݊݅ܯ ௬ܸ(2) ܶℎݎ௫ = ெ௏│,௫│ߤ	 + ௬ݎெ௏│,௫ , ܶℎ│ߪߚ	 = ெ௏│,௬│ߤ	 ெ௏│,௬│ߪߚ	+

 (3)

A flowchart of the proposed method is given in Fig. 3. For
each CTU, first the search range is decided using (2). Then an
adaptive threshold is used to decide whether the motion in the
region is homogenous, or complex. This threshold is calculated
using (3), where the average motion intensity (ߤ│ெ௏│,௫) and the

standard deviation of the motion intensity (ߪ│ெ௏│,௫) from the
previously coded frames, are used to calculate the threshold in
each direction. Also β (β=1 in this paper) is a parameter to
regulate the trade-off between coding efficiency and encoding
performance. If the obtained search ranges in both horizontal
and vertical directions are smaller than the thresholds, the
motion is considered homogenous. In this case, (1) is used to
set the starting point for search. Then a search window with
size of (SRx, SRy), around the CTU-sized block, located at the
(SPx,SPy), is fetched into the encoder. The rest of the ME for
every sub-block is followed as the second step of the TZ
search.

Fig. 2 (b) visualizes this process where three MVs from
neighboring blocks (Bold dots in the figure) are used to decide
the starting point and the search range. However, if the search
range in at least one direction is larger than the threshold, it
indicates a complex motion region. In this case, information
from the neighboring blocks is not enough for predicting the
location of the motion, and requires a more intensive
refinement steps and extra complexity. Thus, the encoder
fetches the original search range and starts the baseline TZ
search by testing the initial predictors. However, our

(a) (b)

Fig. 2. (a) Memory access for testing initial predictors, plus refinement
search window around the best starting point. All shadowed boxes are
fetched seperately (b) Example of proposed memory access reduction based
on three MVs from neighboring blocks

observations show that this condition occurs only for ~10-18%
of CTUs.

A visual example of this algorithm can be found in Fig. 4.
Red arrows in this figure represent the MVs for neighboring
blocks of two certain blocks in Kimono1 video sequence. It can
be observed that for the upper instance, the neighboring blocks
contain different motion directions due to the person’s motion
and camera panning. Consequently the obtained search range
exceeds the Thrx, meaning that this block goes through the
baseline ME steps. The neighboring blocks of the lower
instance though suggest uniform motion region. Hence, this
block will benefit from the proposed search range and starting
point.

V. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method, it was
implemented on top of the HM reference software [2] and
tested with Low-Delay P (LD) configuration as suggested in

the common test conditions [20]. All the tests were repeated for
QP values of 22, 27, 32, and 37, and the Bjontegaard Delta
Rate (BD-Rate) and BD-PSNR were used to evaluate bitrate
and quality [21]. The platform for tests includes an Intel Core
i7-930 processor with 8 GBs of memory and Windows 8.1 as
the operating system. Table I introduces the seven different test
sequences which were used to evaluate the performance of our
method for different motion characteristics.

The experimental results in Table II, compares the
performance of our method with the baseline TZ search, where
IMET denotes the percentage of IME time saving, and MA
denotes the percentage of reduction in access to the off-chip
memory, which was collected through software simulations. As
the table shows, the proposed method can reduce the time of
TZ search by ~70% on average, while the BD-Rate increases
only by 1.1% compared to the baseline TZ search. As
suggested by the algorithm, this time saving depends on the
motion activity. For instance, Kimono1 has a complicated
motion activity, thus many blocks need to go through the
baseline TZ search process. On the contrast, Johnny has a very
simple motion in most of the image area. Consequently the
IMET for Kimono is comparatively smaller and for Johnny is
larger.

Also based on Table II, this technique leads to an average
of ~78% access reduction to the off-chip memory, which leads
to considerable reduction in power consumption. As explained
earlier, this access reduction is due to simultaneously reducing
of search range and having a single starting point approach.

In Table III, we compare the results of our method with the
ASR method in [11]. The proposed method gains ~20% more
time saving compared to the ASR method, however the ASR
method achieves 0.38% better BD-Rate. This is because the
ASR method only reduces the search range and benefits from
all the six starting points of the TZ search.

