

FPGA-Powered 4K120p HEVC Intra Encoder

Panu Sjövall, Vili Viitamäki, Jarno Vanne, Timo D. Hämäläinen, Ari Kulmala*

Laboratory of Pervasive Computing, Tampere University of Technology, Tampere, Finland

*Datacenter Infrastructure Modules, Nokia, Tampere, Finland

Abstract— This paper presents a hardware-accelerated

Kvazaar HEVC intra encoder for 4K real-time video coding at up

to 120 fps. The encoder is implemented on a Nokia AirFrame

Cloud Server featuring a 2.4 GHz dual 14-core Intel Xeon

processor and two Arria 10 PCI Express FPGA accelerator cards.

The presented encoder is a speed-optimized version of our 1st

generation 4K40p HEVC intra encoder. The proposed speedup

techniques include 1) Increasing the number of FPGA cards to

two; 2) Remapping the simplest multiplications from DSP blocks

to logic for better FPGA utilization; 3) Making task scheduling

more flexible to improve utilization rate of hardware accelerators;

and 4) Increasing the pipeline depth and duplicating time-sensitive

resources in the hardware accelerator. As a result, up to three

hardware accelerator instances can be accommodated in a single

Arria 10 so the encoder is able to make use of six accelerators.

According to our experiments, the proposed encoder obtains

threefold speedup over our 1st generation encoder. Our proposal

is also shown to outperform all other encountered FPGA and

ASIC implementations.

Keywords— High Efficiency Video Coding (HEVC); Ultra High

Definition Television (UHDTV); Kvazaar Intra coding; field-

programmable gate array (FPGA); real-time

I. INTRODUCTION

Live Internet video is forecast to grow 15-fold in five years,
accounting for 13% of all Internet video traffic by 2021 [1]. This
growth comes from a plurality of new end users and multimedia
applications but also from higher spatial and temporal video
resolutions that are rapidly gaining ground. For example, 4K
Ultra High Definition Television (UHDTV) format features 3840
× 2160 pixels (2160p) and frame rates up to 120 frames per
second (fps) [2].

Despite the fast progress of transmission and storage
technologies, the holistic growth of video volume makes more
efficient video coding inevitable. The latest international video
coding standard, High Efficiency Video Coding (HEVC/H.265)
[3], [4], is developed to address these needs. This work deals
with all-intra (AI) coding configuration [5] of HEVC Main
Profile. It is shown to improve intra coding efficiency by 23%
over that of the preceding standard AVC/H.264 [6] for the same
objective quality, but at a cost of over threefold increase in
coding complexity [7]. Therefore, implementing a real-time
HEVC intra encoder for UHDTV format with a reasonable
coding efficiency, implementation cost, and power budget
requires efficient encoder optimizations and powerful
computing platforms.

Multithreading [8] and single instruction multiple data
(SIMD) optimizations [9] are primary design techniques for

complexity reduction in software (SW) HEVC encoders. Further
speedup and lower power dissipation is typically sought by
offloading the compute-intensive coding tools to hardware
(HW) accelerators or implementing the entire HEVC encoder on
HW [10]-[13].

Our recent work [14] shows that a pure SW implementation
of HEVC intra encoder is able to attain real-time coding speed
for 4K30p format and formats up to 4K60p can be supported by
using several software encoder instances in parallel [15]. The
respective speeds are also reported for HW accelerated intra
encoders [11], [16] and high-end frame rates of 4K UHDTV
format are only reached with several HW encoder instances [13].

The main motivation of this work was to implement a real-
time HEVC intra encoder for up to 4K120p format. The
presented solution is a direct continuation to our previous work
[16] where Kvazaar open-source HEVC encoder [17] is
accelerated to encode 4K video at 40 fps on Nokia AirFrame
Cloud Server [18]. The adopted server setup included a 2.4 GHz
dual 14-core Xeon processor and an Arria 10 PCI Express
(PCIe) FPGA accelerator card. Servers like AirFrame have
gained a lot of traction in the recent years due to the advent of
cloud gaming, telco clouds, and edge computation.

In this work, the same AirFrame server is equipped with two
Arria 10 PCIe cards. In addition, up to three HW accelerator
instances can be accommodated on a single FPGA by remapping
the simplest multiplications to logic blocks and only allocating
DSP blocks to the most compute-intensive multiplications.
Individual HW accelerator instances are also boosted by using a
higher pipeline depth and duplicated resources, whereas a
proposed task scheduling improves the utilization rate of the
instances. Together, the proposed techniques result in around
threefold encoding speed over that of [16].

The original HW accelerator is implemented in [16] with
Catapult C [19] high-level synthesis (HLS) [20] tool that enables
automatic hardware description language generation from C
source code of Kvazaar. The same approach is applied in this
work since HLS offers much shorter design and verification
times than manual design approaches. This is particularly true in
resource remapping and pipeline modifications.

