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Abstract— The encoding process in the HEVC standard is 
several times more complex than the previous standards. Since 
motion estimation is responsible for most of this complexity, the 
new Test Zone (TZ) search is usually adopted as the fast search 
algorithm, to alleviate the complexity. However, the TZ search 
requires a high rate of access to the off-chip memory, which 
contributes heavily to the total consumed encoding power. In this 
paper we demonstrate that the process of finding the best starting 
search point in this algorithm, does not allow effective reduction 
of memory access in hardware encoders. As a solution, a new fast 
motion estimation algorithm is proposed which estimates a 
proper single starting search point, in addition to an adaptively 
reduced search range, based on available information from the 
coded neighboring blocks. The experimental results show that 
this algorithm on average can reduce the required memory access 
for ME by ~78% and reduce the integer ME time by ~70%, with 
only 1.1% Bjontegaard Delta  (BD) Rate. 
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I. INTRODUCTION  

The High Efficiency Video Coding (HEVC) standard [1] 
can offer a coding efficiency of up to twice the previous 
standards, but this efficiency comes at the price of much higher 
computational complexity and power consumption. Similar to 
the previous standards, the major part of this complexity comes 
from the Motion Estimation (ME), which is repeated on block 
sizes from 64×64 pixels to 4×4 pixels for each Coding Tree 
Unit (CTU), and also with larger search windows, as the main 
aim of introducing HEVC is for high resolution video content 

As the full search is extremely slow and power consuming, 
the Test Zone (TZ) search [2] is usually used as the main fast 
integer ME (IME) algorithm in HEVC. The TZ search offers a 
fast ME as well as R-D performance almost equal to the full 
search. The process of ME in this algorithm consists of two 
main steps. In the first step, the algorithm tests six candidates to 
find the best starting point for the search. These candidates 
include motion vectors (MV) of the neighboring blocks, zero 
motion, the median predictor, and the MV of certain parent 
block sizes. In the second step, the search is continued with 
iterative diamond patterns around the best starting point and a 
refinement process is performed if needed. 

Although the TZ search is much faster than the full search, 
it is still considered slow and heavy, especially for hand-held 

devices with limited processing power. Furthermore, to cover 
the large motion intensity, especially in high resolution scenes, 
TZ search requires a wide search range to perform well. 
Fetching the huge data associated with the search range, it 
requires a high rate of access to the off-chip memory, which 
consumes about half of the processing power of the encoder 
[3]. The state of the art hardware encoders usually adopt a large 
on chip SRAM to accommodate the whole search window for a 
CTU in the memory, and prevent multiple off-chip accesses for 
sub-blocks [4]. However, fetching this wide search window 
still imposes a large rate of communications between memory 
and the encoder. This approach has two drawbacks: first it 
consumes a considerable amount of power, and second, the 
high rate of access to memory, can limit the performance of 
other processing elements in Multiprocessor Systems on Chip 
(MPSoC) environments, where the memory is shared between 
processing elements. While several research papers propose 
algorithm-level methods to speed-up the TZ search, they ignore 
the importance of off-chip communications, and thus do not 
succeed in reducing the access to the off-chip memory. 

To mitigate this issue, this paper analyzes the TZ search, 
from a memory access point-of-view, and concludes the source 
of the problem to be the multiple initial predictors of the TZ 
search. Then an effective method is introduced to estimate a 
single starting search point, and an adaptively reduced search 
range, using the information from the previously coded 
neighboring blocks. The proposed method is presented at the 
algorithm level to maximize the gain and also skip design-
specific differences of hardware encoders. 

The rest of the paper is organized as follows: in section II 
we summarize the related published methods, section III 
analyzes the memory access of the TZ search and explains why 
the conventional methods fail to solve it. Our proposed method 
is presented in section IV, and experimental results are 
provided in section V. Finally, we conclude the remarks in 
section VI. 

