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Abstract. Computing is the latest add-on to enhance the K-12 curricula of many countries,
with the purpose of closing the digital skills gap. The revised Finnish Curriculum 2014 inte-
grates computing mainly into math. Consequently, Finland needs to train math teachers to
teach computing at elementary level. This study describes the Python and Racket tracks of
the Code ABC MOOC that introduce programming basics for math teachers. Their suitabil-
ity for math is compared based on the course content and feedback. The results show that
conceptually the functional paradigm of Racket approaches math more closely, in particular
algebra. In addition, Racket is generally regarded as more challenging in terms of syntax and
e.g. for utilizing recursion as an iteration mechanism. Math teachers also rank its suitability
higher because the content and exercises of the track are specifically tailored for their subject.

Keywords: Curriculum Research, Computer Science Education, K-12 Education, In-Service
Teacher Training, MOOC, Computational Thinking, Math-integrated Computer Science,
Python, Racket, Programming Paradigms, Imperative, Functional.

1 INTRODUCTION

Our society is becoming increasingly digitalized, which has therefore given rise to a global discussion
on the role of computer science (CS) in K-12 education. As a consequence, a number of countries all
over the world have introduced computational thinking, computing or CS (or aspects thereof) into
their K-12 curricula. Since 2014, for instance, students in England have had Computing on their
schedule from the age of five. In Finland, aspects of CS were included in the national curriculum
in fall 2016, when the 2014 national curriculum came into force. Programming was introduced
as part of the cross-curricular theme of digital competence, and also specifically integrated into
the syllabi of crafts (Y3-9) and mathematics (Y1-9). In Y1-2, math teachers now need to help
students learn how to create and test simple programs (unplugged, step-by-step instructions), while
students in Y3-6 should learn how to program in a visual programming language. The new learning
objectives for mathematics in Y7-9 intend to develop students’ algorithmic thinking skills and
applying programming in problem solving. The target is reached when ”a student can apply the
principles of algorithmic thinking and is capable of implementing simple programs” [15].

Integrating programming into comprehensive education is a remarkable change: both pre- and
in-service teachers need to learn to program and to understand the core elements of computational
thinking. Such curriculum enhancements change the job description of a teacher retrospectively.
Consequently, employers are responsible for the need to train teachers and for providing time for
sufficient professional development. Although this training need is recognized by the government,
in-service training resources are insufficient as Finnish teacher training departments have not yet
fully responded to the new requirements and the growing need.



Against this background, all voluntary training initiatives have been warmly welcomed by
schools, principals and teachers. In this paper, we present the Code ABC MOOC, a project initi-
ated informally by a group of volunteer educators to respond to the gap in teachers’ formal training
and preparedness for teaching programming. The initiative was later sponsored by the Technol-
ogy Industries of Finland Centennial Foundation and the Finnish National Board of Education.
The Code ABC MOOC offers four tracks targeted at teachers working at different school levels:
ScratchJr (Y1-2), Scratch (Y3-6), Racket (Y7-9) and Python (Y7-9). In addition to supporting el-
ementary school teachers in learning the basics of programming, the Code ABC MOOC also serves
as a tool for highlighting best practices for teaching programming. This paper concentrates on the
two tracks targeted at teachers of Y7-9, namely the Python and Racket tracks.

In this study we extract the key concepts and aspects of programming and computational
thinking from the examined tracks of the Code ABC MOOC in an effort to strengthen the conceptual
basis of the programming syllabus. The teacher feedback illustrates how these concepts have been
adopted and evaluates the suitability of the material for supporting teachers in adopting the new
curriculum. In addition, our study attempts to link these CS concepts to appropriate mathematics
topics. In this regard, the differences between the programming languages used in the two tracks
are noted and explained based on the underlying programming paradigms. Our goal is to answer
three main questions:

– What CS concepts and computational thinking skills do these Code ABC tracks introduce?
– What topics did the teachers find challenging, inspiring, or suitable for math?
– Which programming paradigms do the tracks align with and how do they support math?

The paper is organized as follows. First we discuss previous work in fields related to our study,
after which we describe our research context. Next we present and discuss the results, before con-
cluding the paper with some final remarks.

2 RELATED WORK

2.1 CS in K-9 education

As noted in the introduction, introducing aspects of CS in K-9 education is an international trend.
This is, however, not a new trend. As long ago as 1967, Papert developed the LOGO language
[35], specifically aimed at teaching children how to program. His goal was to use programming as
a tool to let children be creative with technology and to support their learning in other domains
such as mathematics, the arts, languages and science. As computers became increasingly popular,
accessible and easy to use, the focus in the school debate shifted from CS and learning how to
program to IT and learning how to use computers and software. In the last five years, the trend has
once again shifted, as the digital transformation has shown the need for understanding the digital
world. Consequently, there has been an active debate on the need to shift the focus away from
our future citizens being mere passive consumers of technology, and towards them becoming active
producers.

Internationally, we now see an increasing trend for intergrating aspects of CS into K-9 edu-
cation. For instance, in Europe the majority (17 out of 21) of countries participating in a survey
conducted by the European Schoolnet in 2015 reported doing so [4]. The way in which this is
accomplished varies. Some countries focus on K-12 as a whole, whereas others primarily address



either K-9 or grades 10-12. Some countries have introduced CS as a subject on its own (e.g. Com-
puting in England) while others have decided to integrate it with other subjects, by, for instance,
making programming a cross-curricular element (such as in Finland). Instead of computing and
programming, some countries also use the term computational thinking.

Computational thinking (CT) has gained prominence, particularly in conjunction with the dis-
cussion on integrating aspects of CS as part of K-9 education. However, Papert had already set the
course for CT much earlier, in 1996 [34]:

“Computer science develops students’ computational and critical thinking skills and shows them
how to create, not simply use, new technologies. This fundamental knowledge is needed to prepare
students for the 21st century, regardless of their ultimate field of study or occupation”. Not simply
using computers but also creating digital artifacts is a valid stance – helping pupils to identify
themselves as potential creators fosters their sense of empowerment.

In her seminal article, Wing [58] renewed this emphasis by establishing the term ’computational
thinking’ as an essential part of the recent CS education discourse, yet its comprehensive definition
was omitted. To date, several definitions and operational descriptions of CT have been suggested.
Even if no consensus on the definition has been reached, many of the suggestions build on the core
of Wing’s later description (2010, [59]): The thought processes involved in formulating problems
and their solutions so that the solutions are represented in a form that can be carried out by an
information-processing agent.

When operationalizing the term, it is commonly presented as a set of concepts and approaches.
For instance, the support organization Computing at School (CAS) in England, describes CT as ”the
processes and approaches we draw on when thinking about problems or systems in such a way that
a computer can help us with these.” (CAS, p. 1) They define CT in terms of six concepts (logic,
algorithms, decomposition, patterns, abstraction and evaluation) and five approaches (tinkering,
creating, debugging, persevering and collaborating).

Relevance for our study In the Finnish curriculum programming is to be taught as part of math
[15]. Compared to programming, math already has a well-established syllabus that has evolved into
its current state since the dawn of the educational system. Apart from a few minor syllabus areas
being dropped from or reintroduced into the curriculum, the core content of the math syllabus has
remained more or less the same for decades. In order to facilitate a smooth transition, there is a
need to build on the well-established math core in order to introduce the analogous and logically
progressive steps for CS. It is tentatively assumed that integrating CS into math will move the
center of gravity of the syllabus towards CT.