The remainder of this paper is structured as follows. Section
2 describes the applied platform and the selected SW/HW
partitioning of Kvazaar on it. Section 3 presents the pipeline
optimizations made for the HW accelerator instances. Section 4
introduces the proposed task-scheduling scheme among the
accelerator instances. In Section 5, 4K performance of the
proposed encoder is benchmarked against our earlier solution
and other prior-art. Section 6 concludes the paper.

II. OVERVIEW OF THE PROPOSED SYSTEM

Fig. 1 shows the block diagram of the underlying SW/HW
platform. The backbone of the system is a Nokia AirFrame
Cloud server [18] with two Xeon E5-2680 v4 processors and 256
GB of memory. Two Arria 10 FPGA cards are connected to the
CPU via a PCIe bus. The operating system is CentOS 6.8.

A. Kvazaar Partitioning

On Xeon processors, Kvazaar [17] is run in the user space
and the Linux driver in the kernel space. The Linux driver is used
for the CPU-PCIe-FPGA interfacing. A single Arria 10 FPGA
has enough resources for three Intra Coding accelerator
instances including the needed peripherals and on-chip
memories. The FPGA interface is made of the Avalon-MM Hard
IP for PCIe, separate Direct Memory Access (DMA) blocks for
reading and writing, and the on-chip memories of the Intra
Coding accelerator. A more detailed functionality of the
platform is described in our previous work [16].

Kvazaar implements a basic HEVC block partitioning in
which the pictures are partitioned into coding tree units (CTUs)
of size 64 × 64. CTUs can be optionally divided into four equal-
sized coding units (CUs) and the division can be recursively
continued until the maximum hierarchical depth of the HEVC
quadtree is reached. The proposed encoder supports Kvazaar
ultrafast preset [17] with extended coding tree depth so that CUs
of size 32 × 32, 16 × 16, and 8 × 8 are supported. It also
implements Wavefront Parallel Processing (WPP) and picture-
level parallel processing for parallel CTU coding. These
schemes can be enabled concurrently.

The most computationally intensive Kvazaar coding tools
including intra prediction (IP), discrete cosine transform
(DCT), quantization (Q), inverse Q (IQ), inverse DCT (IDCT),
and reconstruction (Rec) are implemented with HLS and
synthesized to FPGA. Context-adaptive binary arithmetic
coding (CABAC) and other control-intensive coding tools are
executed on CPU. In addition, the CPU takes care of raw input
video reading and outputting the encoded bit stream. Mapping
the major share of CTU coding to FPGA decreases the power
dissipation through lower CPU usage and accelerates the whole
encoding process.

B. System Configuration

In this work, the FPGA driver is upgraded to support
practically any number of FPGAs, but the FPGA count is here
limited to two by the available PCIe slots. Therefore, the system
can contain six accelerator instances (Acc0 - Acc5) at maximum.

The proposed system is also configurable at run time to the
chosen number of Kvazaar instances without any performance
compromises. This way, the user can choose whether to encode
a single video with the maximum speed or several videos in
parallel. Different Kvazaar instances can also encode input
videos with different encoding parameters and resolutions at the
same time. This is made possible by processing each CTU
individually in the Intra Coding accelerators.

III. PROPOSED HARDWARE PIPELINE

Fig. 1 illustrates the processing flow of CTUs in Intra Coding
accelerators. Each accelerator is able to take care of 16 CTUs

Fig. 1. Block diagram of the proposed encoder and a processing flow of CTUs in Intra Coding accelerators.

(0..15) simultaneously, so up to 96 CTUs can be under way in
parallel with six accelerators. An eight-stage pipeline of a single
accelerator can process eight blocks of separate CTUs at a time
and the remaining eight CTUs are buffered for faster access. The
processed blocks move sequentially through HEVC encoding
stages. Altogether, each CTU can contain 4 + 16 + 64 = 84
separate CUs at maximum when CUs of size 32×32, 16×16, and
8×8 are supported.

A. Intra Prediction Pipelining

In our 1st generation encoder, IP and the creation of

reference pixels were done in the same pipeline stage.

Generating the reference pixels from the border pixels caused

an overhead, which almost doubled the delay of the IP stage

with 8×8 blocks. Therefore, the reference pixel generation was

moved from the IP stage to the control stage. Now, the reference
pixels of successive CUs from different CTUs are generated

and buffered in advance. This way, the control stage is not

blocked by the IP and the IP has an adequate small delay

between predictions.

B. DCT / IDCT Pipelining

Our 1st generation encoder used only a single transform unit
for the DCT and another unit for the IDCT, i.e., both algorithms
ran the transform twice with the same transform unit. First from
the input and second from the transpose memory. Although this
design had sufficient speed for smaller number of parallel CTUs
in a single Intra Coding accelerator, it caused a bottleneck when
aiming higher CTU parallelism.