II. RELATED WORK 

Several researchers have tried different methods to reduce 
the complexity load of ME algorithms. Hu and Yang [5] 
employ statistical inference on each search point, to decide if it 
should be considered in TZ search. Yang, Yang, and Jiang [6] 
proposed to start the search with the more probable horizontal 
and vertical motions. Researchers in [7] propose a GPU-based 



solution to exploit the parallelism for speeding-up ME. As 
quad-tree structure of the HEVC forces ME on several block 
sizes, several researches [8][9] investigated fast block 
partitioning to avoid ME on unnecessary block sizes.  

An effective approach to reduce the complexity of the TZ 
search is to adaptively reduce the required search range, for 
each block. Dai et al. [10] proposed a method that decides the 
search range based on the distribution of the MV difference in 
previously coded blocks. In [11] the standard deviation of the 
motion vector predictors is used alongside block size-
dependent parameters to decide the search range. Researchers 
in [12] however, obtain an Adaptive Search Range (ASR) 
through a weighted average of MVs from neighboring blocks, 
such that blocks with higher similarity in depth intensity 
receive higher weights. The method presented in [13] also uses 
MV from the collocated block in previously coded block to set 
the search range. Proposed method in [14] reduces the number 
of search directions after the second round of diamond search 
in TZ search, because statistics indicate that after the second 
round, the best direction barely changes between two 
consecutive rounds. 

Although all the above mentioned methods reduce the 
complexity and power consumption of the HEVC encoding, it 
should be noted that in modern hardware systems, the power 
consumption for communications is gaining on computations. 
As a result, accessing the off-chip memory, consumes about 
half of the total encoding power [3]. While the above-
mentioned methods [10]-[14] reduce the search range which 
potentially can reduce the access to the memory as well, in 
section III we explain why using multiple initial predictors, 
prevents them from effectively reducing the access to off-chip 
memory. 

A direct approach to reduce the off-chip communication in 
the encoder, is to compress the reconstructed frames before 
writing them into the off-chip memory [3][15]. This way, lower 
access rate is required for obtaining the reference frames. 
However this approach has two main shortcomings: first, 
lossless compression has a limited compression ratio, and 
second, random access to the reference frames will be 
complicated, because of the serial nature of lossless coding. A 
hardware approach is to avoid repeated access to the shared 
parts of the reference window between the neighboring blocks. 
To do so, researchers proposed data reuse schemes [16][17] 
which can greatly reduce the off-chip memory access. However 
this approach requires a considerable increase of on-chip 
SRAM, which is expensive and not available for all 
implementations [4]. 

A scheduling approach is presented in [18] to reduce the 
memory access, where authors propose to accumulate the 
requests to nearby memory locations, such that the number of 
total access to the memory is reduced. Moreover, Sinangil et al. 
investigated the trade-off between memory access and coding 
efficiency, through analyzing the memory requirements of 
different partitioning schemes [19]. They show that  memory 
access and on-chip area can be saved significantly, if certain 
block sizes are ignored in hardware. However, their approach 
results in considerable loss of coding efficiency. 

Most of the presented approaches either ignore the 

importance of memory access and concentrate on the 
computational complexity, or provide solutions at the 
hardware-level that have limited potential in mitigating the 
problem. In what follows, we present our algorithm-level 
solution, which tackles the problem from the source, and hence 
provides better memory access reduction. 

III. MOTIVATION 

To have a better perspective of the off-chip memory access, 
Fig. 1 presents an abstract architecture of a nominal hardware 
HEVC encoder, which is common among different 
implementations [4][14]. To encode each block of a frame, that 
block, and its associated search window in the reference frame, 
should be fetched from the off-chip memory, into the pre-fetch 
SRAM. This operation usually takes place before the encoding 
process of the previous block is finished, to cover the latency of 
accessing the off-chip memory. Then through different stages 
of the encoding pipeline, this data will be fed into the on-chip 
SRAMs, as parts of the memory sub-system, to serve as 
module specific memories. This way considerable off-chip 
traffic and bandwidth is saved, through the fast and power-
efficient on-chip communication. After the encoding process is 
done, the reconstructed blocks are stored off-chip again, to 
serve as the reference for the upcoming frames. 