2.2 Bidirectional transfer: math ↔ CS

Math is at the very core of programming, which requires algebraic, logic and problem-solving
skills. Synergy implies mutual benefit between two entities, and although the benefits that a good
understanding of math and perceived self-efficacy confer on the learning of computational skills
are clear [62,44], the transfer in the other direction, from programming to math, may not be that
obvious. In a successful transfer, however, a student should be capable of finding the common
underlying conceptual bases of different topics [23]. Finding such analogies not only requires a
certain level of intellectual maturity, but also that a student has elaborated on the learning material
conceptually in order to reach a deeper understanding of the topic.



Transfer may happen either laterally or vertically [17], near or far, or by the low road or the
high road [40] implying a certain hierarchy of learning. In addition, one of the two complementary
subjects tends to be interpreted in the learners’ minds in a more abstract manner, while the other
focuses on its application [43]. In the case of math and CS, math is more abstract, while CS can
be understood as applied math [8]. In math, educators have long talked about conceptual and
procedural knowledge [18]: conceptual knowledge comprises a full possession of the appropriate
concepts and the ability to link them together, i.e., the high road to knowledge transfer, while
procedural knowledge (the low road) consists of well-internalized mathematical routines.

Relevance for our study Based on previous research, one potential assumption is that practicing
math routines will provide an appropriate resource for programming exercises. To achieve this, the
current math syllabus needs to be bridged with the corresponding programming topics. It seems
reasonable to assume that this could be valuable not only to students, but also for in-service teachers,
who might find similarities between math and programming motivating when learning to program
themselves.

2.3 Programming metaphors, languages and paradigms

When attempting to determine the role of CS in education, various metaphors are used, e.g. thinking
of programming as literacy, as a driver for the maker culture and a maker mind-set, or grounded
math [7]. If the literacy metaphor is used, then programming as digital literacy emphasizes the
same logical skills as are applied when constructing linguistically correct sentences, such as us-
ing and/or/not in order to express the internal logic of a sentence. From a ’maker mindset’, the
programming language should be as productive as possible, easy to learn (”low floor”), usable in
a wide range of potential application areas and types (”wide walls”) and facilitate the creation of
both basic and advanced programs (”high ceiling”). In such contexts, scripting languages and visual
programming languages such as Scratch (scratch.mit.edu) can be particularly useful.

The question of what programming language to use has been heavily debated throughout the
years, in particular when discussing novice programming. At university level, most discussion has
surrounded textual languages, such as Java, C, Python and Scala. Languages have been compared
based on, for instance, how easy they are to learn, how many errors students make when using
them, how verbal the languages are and potential syntactical overload. However, at the K-9 level
this question has not been as actively discussed, for a number of reasons. First, programming at
school level is still rather new, and thus still evolving into its final form. The goal of learning the
basics of programming at school is not to educate future programmers, but rather to give them a
basic understanding of the digital world. In addition, at the moment, educators seemed to reach a
consensus about the programming progression at school, starting with unplugged activities, followed
by visual programming languages with a textual language being introduced in the later grades (7–
9). Nevertheless, there are some studies on programming languages at K-9 level as well. Despite the
popularity of Scratch and other block-based languages, some studies have questioned the benefits
of these in enhancing problem-solving skills and good programming practices [22,33] as these are
claimed to lead to bottom-up development and fine-grained programming without coherence [33]. In
sum, the problems relate to abstraction skills, i.e., ”not seeing the forest for the trees” and designing
the program in advance. On the other hand, other studies have found that visual programming
languages such as Scratch make it easier for novices to learn some concepts, for instance, construct
of conditions [27,31] and to switch to textual programming later on. Another consequence of using



block-based languages is the tight integration with the development environment (IDE), whether
on-line or stand-alone. Such powerful IDEs become a new norm along with visual programming.

In addition to metaphors and languages, programming paradigms are essential for defining the
angle of approach to teaching programming. Each paradigm provides its own basic concepts with
paradigm-specific restrictions, which leads to different kinds of implementations and programming
styles. Some tasks are more easily implemented in one paradigm, whereas other paradigms are more
appropriate for other applications (e.g. due to their efficiency or flexibility). Consequently, there
is not only a discussion around what programming language to use, but there are also recurring
arguments about “the right paradigm for the job”. To be able to make well-informed language and
paradigm choices, decision-makers and educators should have an adequate understanding of the
alternatives available.

The division of programming languages into different paradigms is not easy, and is further
blurred by multi-paradigm languages. Wegner (1989) simply divided languages into two fundamen-
tal categories: imperative and declarative [55]. In this division, the imperative paradigm comprises
procedural, object-oriented, and distributed (parallel) languages, whereas the declarative one con-
sists of functional, logic, and database languages. However, a parallel paradigm is not commensurate
with, for instance, an object-oriented paradigm, which provides for parallel implementations as well.
This problem can be circumvented by separating the programming model (sequential/parallel) from
paradigms altogether, thus enabling new combinations. This change was proposed by Bal and Grune
[3], who also raised the previous sub-paradigms of procedural, object-oriented, functional and logic
to main categories.

Constantly increasing in number, multi-paradigm languages challenge this categorization. For
instance, Scratch puts paradigm categorization to the test. Some of the features of Scratch comply
with an object-oriented paradigm. According to Van Roy’s taxonomy, having a cell and a thread, i.e.
assignment and concurrency, categorizes Scratch as an object-oriented paradigm [54]. However, the
lack of data abstraction (inheritance) and functions makes the data encapsulation model of Scratch
oxymoronic in regard to object-orientedness. Since Scratch targets only GUI applications reactive
to user-generated events and inter-sprite messages, an event-loop [54] or event-driven paradigm [14]
would seem to be a more accurate categorization. A few sources refer to Scratch as agent-based
programming, where each sprite acts as an independent agent according to the defined rules. The
interplay of such agents, for instance, facilitates easy STEM simulations [51].

Relevance for our study Since our study compares two tracks of the Code ABC MOOC, one using
a functional language and the other an imperative one, this discussion of paradigms is important.
In this section we look more closely at the paradigms most relevant to our study: imperative and
functional programming, exemplified by Python and Racket respectively.

Imperative paradigm and Python Some argue that the imperative paradigm is appropriate
for introducing programming as it makes it quite straightforward to translate algorithms into code,
for instance. There are a wide range of imperative languages which can be used as general purpose
languages and for particular application areas. Python (python.org) was originally designed with
education in mind. The developer, Guido van Rossum, even suggested that everybody could master
programming using Python back in 1999 [45]. The language had already aroused interest as a
programming language for novices in the early 2000s, due to, for instance, its clear and readable
syntax, strong introspection capabilities, natural expression of procedural code, high level dynamic



data types and its extensive standard library and third party modules providing functionality for
a wide range of tasks. Python is one of the most commonly used languages in general use today
(number 5 on the TIOBE programming index list in August 2017) and is widely used in education
[21,10,9, etc.].