In the proposed work, there are two transform units for both

the DCT and IDCT. In addition, the memory size of the

transpose memories was doubled, allowing all transform units

to run at the same time and enabling successive block

pipelining. This modification practically doubled the

processing speed of DCT [21] and IDCT [22] and increased the

overall hardware pipeline by two stages. Although this

modification increased the area of the whole Intra Coding
accelerator, the speed improvement was more significant.

C. Remapping Multiplications from DSP to Logic

Our prior encoder implementations relied heavily on DSPs,
mostly because they were implemented on FPGAs having half
the logic area but still ~75% of the DSPs of Arria 10. Hence,

adding a third Intra Coding accelerator would have caused Arria
10 to run out of DSPs.

Even though the DCT and IDCT transform units were
doubled in this work, we were able to fit a third Intra Coding
accelerator in a single Arria 10 FPGA. This was achieved by
replacing all DSPs in IP and DST transform as well as constant
multiplications in DCT and IDCT with logic elements. More
economic utilization of DSPs and other HLS code optimizations
allowed for better routing of our design on FPGA and made it
possible to increase the maximum frequency from 125 MHz to
175 MHz.

D. Other Optimizations

In our 1st generation encoder, a single Intra Coding
accelerator supported eight parallel CTUs and the CPU was used
to encode CTUs whenever the accelerators had no space for a
new CTU. In this work, the additional CPU encoding was not
used anymore since the proposed improvements have made the
accelerator much faster at processing a CTU than the CPU. In
addition, the increase of parallel CTUs supported on a single
Intra Coding accelerator from eight to 16, caused encoding even
a single CTU with the CPU to bottleneck the system. Waiting
for available processing time from the accelerators and waiting
for the result is faster than encoding a CTU with SW.

Performing the CTU encoding solely on the FPGA reduced
the overall CPU usage and the CPU is now mostly waiting for
results from the FPGA. This allows the CPU to perform other
processing, even while encoding HEVC 4K120p. Further
improving the CPU utilization and maximizing thread usage, the
DMAs in the FPGA now generate interrupts when ready.
Previously, the kernel driver polled the DMAs, but the increase
in FPGAs and accelerators caused the locking mechanism in the
kernel to use a major part of the processing time of a thread. With
interrupts and semaphores, the thread can now sleep while
waiting for the DMA completion and yield processing time for
other threads.

IV. TASK SCHEDULING AND RESOURCE MANAGEMENT

Scheduling of intra coding tasks is also improved to make
the most of Kvazaar SW instances on a CPU and Intra Coding
accelerators on FPGA.

A. CTU Load Balansing

Fig. 2 shows the process of scheduling processing time for
different Kvaazar instances and choosing the best available Intra

Fig. 3. Block scheduling in Intra Coding accelerator.

Fig. 2. CTU load balancing between Kvazaar instances and accelerators.

Coding accelerator for a new CTU. The Linux driver is
accessible by all Kvazaar instances, which request processing
time on the FPGA from the driver. If there are no available
resources, Kvazaar instances need to wait. Waiting instances are
served in request order. The driver assigns new CTUs to
different Intra Coding accelerators according to the CTU id
provided by the driver. The CTU id is a running number limited
by available resources, i.e., the number of Intra Coding
accelerators and the number of CTUs per accelerator.

B. Block Scheduling in Intra Coding Accelerator

Fig. 3 shows how the Intra Coding accelerator determines
the next block to the pipeline. For each CTU, a set of instructions
are generated to signal the scheduler the encoding order of the
blocks in a CTU. The next block of a CTU is valid for processing
if the previous block of the same CTU is done. The scheduler
assigns priorities to the valid blocks and chooses the one with
the highest priority. The priority is higher when the next block
in line is of equal size or larger than the previous one. This policy
aims to keep the pipeline utilization high and it prevents larger
blocks from bottlenecking smaller ones.

V. CODING SPEED ANALYSIS

Table I tabulates the obtained encoding speeds with different
number of Intra Coding accelerators using the 8-bit 4:2:0
4K120p test video sequences from [23]. The average results
show that our implementation is able to reach 4K30p with two
accelerators, 4K60p with three accelerators, and 4K120p with
six accelerators. The maximum speed of the accelerated system
is 6.8 times as high as that of the pure software version. Coarsely
speaking, doubling the number of accelerators doubles the
encoding speed.

Our 1st generation encoder was able to encode 4K30p with
a single Intra Coding accelerator but it was limited to use CU
sizes of 8×8 and 16×16. In addition, it utilized the remaining
CPU power for CTU encoding. Disabling 32×32 blocks in the

current version would also increase its 4K coding speed to 30
fps with a single accelerator even without utilizing the CPU.
With medium preset [17] and rate-distortion-optimized
quantization (RDOQ) disabled, our proposal is able to encode
4K60p with six Intra Coding accelerators.