As mentioned in related works section above, several 
previous works proposed adaptive search range reduction 
techniques to reduce the computational complexity of TZ 
search. However, they all fail to take advantage of the reduced 
search range to effectively reduce the required memory 
transactions. The underlying cause for this inefficiency is that, 
the first step of the TZ search needs to test six initial motion 
vector predictors, to decide the best starting point. This 
operation requires fetching six blocks of 64×64 pixels into the 
encoder. Only after the best starting point is set, the above 
mentioned methods can limit the range of the search process 
around the starting point, and thus partially reduce memory 
transactions. 

Fig. 2 (a) illustrates this phenomenon by example, where an 
original search range of 64 pixels is set for a CTU of 64×64 
pixels, with six starting points (as in common test conditions 
[20]). Since the initial predictors can be spread anywhere in the 
original search window, the hardware encoders fetch the whole 
search range beforehand (to pre-fetch SRAM in Fig. 1) to avoid 
design complications [4][14]. Hence, no memory access 

Fig. 1. Abstract architecture of a nominal hardware HEVC encoder 



reduction can be achieved. Even if a hypothetical ideal 
hardware design could access only these six blocks (associated 
with the six initial predictors) instead of the whole search 
window, the amount of memory transactions to fetch these 
blocks would be 67% of the whole search window, for the 
values of this example (6×64×64 pixels, out of 192×192 
pixels). Please note that this is in addition to the reduced 
refinement search window, which the ideal encoder needs to 
fetch after deciding the best starting point. Furthermore, it is 
important to note that the SRAM memory of the encoder chip 
does not function as a cache memory in a general purpose 
processor, and thus the locality of accessed addresses cannot be 
exploited for memory access reduction. 

Considering another 64×64 pixels for fetching the current 
CTU, the required memory transactions of the ASR methods 
[10]-[14], for each CTU will be (6+1)×642 + (64+2RSR)2, 
where RSR represents the Reduced refinement Search Range. 
Hence, even when RSR→0, 8×642 pixels should be accessed. 
Comparing this with the case of the common test conditions, 
including 192×192 pixels for search window and 64×64 pixels 
for the current block, 20% will be the upper bound of memory 
access reduction for the ASR methods, in an ideal hardware 
encoder. 

This example clearly demonstrates that to be able to reduce 
the access to the off-chip memory, reducing the search range is 
not enough and having a single starting point is vital to benefit 
from the search range reduction. 

Investigations of methods [10]-[14] reveal that in 
homogeneous motion regions, which include the major area of 
a frame, MVs of the neighboring blocks have a high correlation 
with the motion of the current block. However, in complex 
motion areas they tend to be more random and uncorrelated. 
Based on the same observation, we propose to use the MV of 
three neighboring blocks, to estimate a single starting point for 
the TZ search. To do so, instead of accessing the picture block 
associated with these MVs to find the best starting point (as in 
baseline TZ search), we analyze their coordinates to estimate a 
single starting point. Considering the presented example in Fig. 
2 (a) with this new method, only the reduced search range 
(dotted rectangle) will be required for ME.  

IV. PROPOSED METHOD 

As explained above, the test for the best starting point is a 
major source of memory access in TZ search. To alleviate this, 
MVs from neighboring blocks are used to estimate an early 
starting point for the search. To do so, MVs of blocks: left 
(Pred_A), above (Pred_B) and above-right (Pred_C) of the 
current block are used, which are highly correlated to the 
motion in current block. Equation (1) estimates an starting 
search point (SP) for the current block, where MaxMVx denotes 
the maximum value between MVs of the three neighboring 
blocks, in x direction and the opposite for MinMVx. ܵ ௫ܲ = 	 ܯݔܽܯ) ௫ܸ ܯ݊݅ܯ+ ௫ܸ) 2⁄  , ܵ ௬ܲ ܯݔܽܯ)	= ௬ܸ + ܯ݊݅ܯ ௬ܸ) 2⁄    (1) 