Guzdial [21] has a clear vision of the importance of web programming and sees Python as a
viable tool for this, describing it as ”one of the best web languages”. However, he does not object
to mixing paradigms and languages, exemplified by the Jython environment for students (JES)
project, which combines Python with Java [5]. Nevertheless, Python is object-oriented even without
Java by virtue of its own class model that provides e.g. polymorphism and multiple inheritance.
Python easily interweaves multiple paradigms, although at the basic level it does fall into the
imperative paradigm. Recently, Python was endowed with functional features as well, such as maps,
comprehensions, and generators [28].

The Python material of the Code ABC track has been translated and modified based on the
project outcomes of AP Computer Science Principles [19]. Already in 2003, Guzdial [20] championed
the ’CS for all’ ideology and the potential of CS over specific syllabus areas of math, such as calculus.
He argues that teaching CS for all – not just for mathematically oriented students – should involve
”sampling” instead of sorting. It is essential to allow space for students’ authentic interests, such as
arts, crafts, and music in the hunt for intrinsic motivation. Incorporating the maker mindset with
tinkering, and creative and socially meaningful activities is especially beneficial for reaching less
motivated student groups, including girls [6].

Functional paradigm and Racket In contrast to the multi-faceted nature of Python, the subset
of Racket used in the Code ABC MOOC is more constrained and the closest metaphor would be
”grounded math”, where the pure functional programming language may be regarded as a realiza-
tion of lambda calculus. Transfer between math and CS is claimed to be closest to the functional
programming paradigm [26,49]. For example, functions in algebra can be practiced using functional
programming languages. Combining functional programming with math is not new. Historically,
attempts range from the early use of LOGO [16,25] to recent experiments employing Racket and
Haskell [1]. While the results from the LOGO initiatives have varied [25], the Racket evaluations
have been positive and stable [13,12,49,47].

The Racket programming language (http://racket-lang.org) is a multi-paradigm lan-
guage, and thus also supports functional programming. Racket includes a programming IDE, Dr-
Racket, designed especially for teaching purposes [13]. In contexts where DrRacket cannot be in-
stalled, the web-based environment WeScheme [61] steps into the breach, also enabling online shar-
ing and remixes. DrRacket has built-in support for so-called ’Student Languages’ starting with
Beginning Student and ending with Advanced Student Language. Each of these Student Languages
gradually introduces new programming primitives and concepts. Simplified syntax and semantics
aim at helping beginners grasp the core concepts of function design, such as composition and func-
tion calls. Tool creators have also defined more precise error messages in order to assist novices in
debugging and analyzing their code [30].

For the sake of the purity of the functional paradigm, the imperative features of Racket are held
back. For instance, the assignment operation (set!) and functions causing side effects (display, read)
are not introduced until the Advanced Student Language level. Felleisen et al. wrote the guide ’How
to Design Programs’ for high school and college level students [12], and in its most recent version
the imperative features are done away with altogether to introduce appropriate coding practices.

http://racket-lang.org


The guide systematizes problem solving with Design Recipe, which teaches how to divide a prob-
lem into smaller solvable steps in the process of designing functions with a test-driven approach [12].
The use of Design Recipe has been shown to foster the right order of operations and the composi-
tion of nested functions. Thus, Felleisen and Krishnamurthi suggest that functional programming
provides the strongest evidence for the favorable effects of programming on math skills [13].

A number of articles promote Racket’s Beginning Student Language as a prominent way of
learning algebra [26,49], especially with well-designed instructions. These should include purpose-
fully planned exercises and pedagogical models, such as the Cycle of Evaluation [49], which visualizes
expressions and the use of parentheses. The algebraic approach of functional programming has been
shown to improve the understanding of math concepts such as variables and functions [60,49,48].

Event-driven

Functional

First-order
functional

Multi-agent,
message-passing

concurrent

Active object
programming

Sequential
object-oriented,

stateful functional

Imperative

(+) thread

(+) assignment

(+) assignment

(+) closure

(+) closure

(+) channel

Racket
”grounded math”

val -> val

Scratch
”maker mindset”
state -> [ state ]

Python
”literature, maker mindset”

state -> state

Fig. 1. The Code ABC paradigm taxonomy complying with [54]

Comparison and Summary of the Paradigms of the Code ABC In summary, Figure 1
illustrates the Code ABC, which is comprised of functional, event-driven, and imperative paradigms.
In line with the paradigms, the figure also illustrates the corresponding language used in the MOOC
and the closest metaphors. Obviously, these metaphors are speculative. Different ”paradigm camps”
tend to adhere to their own discourse: Scratch promoters, led by Resnick, highlight sharing and the
unimpeded creation of one’s own artifacts with the analogy of virtual LEGO construction, i.e. block
snapping [42,32]. The founder of the Python language, Van Rossum, emphasizes the readability and
efficiency of code [46], whereas the Racket camp regards functional computing as being rooted in
lambda calculus, thus inherently connected with math, in particular algebra [49,48,13].

Van Roy categorizes languages based on their declarativeness and expressiveness [54,53]. In his
fine-grained paradigm taxonomy, Van Roy defines a horizontal axis of declarativeness based on
whether a state is unnamed or named, and adds expressiveness step-by-step (for instance, assign-
ment, closure, channel, and thread) in order to evolve the paradigm taxonomy from simple to more



complex concepts. In distinguishing between functional and imperative paradigms, the diagnostic
question is: can you assign a variable, i.e. have a named state? The answer divides paradigms into
either imperative or functional. An imperative paradigm is statement-centric, the assignment being
a statement as well. Each statement changes the state of the system, hence, imperative compu-
tation may be understood as state transformations in a sequence, i.e., state− > state. This is in
contrast to the functional paradigm, which may be described as sequential value transformations,
val− > val without states. A named state enables modularity and the storage and management of
updatable memory, which moves the paradigm in a less declarative direction.

A closure establishes a new variable scope in the context of a function. It ’closes’ both a pointer to
code and an environment for free variables. In the functional paradigm, closures are a central concept
because they enable nested and higher-order functions that can access data from the outer scope,
i.e. variables of the previous frames in the stack. Higher-order functions are a powerful substitute
for e.g. for/while iterations without incrementable counters. Otherwise, control structures would be
cumbersome to implement.

The event-driven paradigm leans on events that trigger execution, e.g. at the user’s initiative.
An event may trigger a message to be broadcast through a channel (or a port). In Scratch, several
loosely-coupled receivers may listen to the same message [29]. Because the order of receivers is
not determined, the concurrency model comprises explicit sending and implicit receiving, which
implies a non-deterministic final state, i.e., state− > [state]. Infinite forever loops are implemented
as threads that enable concurrency.

3 The Code ABC

Fig. 2. Nested DBR cycles of curriculum updates (update/10yrs) and
Code ABC tracks (2 updates/yr)

The initial idea for the Code
ABC MOOC was introduced in
spring 2015 by Tarmo Toikka-
nen and Tero Toivanen. The
original concept was to help
teachers learn programming us-
ing material that has been
prepared especially for them
by their peers, for instance,
more experienced teachers. The
first course, the so called Code
ABC beta, was held in Au-
tumn 2015 with three tracks:
ScratchJr, Scratch and Racket.
The Python track was added
for the spring 2016 version of
the MOOC. So far (fall 2017)
3649 participants have studied
programming in the Code ABC
MOOCs.