From the off-chip memory access point of view, as
discussed earlier, the proposed method gains a ~78% access

TABLE I. TEST SEQUENCES FOR EXPERIMENTAL RESULTS

Abr Class Test Sequence Resolution
TS1 A PeopleOnStreet 2560×1600
TS2 B Kimono1 1920×1080
TS3 B ParkScene 1920×1080
TS4 E KristenAndSara 1280×720
TS5 E Johnny 1280×720
TS6 C BQMall 832×480
TS7 D BasketballPass 416×240

TABLE II. EXPERIMENTAL RESULTS COMPARED TO THE BASELINE TZ

SEARCH [2]. IMET DENOTES THE IME TIME SAVING AND MAR DENOTES
MEMORY ACCESS REDUCTION.

Test
Sequence

BD-Rate
(%)

BD-PSNR
(db)

IMET(%) MA (%)

TS1 2.07 -0.09 -67.5 -74.26
TS2 0.6 -0.02 -48.66 -56.07
TS3 1.08 -0.03 -69.93 -77.71
TS4 0.72 -0.01 -78.89 -87.66
TS5 -0.01 0 -79.56 -88.4
TS6 0.8 -0.02 -73.44 -83.49
TS7 2.41 -0.08 -69.69 -77.16

AVG 1.1 -0.04 -69.67 -77.82

Fig. 3. The proposed fast ME algorithm with memory access reduction

Obtain SRx, SRy, Thrx and Thry

START

SRx < Thrx and
SRy < Thry?

Y N

Fetch a search window the size
of SRx and SRy

Fetch the original search
window

Test initial points for best
starting point

Step two of TZ search around
the best starting point

Set (SPx , SPy) as starting point

Fig. 4. A visual example of the proposed algorithm, on two different blocks
of Kimono1

reduction in hardware encoders, compared to the baseline TZ
search. For the ASR method [11] and based on analysis
provided in section III, this amount will be 0%, considering the
nominal hardware encoders, and below ~20% for the case of
ideal hardware design.

VI. CONCLUSION

In this paper, a fast ME algorithm for hardware
implemented HEVC encoders is presented. The paper points
out to the high memory access in conventional ME schemes
and demonstrates that the search for the best starting point in
TZ search highly limits the opportunity for memory access
reduction. To alleviate this problem, the proposed method
estimates the best starting search point earlier, in addition to an
adaptive search range, based on MVs of the neighboring
blocks. Experimental results show that this method can lead to
~70% reduction in IME time with negligible loss of coding
efficiency. Moreover, since the proposed method provides a
more targeted memory access, it gains ~78% reduction in
memory transactions which significantly reduces the power
consumption of hardware implemented video encoders.

REFERENCES
[1] G. J. Sullivan, J. Ohm, W. Han, and T. Wiegand, “Overview of the

High Efficiency Video Coding,” Ieee Trans. Circuits Syst. Video
Technol., vol. 22, no. 12, pp. 1649–1668, 2012.

[2] C. Rosewarne, B. Bross, M. Naccari, K. Sharman., and G. Sullivan,
“High Efficiency Video Coding (HEVC) Test Model 16 (HM 16)
Encoder Description,” JCTVC-V1002, 2015.

[3] X. Lian, Z. Liu, W. Zhou, and Z. Duan, “Lossless Frame Memory
Compression Using Pixel-Grain Prediction and Dynamic Order Entropy
Coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 8215, no. c,
pp. 1–1, 2015.

[4] S. Tsai, C. Li, H. Chen, P. Tsung, K. Chen, and L. Chen, “A
1062Mpixels/s 8192x4320p High Efficiency Video Coding (H.265)
Encoder Chip,” in Symposium on VLSI Circuits, 2013, pp. 4–5.

[5] N. Hu and E. Yang, “Fast Motion Estimation Based on Confidence
Interval,” IEEE Trans. Circuits Syst. Video Technol., vol. 24, no. 8, pp.
1310–1322, 2014.

[6] S.-H. Yang, H.-J. Yang, and J.-Z. Jiang, “Fast motion estimation for
HEVC with directional search,” Electron. Lett., vol. 50, no. 9, pp. 673–
675, Apr. 2014.