In homogenous motion regions where neighboring blocks 
have similar MVs, a small search range is enough to find the 
best vector, while in complex motion, a wider search range is 
required to compensate for the inaccurate starting point. Since 
the variation of the motion in a certain region can indicate the 
motion complexity, we define the search range based on the 
maximum difference between MVs of the neighboring blocks, 
as depicted in (2). This equation considers a rectangular search 
window with dimensions according to the size of maximum 
difference between MVs in that dimension. ܴܵ௫ = ܯݔܽܯ	 ௫ܸ − ܯ݊݅ܯ ௫ܸ,   ܴܵ௬ = ܯݔܽܯ	 ௬ܸ − ܯ݊݅ܯ ௬ܸ(2) ܶℎݎ௫ = ெ௏│,௫│ߤ	 + ௬ݎெ௏│,௫ ,   ܶℎ│ߪߚ	 = ெ௏│,௬│ߤ	 ெ௏│,௬│ߪߚ	+

  (3) 

A flowchart of the proposed method is given in Fig. 3. For 
each CTU, first the search range is decided using (2). Then an 
adaptive threshold is used to decide whether the motion in the 
region is homogenous, or complex. This threshold is calculated 
using (3), where the average motion intensity (ߤ│ெ௏│,௫) and the 

standard deviation of the motion intensity (ߪ│ெ௏│,௫) from the 
previously coded frames, are used to calculate the threshold in 
each direction. Also β (β=1 in this paper) is a parameter to 
regulate the trade-off between coding efficiency and encoding 
performance. If the obtained search ranges in both horizontal 
and vertical directions are smaller than the thresholds, the 
motion is considered homogenous. In this case, (1) is used to 
set the starting point for search. Then a search window with 
size of (SRx, SRy), around the CTU-sized block, located at the 
(SPx,SPy), is fetched into the encoder. The rest of the ME for 
every sub-block is followed as the second step of the TZ 
search.  

Fig. 2 (b) visualizes this process where three MVs from 
neighboring blocks (Bold dots in the figure) are used to decide 
the starting point and the search range. However, if the search 
range in at least one direction is larger than the threshold, it 
indicates a complex motion region. In this case, information 
from the neighboring blocks is not enough for predicting the 
location of the motion, and requires a more intensive 
refinement steps and extra complexity. Thus, the encoder 
fetches the original search range and starts the baseline TZ 
search by testing the initial predictors. However, our 

  
 

(a)   (b) 

Fig. 2. (a) Memory access for testing initial predictors, plus refinement
search window around the best starting point. All shadowed boxes are
fetched seperately (b) Example of proposed memory access reduction based
on three MVs from neighboring blocks 



observations show that this condition occurs only for ~10-18% 
of CTUs. 

A visual example of this algorithm can be found in Fig. 4. 
Red arrows in this figure represent the MVs for neighboring 
blocks of two certain blocks in Kimono1 video sequence. It can 
be observed that for the upper instance, the neighboring blocks 
contain different motion directions due to the person’s motion 
and camera panning. Consequently the obtained search range 
exceeds the Thrx, meaning that this block goes through the 
baseline ME steps. The neighboring blocks of the lower 
instance though suggest uniform motion region. Hence, this 
block will benefit from the proposed search range and starting 
point. 

V. EXPERIMENTAL RESULTS 

To evaluate the performance of the proposed method, it was 
implemented on top of the HM reference software [2] and 
tested with Low-Delay P (LD) configuration as suggested in 

the common test conditions [20]. All the tests were repeated for 
QP values of 22, 27, 32, and 37, and the Bjontegaard Delta 
Rate (BD-Rate) and BD-PSNR were used to evaluate bitrate 
and quality [21]. The platform for tests includes an Intel Core 
i7-930 processor with 8 GBs of memory and Windows 8.1 as 
the operating system. Table I introduces the seven different test 
sequences which were used to evaluate the performance of our 
method for different motion characteristics. 

The experimental results in Table II, compares the 
performance of our method with the baseline TZ search, where 
IMET denotes the percentage of IME time saving, and MA 
denotes the percentage of reduction in access to the off-chip 
memory, which was collected through software simulations. As 
the table shows, the proposed method can reduce the time of 
TZ search by ~70% on average, while the BD-Rate increases 
only by 1.1% compared to the baseline TZ search. As 
suggested by the algorithm, this time saving depends on the 
motion activity. For instance, Kimono1 has a complicated 
motion activity, thus many blocks need to go through the 
baseline TZ search process. On the contrast, Johnny has a very 
simple motion in most of the image area. Consequently the 
IMET for Kimono is comparatively smaller and for Johnny is 
larger. 