The initial three tracks of
the Code ABC beta (ScratchJr,
Scratch, and Racket) were de-
veloped by a group of Finnish



teachers and were improved incrementally based on the feedback from several iterations. The con-
tinuous development followed the principles of design based research (DBR), aiming at linking
theory and practice in the discipline of education [41]. DBR stipulates the use of several iterations
and redesigns of an educational artifact based on feedback and experience. Figure 2 illustrates the
process of two nested design cycles.

The outer cycle is the curriculum planning cycle that takes place once a decade, while the inner
is the iterative process of developing the Code ABC tracks twice a year. Development proceeds in
cycles, taking into account the feedback given by different stakeholders, especially the customers,
which in this context are in-service teachers. The artifact is then redesigned together with course
instructors and researchers, whose research interests lie in integrating CT into elementary education.

The original material for the Python track was developed in the USA in similar cycles by Guzdial
and Ericson [11]. This material was translated and adapted for the Code ABC MOOC in a project
funded by the Finnish National Board of Education, coordinated by the Innokas Network at the
Faculty of Educational Sciences at the University of Helsinki and implemented jointly by the Faculty
of Educational Sciences and the Department of Computer Science at the University of Helsinki and
the Department of Computer Science at Aalto University.

3.1 Design goals of the Code ABC tracks

The first three tracks of the Code ABC (ScratchJr, Scratch, and Racket) had a number of general
goals: promoting creativity; introducing CS as a tool for creating something new and inspiring;
sharing pedagogical ideas and artifacts during the course; using exercises directly applicable in a
classroom context in order to make it easier for teachers to get started; offering course participants
sufficient content knowledge so that they would not limit themselves to applying ready-made pro-
gramming materials but also be able to create their own exercises; and enabling peer-support by
encouraging participants to help each other on discussion forums. The Racket track had an addi-
tional design goal of integrating mathematics into programming exercises in order to motivate math
teachers to adopt programming in their teaching, and to prove that programming lessons are not
time wasted.

The main goals of the Python track were, according to the goals of the original material [10],
to increase teachers’ knowledge of computer science concepts as well as to improve teachers’ con-
fidence in their ability to teach CS principles. The course was designed as a lightweight learning
experience [11], allowing busy teachers to participate when they had 20-60 minutes to spare. The
exercises were designed to be small and feature low cognitive loads, which was achieved by placing
relevant examples just before the exercises. The course did not focus on any individual subject
such as mathematics – on the contrary, the material was aimed at anyone interested in teaching
programming and CS.

3.2 Course implementation

The Code ABC MOOC was implemented using the A+ learning platform developed by Aalto
University (https://plus.cs.hut.fi/). Piazza was utilized as the discussion platform and
Rubyric for showcasing and peer reviewing returned artifacts [2]. Both the Python and the Racket
tracks grouped learning objects into entities; termed modules in Python, and topics in Racket. For
the sake of consistency, we will use ’topic’ for both in this paper. At the end of each topic, feedback
was collected with Grader, an on-line survey tool developed at Aalto University. Grader was also

https://plus.cs.hut.fi/


used to collect pre- and post-course surveys. The feedback was collected in order to further develop
the courses. Teachers attended the Code ABC MOOC tracks free of charge. Both tracks spanned
several months from February to May, 2016. No compensation was granted for course participants
except for 2-3 credit points from the Open University of Helsinki after course completion (2 cp for
Python (P), 3 cp for Racket (R)).

4 Study design and data collection

Our study is based on the Spring 2016 course implementation consisting of the second iteration of
the Racket track and the Finnish translation of version 2 of the Python material. We conducted a
pre-course survey to get background information about the participants (Python N=320, Racket
N=137).

Fig. 3. Age distribution of course participants in %
(P blue, R green)

Fig. 4. Subjects taught by the teachers (P blue, R
green; a subject omitted if P and R less than 5%)

The largest participant group represented
25 to 35 year-olds (Fig. 3) the majority of
whom were female (Python track 65%, Racket
track 78%). Math teachers formed the largest
groups (Fig. 4) in both tracks (Python track
48%, Racket track 88%). The next largest
groups were science and CS teachers. The ma-
jority of the participants represented the orig-
inal target group, i.e., K-9 teachers (Python
track 72%, Racket track 91%).

Based on the survey, most participants
had some previous experience in program-
ming (Python track 78%, Racket track 74%).
Quite a few had already used programming
in their teaching (Python track 48%, Racket
track 38%). In order of popularity, the lan-
guages previously used by the Python track
participants were Scratch 34%, Java 32%, Ba-
sic 28%, Pascal 25%, C++ 23%, JavaScript
21%, C 18%, Python 17%, Visual Basic 17%,
FORTRAN 12%, LOGO 11%, C# 6% and
Perl 5%. In Racket, the order of popularity
was Scratch, 34%, Java 26%, C++ 23%, Pas-
cal 22%, Basic 20%, Python 15%, Visual Basic
14%, JavaScript 10%, FORTRAN 9%, LOGO
8%, and C 7%. Other languages were only
mentioned by 5% of the participants or less.



4.1 Python and Racket tracks in Spring 2016

The Python track (content described in Table 1) was implemented as a localized translation of the
ebook Computer Science Principles: Big Ideas in Programming [10]. The course was organized in
five topics in accordance with the original material: introduction to computing, naming, repetition,
decision making, and data manipulation. Participants concluded the course by writing an essay on
the pedagogical aspects of programming.

The original material is arranged in a book format, and should thus be read in a sequential
manner. All the exercises are embedded in the ebook’s browser environment and they are automat-
ically assessed and graded. The material has been designed to follow an example-exercise format to
facilitate learning [10]. Multiple exercise types are used: multiple choice and fill-in-the-blanks test
conceptual understanding, Parson’s problems are used for teaching basic programming constructs,
and exercises consisting of modifying active code segments in the on-line programming environment
provide wider opportunities to try out the concepts learned [36]. In addition, the material utilizes
the code lens concept to demonstrate program execution [11].

As the original material did not specifically focus on how programming should be taught in
Finnish schools, the Code ABC MOOC had an additional course project, during which the teachers
designed a 2-hour lesson on any subject of their choice. The course projects were reviewed by
both peers and course staff. The lessons that the teachers had designed typically reflected the
subjects that they taught in schools, ranging from learning languages to applying CS in crafts. The
participants had to complete 85% of the automated exercises and the final essay in order to pass
the course.

Fig. 5. The Design Recipe [12] presented as a
staircase fostering a step-by-step design [37]

The Racket track was designed so that differ-
ent aspects of algorithmic thinking (abstraction,
logic, repetition) were introduced side by side,
starting from easier ideas and progressing to more
advanced topics [39]. Altogether, the course con-
tent comprised seven topics: introduction to pro-
gramming, control structures, functions and de-
sign recipe for functions, recursion, user interac-
tions, lists, and higher-order functions with Tur-
tle graphics (content described in Table 1). The
very core of the Code ABC Racket track material
is to reveal the nature of programming as a sort
of applied mathematics, and to show how mathematics can be taught through programming. Hence
most programming exercises are in a math context. The implementation of the Racket track was
inspired by the Systematic Program Design online course offered by edx.org [24] and the material
was constructed following the same procedure:

1. Short motivational video, in which the lecturer introduced the contents and the purpose of the
exercises. A few videos also responded to questions from the previous week.