[7] S. Radicke, J. Hahn, C. Grecos, and Q. Wang, “Highly-parallel HVEC
motion estimation with CUDA,” in European Workshop on Visual
Information Processing (EUVIP), 2013, pp. 148–153.

[8] L. Zhu, Y. Zhang, Z. Pan, R. Wang, S. Kwong, and Z. Peng, “Binary
and multi-class learning based low complexity optimization for HEVC
encoding,” IEEE Trans. Broadcast., vol. 63, no. 3, pp. 547–561, 2017.

[9] S. Ahn, B. Lee, and M. Kim, “A novel fast CU encoding scheme based
on spatiotemporal encoding parameters for HEVC inter coding,” IEEE
Trans. Circuits Syst. Video Technol., vol. 25, no. 3, pp. 422–435, 2015.

[10] W. Dai, O. C. Au, S. Li, L. Sun, and R. Zou, “Adaptive search range
algorithm based on Cauchy distribution,” in IEEE Visual
Communications and Image Processing, 2012, pp. 1–5.

[11] L. Du, Z. Liu, T. Ikenaga, and D. Wang, “Linear adaptive search range
model for uni-prediction and motion analysis for bi-prediction in
HEVC,” in 2014 IEEE International Conference on Image Processing,
ICIP 2014, 2014, pp. 3671–3675.

[12] T. Lee, Y. Chan, and W. Siu, “Adaptive search range by neighbouring
depth intensity weighted sum for HEVC texture coding,” Electron.
Lett., pp. 3–4, 2016.

[13] S. Kim, D. K. Lee, C. B. Sohn, and S. J. Oh, “Fast motion estimation
for HEVC with adaptive search range decision on CPU and GPU,” in
2014 IEEE China Summit and International Conference on Signal and
Information Processing, IEEE ChinaSIP 2014 - Proceedings, 2014, pp.
349–353.

[14] S.-Y. Jou, S.-J. Chang, and T.-S. Chang, “Fast Motion Estimation
Algorithm and Design for Real Time QFHD High Efficiency Video
Coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 9, pp.
1533–1544, 2015.

[15] D. Silveira, G. Povala, L. Amaral, B. Zatt, L. Agostini, and M. Porto,
“Memory bandwidth reduction for H.264 and HEVC encoders using
lossless reference frame coding,” in Proceedings - IEEE International
Symposium on Circuits and Systems, 2014, pp. 2624–2627.

[16] C. Y. Chen, C. T. Huang, Y. H. Chen, and L. G. Chen, “Level C+ data
reuse scheme for motion estimation with corresponding coding orders,”
IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 4, pp. 553–558,
2006.

[17] J. C. Tuan, T. S. Chang, and C. W. Jen, “On the data reuse and memory
bandwidth analysis for full-search block-matching VLSI architecture,”
IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 1, pp. 61–72,
2002.

[18] C.-C. Ju et al., “A 0.5 nJ/Pixel 4 K H.265/HEVC Codec LSI for Multi-
Format Smartphone Applications,” IEEE J. Solid-State Circuits, vol.
51, no. 1, pp. 56–67, Jan. 2016.

[19] M. E. Sinangil, A. P. Chandrakasan, V. Sze, and M. Zhou, “Memory
cost vs. coding efficiency trade-offs for HEVC motion estimation
engine,” in International Conference on Image Processing, 2012, pp.
1533–1536.

[20] F. Bossen, “Common Test Conditions and Software Reference
Configurations,” JCTVC-H1100, 2012.

[21] G. Bjontegaard, “Calculation of Average PSNR Differences Between
RD Curves,” 13th Video Coding Expert. Gr. Meet., 2001.

TABLE III. THE EXPERIMENTAL RESULTS COMPARED TO THE METHOD
PROPOSED IN [11]

Test
Sequence

BD-Rate (%) BD-PSNR(db) IMET(%)

TS1 1.01 -0.04 -9
TS2 0.28 -0.01 -10.48
TS3 0.49 -0.01 -23.6
TS4 0.11 0 -28.01
TS5 -0.01 -0.01 -29.14
AVG 0.38 -0.01 -20.05