Also based on Table II, this technique leads to an average 
of ~78% access reduction to the off-chip memory, which leads 
to considerable reduction in power consumption. As explained 
earlier, this access reduction is due to simultaneously reducing 
of search range and having a single starting point approach. 

In Table III, we compare the results of our method with the 
ASR method in [11]. The proposed method gains ~20% more 
time saving compared to the ASR method, however the ASR 
method achieves 0.38% better BD-Rate. This is because the 
ASR method only reduces the search range and benefits from 
all the six starting points of the TZ search.  

From the off-chip memory access point of view, as 
discussed earlier, the proposed method gains a ~78% access 

TABLE I. TEST SEQUENCES FOR EXPERIMENTAL RESULTS

Abr Class Test Sequence Resolution 
TS1 A PeopleOnStreet 2560×1600 
TS2 B Kimono1 1920×1080 
TS3 B ParkScene 1920×1080 
TS4 E KristenAndSara 1280×720 
TS5 E Johnny 1280×720 
TS6 C BQMall 832×480 
TS7 D BasketballPass 416×240 

 
TABLE II. EXPERIMENTAL RESULTS COMPARED TO THE BASELINE TZ 

SEARCH [2]. IMET DENOTES THE IME TIME SAVING AND MAR DENOTES 
MEMORY ACCESS REDUCTION. 

Test 
Sequence 

BD-Rate 
(%) 

BD-PSNR 
(db) 

IMET(%) MA (%) 

TS1 2.07 -0.09 -67.5 -74.26 
TS2 0.6 -0.02 -48.66 -56.07 
TS3 1.08 -0.03 -69.93 -77.71 
TS4 0.72 -0.01 -78.89 -87.66 
TS5 -0.01 0 -79.56 -88.4 
TS6 0.8 -0.02 -73.44 -83.49 
TS7 2.41 -0.08 -69.69 -77.16 

AVG 1.1 -0.04 -69.67 -77.82 

 

Fig. 3. The proposed fast ME algorithm with memory access reduction 

Obtain SRx, SRy, Thrx and Thry

START

SRx < Thrx and 
SRy < Thry?

Y N

Fetch a search window the size 
of SRx and SRy

Fetch the original search 
window

Test initial points for best 
starting point

Step two of TZ search around 
the best starting point

Set (SPx , SPy) as starting point

Fig. 4.  A visual example of the proposed algorithm, on two different blocks
of Kimono1 



reduction in hardware encoders, compared to the baseline TZ 
search. For the ASR method [11] and based on analysis 
provided in section III, this amount will be 0%, considering the 
nominal hardware encoders, and below ~20% for the case of 
ideal hardware design. 

VI. CONCLUSION 

In this paper, a fast ME algorithm for hardware 
implemented HEVC encoders is presented. The paper points 
out to the high memory access in conventional ME schemes 
and demonstrates that the search for the best starting point in 
TZ search highly limits the opportunity for memory access 
reduction. To alleviate this problem, the proposed method 
estimates the best starting search point earlier, in addition to an 
adaptive search range, based on MVs of the neighboring 
blocks. Experimental results show that this method can lead to 
~70% reduction in IME time with negligible loss of coding 
efficiency. Moreover, since the proposed method provides a 
more targeted memory access, it gains ~78% reduction in 
memory transactions which significantly reduces the power 
consumption of hardware implemented video encoders. 
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TABLE III.  THE EXPERIMENTAL RESULTS COMPARED TO THE METHOD 
PROPOSED IN [11] 

Test 
Sequence 

BD-Rate (%) BD-PSNR(db) IMET(%) 

TS1 1.01 -0.04 -9 
TS2 0.28 -0.01 -10.48 
TS3 0.49 -0.01 -23.6 
TS4 0.11 0 -28.01 
TS5 -0.01 -0.01 -29.14 
AVG 0.38 -0.01 -20.05 