2. Tutorial videos introduced the core concepts as screen captures. The lecturer demonstrated the
concepts to be learned with DrRacket. Its stepper tool was extensively employed in explaining
the evaluation rules. Concise lecture notes were available on-line as well, but the majority of
the course content was provided as videos. The course participants were expected to test the
programming examples themselves while watching the videos.

3. The Design Recipe was used to demonstrate the principles of function design, see Figure 5. By
using the recipe, a user can solve one detail at a time and proceed step-by-step until the whole



function is ready. The implicit intent is to solidify writing test cases before implementing the
actual function body, which complies with the test-driven development.

4. The exercises and their solutions were delivered as both DrRacket and WeScheme files and used
as self-tests of the course content presented in the video tutorials.

5. Hands-on exercises differed from the Systematic Program Design exercises as self-review for
code and multiple choice quizzes were not used. Also, the final course project was an essay
about the pedagogical aspects instead of a programming project as in Systematic Program
Design.

The programming exercises and their solutions were taken from the Coding for schools student’s
material [38] and the Coder’s handbook [37], which contains documentation for the graphics and
animation libraries (2htdp/image and 2htdp/universe), Beginning Student Language primitives,
and new libraries for turtle graphics (Racket Turtle) and user interactions (display-read).

Fig. 6. Number of participants/topic (P blue, R green)

Participation and course comple-
tion levels Fig. 6 shows the number
of participants per topic. By ”enrolled”
we mean participants who registered to
the MOOC, whereas ”started” refers to
participants who showed some activity in
the first topic (completed one exercise or
gave feedback). The numbers 1-7 refer
in Racket case to participants who com-
pleted the corresponding topic. The num-
bers 1-5 in Python case refer to partici-
pants who completed the feedback form
at the of each topic. The Racket track was started by fewer participants (N=171) than the newly
introduced Python track (N=399). Both courses lost participants during the course period, but in
the end more participants completed the Racket track (N=100, 58% of the started participants)
than the Python track (N=66, 17% of the started participants). If the percentages are calculated
per enrolled participants we get lower values for completion rates: Python 12% and Racket 31%.
Only 80% of the course work was required to pass in Racket track, which allowed skipping one
topic. This explains the lower numbers for topics 5, 6 or 7 in Fig. 6.

4.2 Research methods

The methods of the study are curriculum research and content analysis of the participants’ feedback.
Curriculum research examines the most central concepts of the curriculum, which in our context
correspond to CS concepts in the Code ABC MOOC. In deriving the main concepts, we counted
their frequency in content, that is, how often they occurred. We also asked participants what they
had learned after each topic, and their responses were similarly analyzed by counting the occurrence
frequencies. After extracting the most central CS concepts, the paradigm-oriented differences were
examined more thoroughly. The goal of the review was to check how good a match the respective
paradigms were for teaching math.



5 Results

5.1 What CS concepts and CT skills do the Python and Racket tracks introduce?

Fig. 7. To the left the relative word frequencies of the MOOC material (P blue, R green); to the right
teachers’ feedback to the question ”What did I learn?”

Figure 7 illustrates the topics taught vs. the topics learned for each course. The brighter-colored
bars to the left correspond with the relative word frequencies in the course content. The most
frequent word has a value of 100%, and other frequencies are compared to this maximum. The
lighter-colored bars to the right represent the course content based on participants’ responses to
the question ”What did I learn?”.

In the figure, the blue Python tornado lies above the green Racket tornado. From the shape of
the tornados we can conclude that the wider Python tornado covers a larger range of concepts with
about equal intensity. In contrast, the Racket course focused on functions and a handful of other
concepts. The relative similarity of the mirrored right side indicates that the participants in both
tracks seemed to learn the intended concepts.

The Python topics in the upper blue tornado indicate that the main concepts of the Python
track were control structures (selection and iteration). Boolean operators (and, or, not) were widely
exploited in the program examples, including conditions for iterations, such as for and while loops.
All selection and iteration-related topics appear in the list: boolean ops (1st), for (4th), loop (7th),
if (8th), index (11th), range (12th), iteration (14th), condition (17th), while (18th).

Naming and variables (2nd) were the second most central concepts, reflecting the stateful and
assignment-oriented nature of Python as an imperative language. We also group statements (10th)
here, as a superclass, including functions (9th), procedures (16th) and assignments. By comparing



functions and procedures the material highlighted the difference of functions returning a value and
procedures lacking return values.

The third topic group were applications, exemplified by turtle (3rd) and pixel-level image editing
(15th). Concept-wise, these applications do not bring anything new, but rather give students the
opportunity to put the pieces together while working on engaging problems. The last group consists
of data types and structures of string (5th) and list (6th); in the course, strings are named (used as
variables) and lists are iterated. So, list would fit in the iteration of the first group as well.

The participants echoed these emphasis areas, apart from the Turing machine and file areas,
which received more emphasis than they had in the text. The Turing machine, completeness and
halting problems, were used to explain the history and most prominent ideas of CS. Files were
introduced in the last topic (Data handling) simultaneously with related functions such as open
and close. Statements and index were not mentioned.

The analysis of the Racket course concepts is only partial for technical limitations; we were not
able to analyze video material since it was not transcribed into textual format. The analysis is based
on the lecture notes and textual material in the course platform, so the analysis might be missing
some concepts that were taught but are not showing in Fig 7.

In the green Racket tornado functions, expressions, conditions, lists, recursion and Turtles form
the top 6 concepts mentioned on both taught and learned sides. Testing, boolean operators and
library usage are mentioned next. The high frequency of the ’file’ concept on the lecture side is
explained by the fact that the term appeared frequently throughout the course instructions (”Save
your code in a file”, ”Send your file for peer-review”, etc) even though file handling was not explicitly
taught. The participants reflected, quite faithfully, the same concepts except higher-order functions
and type, which were missing from the list of concepts mentioned by the participants.

5.2 What topics did the teachers find challenging, inspiring, or suitable for math?

The participants evaluated each topic after completion using 5-point Likert-scales. The evaluation
was based on a set of criteria such as difficulty level, enthusiasm, and suitability for their teaching.
The following subsections present the results of these evaluations.

Fig. 8. Difficulty level/topic (P blue, R green)

Challenging topics The average
level of difficulty experienced for
each topic is given in Fig. 8 (1=not
challenging enough, 5=far too chal-
lenging). For both tracks, the diffi-
culty level increased during the first
four topics. After the fourth topic
in the Racket track, the difficulty
level decreased, whereas it contin-
ued to increase in the Python track.
Topic 4 in the Racket track (recur-
sion) was considered most challeng-
ing. Animations (topic 3) and lists
(topic 5) are the next most chal-
lenging. Starting from topic 5 the
challenge level in Racket starts



Table 1. Fundamental concepts and CT related aspects of the Python and Racket tracks with regard to
the underlying paradigm.

Python (imperative) Racket (functional)

1 Basic operations, computing.
What is a computer, program (Python vs. Java)?
Background, Turing machine (completeness).

Introduction to Racket programming,
global constants.
CT: problem decomposition using functions

2 Naming (including variables) applied to numbers, strings,
objects such as turtles and images, as well as functions
string: substrings, indexing.
Functions (f(x), g(x)) vs. procedures (p(x)).

Control structures: selection (if), truth values,
comparisons.
Function definition: purpose, signature.
Unit tests using check-expect

*)The k() is introduced in the topic 4.

3 Control structures: iteration (for and while).
Iteration based on list or counter condition, e.g.,
a list [1,2,3] iterated based on range:
for item in list: block
while (condition): block
Block: indentation-grouped commands
CT: becoming aware of iterative patterns.

The Design Recipe[12]: test-driven development.
Selection (cond): comparisons, predicates.
Logical ops for combinations: and, or, not.
Interactive applications: animations, mouse
events
CT-abstraction: Design Recipe.

4 Blocks by indentation.
Control structures, also nested, selection: if, elif, and else.
Decision making:
– condition (logical expression) in iteration or selection
– logical operators for combinations.

if condition: block
else: print("condition false")

CT abstraction: flowchart illustrating the control flow.

Reading user input with display-read (user
interaction causes side-effects);
the user input stored into a local variable.
Recursion, here factorial n! as an example:

5 Data handling: collections and files.
Collection operations:

1. indexing
2. string: split, find, substring
3. list: len, range, for-each.

Reading files: open, close, readlines.
Conventions: commenting.

Iterating lists recursively, producing new lists or
one accumulated value.
Image files.

6 Revision, extra material. Iterations cont.
Higher-order functions: map and apply, lists.

7 Finnish curriculum reflections in regard to CT/CS, and how to integrate computing with own teaching subject.



to decrease. Explanation might be that there were less exercises in topic 5 than in the previous topics.
Also topic 6 covered Turtle graphics programming, which is conceptually simpler than functions
and recursion.

The list below provides a few free-text feedback snippets describing challenging topics:

Python

– Repetition: a number of participants were not capable of con-
structing loops on their own

– Decision: the difficulty level rose sharply compared to the previous
modules; too much information and challenge

– Image processing: exercises felt hard and difficult to understand
for beginners, and did not foster learning repetition

– Data manipulation: A few exercises were too difficult, e.g. in
searching data from a file, one really needs to know what each
function returns

Racket

– The most challenging topics in-
cluded recursion, animation, lists,
and loops

– Recursion: content of topic 4 was
clearly too much. It should have
been split into two separate topics

– Lists: topic 5 also challenged a num-
ber of participants

Fig. 9. Level of enthusiasm/topic (P blue, R green)

Inspiring topics The average enthusi-
asm score for each topic is shown in Fig. 9
(1 = not inspiring at all, 5 = extremely in-
spiring). The highest levels of enthusiasm
were reported in Racket for Turtle graphics
(topic 6) and Image Programming (topic
1). This is in line with Toikkanen’s [52]
findings of the mesmerizing effect of Tur-
tle throughout all the Code ABC MOOC
tracks. Young students immediately start
drawing Logo-like figures after discovering
the pen.down function. In addition, ani-
mation (topic 3) inspired a good number
of participants.

For the Python track, the difficulty
level (Fig. 8) and the level of enthusiasm seem to go hand in hand, i.e. the more difficult the
material, the less enthusiasm experienced. In Racket, this trend is less visible. For example, ani-
mations (topic 3) are considered to be both challenging and inspiring at the same time. The lower
levels of enthusiasm for the Python material could also be due to the fact that the material was
originally meant for a different audience, whereas the Racket material was specifically designed for
in-service math teachers. For instance, the math teachers did not find Python’s image processing
particularly fit for their purposes. After the second module, the clamour for hands-on programming
in order to learn became louder; yet during the first module, the Parson’s problems were regarded
as both easy and motivating. Overall, the participants questioned the usefulness of some exercises
because they lacked ready-made student material that could be utilized in a school context, which is
probably also is reflected in the enthusiasm scores. Below we summarize the most inspiring aspects
of the courses in order. We also provide some excerpts from teachers’ responses (translated from
Finnish).



Python

– Turtle images were fun and inspiring. I was proud to be able
to modify the Turtle code so that it formed a house

– Image processing was inspiring as well. As an art teacher it
was easier to understand (than math)

– Data Manipulation: Working with the Small Particles Data
example (looking for values in the list, calculating averages),
and the possibility to investigate real-life problems were ben-
eficial

Racket

– Image programming: drawing and de-
signing own images. Possibility to see
code, games and images drawn by
other participants gave new ideas for
teaching, i.e., sharing artifacts pro-
moted creativity and increased enthu-
siasm

Fig. 10. Suitability of the course topics (P blue, R green)

Suitable topics Fig. 10 represents the
average suitability scores for each course
topic (1 = not suitable at all, 5 = ex-
tremely suitable). The highest suitability
score was given to Racket’s last topic,
which includes material about CS as a
new addition to the curriculum, CT, and
pedagogical approaches to teaching the
new content. In addition, the participants
wrote an essay on ideas stimulated dur-
ing the course and/or a lesson plan for
integrating programming into their teach-
ing. The next most suitable topics were
Racket’s Image Programming (topic 1)
and Turtle Graphics (topic 6). Topic 5
scored high as well, featuring a quiz that utilized recursive function and lists in implementation.
The least suitable was topic 4, which employed recursion and user interaction.

Python scored notably lower in suitability. As mentioned, the material was not originally de-
signed for math teachers, although these made up half of the participants (48 %). Hence, the generic
material did not meet the teachers’ needs. Surprisingly in this regard, the Data Manipulation topic
(number 5) averaged as the least suitable topic, even though it included real-life applications from,
for instance, the statistics domain. Nevertheless, some teachers noted its value:

Python

– Turtle graphics could be used to teach geometry (focuses on
angles and side lengths)

– Repetition, Decisions: using numbers, strings, turtles and im-
ages consistently within all topics was perceived positively

– Data manipulation (Statistics):
• In data analysis, real world problems made me understand

what programming can be used for (environmental science
and geography, analyzing air pollution in USA) and its use-
fulness in analyzing big amounts of data

• Easy access to online data made me think I could use this
in my teaching

• Using statistics in mathematics could be useful (if I were a
math teacher)

Racket

– Possibility to utilize exercises in
the school context

– Functions (Algebra): content was
designed specifically for math
teachers (including the exercises
and utilizing the functional
paradigm), thus the material and
tools were useful for teaching



5.3 Which paradigms do the tracks align with and how do they support math?

Neither of the Code ABC tracks pronounced explicit paradigm considerations, nor were they present
when the participants evaluated the topics. More experienced programmers compared languages –
not paradigms – focusing mainly on the learning threshold (the lower the better) and differences in
syntax, e.g. confusion with the excessive amount of parentheses and the prefix notation of Racket.
However, several topics inherently implied paradigm-related issues. In the Python track, the Naming
topic introduced data mutability and immutability, variable assignments, and in accordance with
variables the most common misconceptions as well. The Python material highlighted the difference
between functions and procedures, and introduced code division in the form of reusable modules and
libraries. Python contains a class structure and an option for object-orientation but, in this context,
Python was classified as imperative even though a few objects, such as turtles, were extensively
utilized throughout the MOOC (in effect requiring the introduction of dot notation).

Similarly, the Racket material does not explicitly emphasize the underlying paradigm and
hardly mentions the term ‘functional’ at all. However, the built-in principles of Felleisen’s ’How
to design a program’ [12] recommend avoiding imperative features and re-assignment of global
variables. These principles aim at a purely functional programming style. However, the enhance-
ment of display-read indicates the need for pointing out side-effects contradicting this purity:
display-read interacts with a user. With regard to the variables in Racket, it is possible to
define constants and let allows local variables to be assigned. These can still not be re-assigned
without the set! command, forbidden by functional paradigm purists.

Having no re-assignable variables – thus no loop counters – has its implications for iterations as
well. Although looping lists with the command of foreach is still possible, missing a re-assignable
counter leads towards recursion and higher-order functions, where recursion calls ”fake” mutability
with expressions as function arguments and by returning partial results. Higher-order functions,
such as map, apply or filter, creates new lists or accumulates values, based on given lists
and functions. Later, these functional list-handling mechanisms were introduced in the Python
language as well, along with lambda calculus and list comprehensions. In Python, however, there
are ”imperative” ways of looping (such as for and while), leaving a minimal need for recursion
compared to Racket. In both tracks, the paradigm-influenced alternatives for implementing iteration
and selection structures were the core content of the whole course.

As the paradigms reside implicitly in the material, it is no surprise that the teachers do not pay
much attention to them. As with learning to drive a car, all attention is first drawn to the main
aspects of driving – not to comparing the features of various car models. Nevertheless, teachers with
previous programming experience compared the features of the course language to their previously
learned languages. For instance, teachers in the Python track stated that I learned that Python is
simpler than Java (lists and their handling), I learned for and foreach loops and list modifica-
tions, and In my experience, Python requires less lines of code. Another nice thing was that when
defining variables you don’t need to think as much as in Java.

In Racket, on the other hand, the teachers’ first impressions in particular were as follows: I
learned Racket’s syntax. Writing mathematical expressions is cumbersome compared to Python,
Java, Pascal, Ruby, and Visual Basic and If you consider using Racket at school, it is relatively
complex compared to, for instance, Java. On a more positive note, Racket teachers also noted some
benefits: Racket is really engaging! The first exercise was well selected: it is nice to immediately
achieve some colorful shapes instead of the traditional “Hello World”. I did not know that program-
ming can be this much fun!



Algebra lies at the core in terms of math focus. It includes fundamentals such as functions, vari-
ables, statements and expressions, which are fundamental not only in math, but also in CS. In
CS, functions and variables all encompass implementation mechanisms. However, the differences
between concepts in these two disciplines may cause misconceptions and programming errors that
are difficult to detect. In Table 1, module 2 compares the differences between functions in both
tracks. Compared with Racket, Python allows remarkable freedom of implementation, which be-
comes particularly visible with functions.

In math, the function definition dictates at least one function parameter as input, and one and
only one as output. It is possible to write a function without parameters in both languages, such
as k() (the rightmost figure in the 2nd row), which is not valid in math. In Python, a procedure
p(x) may return no value explicitly (in which case Python implicitly returns None), which is not
acceptable in math, if x is in domain. Neither may a function return multiple values with the same
input, as does the function g(x), which returns either y1 or y2 based on the state.

What is wrong with the f(x) on the Python side then? On the face of it, nothing: it gets at least
one input as a parameter (in this case x ) and returns only one output (y), as specified. However,
the function body changes the global state of the outer program by re-assigning the global variable
stateChanged, i.e., it causes a side-effect. Functions causing side-effects are not allowed in math.
The idea of functional purity in the Racket track prevents side-effects, and in Python, no side-effects
arise if the programmer is aware of the pitfalls and is capable of avoiding them. In accordance with
a pure functional paradigm, immutable data and having no side-effects makes, for instance, parallel
execution possible: different threads handling the same data can rely on the validity of the data.

In Racket, variables are essentially constants. In math, variables are also constants in the context
of evaluating the value of an expression. The variables do not change during the evaluation, but
between evaluations. For example, in the case of function y = f(x), x changes when the position
moves on the x-axis. Thus, in math, the term variable can be deceptive, because variable does not
actually vary. Instead, the terms a symbol or a representative might give a more authentic view of
the true meaning of the concept.

In the imperative paradigm, the situation with variables becomes even more obscure with the
counter-type behavior. As an example, see the fourth row in Table 1, where the while loop exploits
the value of i to decide when to stop. In the loop body, i is incremented with the assignment of
i = i+ 1. In math, this statement makes no sense. In CS, the statement is split by the equal
sign to enable the left and the right value to be referred to separately. The left value opens a
gaping rabbit hole to the underlying world of hardware specifics and constraints that are normally
carefully guarded. In essence, it represents the memory address to which the right side – still a
normal expression – is assigned.

Re-assignment is a dangerous operation and provides an endless source of error; for instance,
if types are mixed in assignment. Thus, typing relates closely to variables. In static typing, a type
must be given when a variable is defined and it is checked during the compilation. In dynamic
typing, variables need not be assigned a specific type, but it may change assignment-by-assignment
in runtime: now an integer, after the next assignment maybe a string. The operations allowed for
integers differ remarkably from those allowed for strings. Strong typing prevents operations on
invalid types [50], while prevention leads to compile and runtime errors when these are detected.
Both Racket and Python are dynamically and strongly typed languages.

In Arithmetics, types of integer and decimal numbers provide more in-depth affordances. Typing
relates to number sets in math, such as integers, and rational and irrational numbers. In math,



gradual progression from simple to more complex operations results in changes in the respective
number sets as well. With addition and multiplication, a student remains in the comfort zone of
integers. With subtraction, the student may move into negative numbers. A substantial paradigm
shift happens when division is introduced, which along with fractions transfers a student into the
zone of rational numbers, represented as decimals in code.

The ultimate challenge at elementary level is irrational numbers, which are met when a ratio
is never-ending and non-repeating. Irrational numbers result e.g. from square root operations, and
surds, such as

√
2, are never-ending. In a computer context, the limits of the physical memory

allocated to each variable complicate the handling of such irrationalities. Historically in CS, selecting
the right type has been important due to the constraints of memory size: a number has to be cut
when the allocated bytes are used up resulting in the cut part being lost. The type implies the
number of bytes in use, which influences the preciseness of a number.

Preciseness is also a consideration in many scientific calculations, for instance when rounding
and defining significant numbers. In math,

√
2 or trigonometric expressions such as sin(60) are

exact. However, when represented in decimal format they are not, irrespective of the length of
the type of float. All in all, in Arithmetics, when calculating basic and advanced operations, a
computer can be compared to a calculator, with which students practice new arithmetic functions
such as abs, sqrt, or exp, and drill the right order of calculations.

In the Python material, math equations, such as speed-distance-time calculations, exemplify the
use of a newly introduced mathematical functions. The Racket material is more geometry-oriented,
placing greater emphasis on calculating areas, angles, and perimeters. Even if extensively used in
examples, Geometry is not central to understanding the concepts of CS. Our study, however, notes
its value as an area providing visually appealing applications.

Logic and logical operations (and, or, not) combine conditions into more complex conditions.
Conditions – or logical expressions – fall into the area of logic. However, in the current math
syllabus, logic does not have a prominent position. As logical expressions prompt control structures,
the natural progression would be to learn logic first. Consequently, control structures and the use
of conditions might fit within both Logic and Arithmetics.

Selections, or decisions as the Python track calls them, correspond to inequalities in math: 1D
inequalities, such as x > 0, are represented on a number line. Whether the line is open-ended or
close-ended depends on the comparison operator: < and > result in open-ended lines, while ≤ and
≥ result in close-ended ones. In 2D inequalities, such as y > x, the line divides the coordinate plane
into two halves, one of which is shaded. An open-ended condition is represented as a dashed line,
a closed condition as a solid one. Consequently, inequalities can be expanded to 3D as well.

Conditions can also be combined. When multiple inequalities hold simultaneously, the number-
line is cut into segments, and lines define geometric shapes in a coordinate plane, most often
triangles. In 3D, conditions may result in solid geometry shapes, such as prisms. In addition, condi-
tions apply to piece-wise defined functions, which, for instance, have discontinuity points or behave
differently depending on the range of x.

Iterations or recursive structures are relatively rare in elementary math. The accumulator pat-
tern introduced in both tracks can be used in Statistics, e.g., when calculating mean values, or when
looking for min or max values. Later, Σ and

∏
operations are applied iteratively to the defined

number domain and these new notations abbreviate e.g. the previous calculation of the mean. In
Pre-Algebra, recognizing growing patterns prepares for sequences, abstracted later as functions in
Algebra [57,56]. It is axiomatic that sequences and their sums and series are iterative. In inductive



problem solving, a student determines the nth term in a sequence. Instead of the iterative for
and while loops favoured by Python, Racket favours recursions. In contrast to induction, which
starts from the first and aims at finding the nth term, recursion starts from the nth term and aims
at reaching the first. The recursive calculation of factorial (n!) illustrates the product type itera-
tion; see topic 4 in Table 1. Basic operations of Probability, combinations and permutations, make
extensive use of factorials.

6 CONCLUSIONS

We have studied two approaches to teaching programming to in-service elementary school teachers
in Finland. The majority of the participating teachers were mathematics teachers, which is under-
standable, given that programming has been added to the math syllabus in the new curriculum.
Below we summarize our findings.

What CS concepts and CT skills do these Code ABC tracks introduce? Both tracks
covered a substantial amount of basic programming concepts in their respective programming lan-
guages, such as subprograms (functions or procedures), conditional structures, boolean logic, data
types, and lists. The Python track provided a generic synopsis of programming basics. As a primer,
Python provided a history and some general knowledge about computers and CS. After this his-
tory review, the track focused on imperative programming fundamentals, such as assignment and
for/while loops. Each new concept was demonstrated using numbers, strings, images, and Turtles.
The Racket track, on the other hand, presented programming as yet another way of learning math
rather than as a generic tool. Programming appeared as a new means of problem solving by exploit-
ing functions. In addition to functions, control structures of selection and iteration were introduced.
Iterations consisted of recursion and higher-order functions that manipulated lists.

CT links math and CS. When solving a problem, dividing the problem into smaller subproblems
is essential (decomposition). In the context of programming, subproblems are subprograms, i.e.
functions. Functions were discussed substantially more in Racket than in Python. As a recipe for
a well-planned function, the Racket track introduced Design Recipe by Felleisen [12]. This Recipe
promotes test-driven development: unit tests are implemented before a function body. Both courses
emphasized the importance of using descriptive names for functions and variables, and the need for
clear comments in order to improve readability; these coding conventions may be considered to be
part of CT as well.

What topics did the teachers find challenging, inspiring, or suitable for math?

– Challenging:
• The most challenging topics in the Python track were data and image processing, evidently

due to the extensive exploitation of Repetition and Decision structures. Furthermore, the
difficulty level suddenly rose when moving from Repetition to Decision.

• In Racket, the most challenging topics included recursion (loops), animation, and lists, by
far the most challenging of which was recursion.

• The Racket track required a significant amount of effort because of the hands-on exercises
and complex topics. Frequently, the exercises took more time than expected. This was
experienced as a challenge by the participants, who had to take care of their normal work
duties during the course.



– Inspiring (enthusiasm in the survey):

• Turtle graphics were considered inspiring in both tracks. In Python, Turtle moves exempli-
fied both Repetition and Decision topics, while in Racket, Turtle was linked with higher-
order functions, which also rank high in the list of most challenging CS topics

• In Python, the participants were interested in learning more about the history of CS, and
the prominent and influential persons behind it. The Image Processing exercises divided
opinion, some considered it interesting while others found it difficult, tedious, and a rather
useless topic for the target group, (math teachers). Data processing was also received with
mixed feelings. Some appreciated the real-life applications but a number of participants
regarded it as too difficult.

• The Racket participants valued highly creative and playful open-ended exercises allowing
them to create their own ’art’, even though this was not considered to be ”traditional math”
or central to conceptual learning. Sharing artifacts with others was one significant factor in
creating enthusiasm and promoting creativity.

– Suitable for teaching:

• In Python, suitability ranked significantly lower than in Racket. Even when the Racket
track was challenging, it scored higher. The difference in suitability scores indicates that
the course content should be tailored to better suit the target group, in this case math (and
science) teachers.

• In the Racket track, the participants regarded the pedagogical essay, image programming,
Turtle graphics, animation and quiz as the most suitable and interesting.

• Suitability and enthusiasm seem to correlate.

Which paradigms do the tracks align with and how do they support math? Conceptually,
the functional paradigm is closer to math, in particular in its representation of functions and
variables. The imperative paradigm comprises more elements that are foreign to pure math. As
imperative, Python might call for less effort in its approach, but it contains built-in hazards that
may cause misconceptions and programming errors. For instance, re-assigning a global variable
changes the state and function outcome, thus conflicting with the mathematical definition of a
function. In these paradigms, the meaning and importance of a variable varies as well. A variable’s
visibility is defined by its scope (local/global). In functional Racket, global variables are constant
and re-assigning local variables is not advisable either. In Python, global variables can be re-
assigned anywhere and types will change accordingly, which is indefensible from the viewpoint of
math. Without having become used to re-assignable variables and the possibility of comparing, a
novice programmer will learn the functional programming smoother and regard it more suitable and
inspiring. In contrast, an experienced imperative programmer lacks his normal means of exploiting
variables, which causes frustration.

The Finnish curriculum integrates CS into math without allocating more time to teach it.
This necessitates making the CS syllabus as close as possible to math: no time can be wasted on
learning irrelevancies or concepts causing unnecessary confusion. The curriculum, however, should
determine the targeted CS concepts more precisely. Languages should be categorized based on those
concepts and their math-suitability in order to make justified tool selections. Systematic research
and various learning experiments will enable determination of the concepts, computational thinking
skills, and teaching practices best suited to closing the digital skills gap, as stipulated by the Finnish
Curriculum 2014.
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