Table II tabulates the performance figures of the proposed
and existing HEVC intra encoders on ASIC and FPGA. To make
comparison more straightforward, our proposal is configured to
use only a single FPGA with which 4K format can be encoded
up to 60 fps (Table I). Our 1st generation encoder was already
able to outperform related FPGA implementations and compete
equally with the existing ASIC implementations. The proposed
2nd generation encoder even beats these ASIC approaches.

VI. CONCLUSION

This paper presented our 2nd generation HEVC encoder for
real-time 4K intra coding. The proposed encoder was prototyped
on Nokia AirFrame Cloud Server composed of a dual 14-core
Intel Xeon processor and two Arria 10 FPGAs. On AirFrame,
our solution is able to encode 4K video at 120 fps or four 4K
videos at 30 fps.

The implemented HW acceleration speeds up the encoder by
6.8 times over the pure SW implementation and the obtained
performance is three times as high as that of our 1st generation
encoder. The speedup was achieved by increasing the number of
FPGAs to two, improving FPGA utilization by allocating the
simplest multiplications to logic, increasing the efficiency of
pipeline in Intra Coding accelerator, and improving the
utilization rate of the accelerators by better task scheduling.

The Intra Coding accelerators of the encoder are entirely
implemented with HLS tools from C source code of Kvazaar
HEVC intra encoder. HLS is generally known to reduce design
and verification times over traditional design flows. This work
further shows that the shorter development time does not come
at a cost of coding performance.

ACKNOWLEDGMENT

This work was supported in part by Nokia, the European
Celtic-Plus Project 4KREPROSYS, and the Academy of
Finland (decision no. 301820).

TABLE I. CODING SPEED OF 4K VIDEO WITH DIFFERENT NUMBER OF INTRA CODING ACCELERATORS

TABLE II. COMPARISON OF THE PROPOSED AND RELATED INTRA ENCODERS

Software

No acceleration 1 accelerator 2 accelerators 3 accelerators 2 accelerators 4 accelerators 6 accelerator

Speed (fps) Speed (fps) Speed (fps) Speed (fps) Speed (fps) Speed (fps) Speed (fps)

Beauty 17 25 49 64 50 96 125

Bosphorus 20 27 53 65 54 102 127

HoneyBee 17 26 50 64 51 98 124

Jockey 21 29 54 65 58 104 126

ReadySetGo 19 27 52 64 53 99 123

ShakeNDry 16 22 44 63 45 85 115

YachtRide 18 26 51 64 51 98 123

Average 18 26 50 64 52 97 123

Sequence (2160p)

Single FPGA Two FPGAs

Architecture Technology Frequency Resolution Cells DSPs

[10] ASIC 357 MHz 1080@44fps 2296k gates -

[11] ASIC 200/400 MHz 2160@30fps 1086k gates -

[11] Arria II 100/200 MHz 1080@60fps 93k ALUTs 481

[12] Zyng ZC706 140 MHz 1080@30fps 84k LUTs 34

[13] Custom 3x FPGA N.A. 1080@60fps N.A. -

[16] CPU + Arria 10 125 MHz 2160@40fps 308k ALUTs 862

Proposed CPU + Arria 10 175 MHz 2160@60fps 552k ALUTs 1227

REFERENCES

[1] Cisco, Cisco Visual Networking Index: Forecast and Methodology, 2016-

2021, Jun. 2017.

[2] Parameter values for ultra-high definition television systems for
production and international programme exchange, document ITU-R

Rec. BT.2020-2, ITU-R, Oct 2015.

[3] High Efficiency Video Coding, document ITU-T Rec. H.265 and ISO/IEC

23008-2 (HEVC), ITU-T and ISO/IEC, Apr. 2013.

[4] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the

High Efficiency Video Coding (HEVC) standard,” IEEE Trans. Circuits

Syst. Video Technol., vol. 22, no. 12, Dec. 2012, pp. 1649-1668.

[5] J. Lainema, F. Bossen, W. J. Han, J. Min, and K. Ugur, “Intra coding of

the HEVC standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 22,

no. 12, Dec. 2012, pp. 1792-1801.

[6] Advanced Video Coding for Generic Audiovisual Services, document

ITU-T Rec. H.264 and ISO/IEC 14496-10 (AVC), ITU-T and ISO/IEC,

Mar. 2009.

[7] J. Vanne, M. Viitanen, T. D. Hämäläinen, and A. Hallapuro,
“Comparative rate-distortion-complexity analysis of HEVC and AVC

video codecs,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12,

Dec. 2012, pp. 1885-1898.

[8] C. C. Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare, F. Henry, S. Pateux,

and T. Schierl, “Parallel scalability and efficiency of HEVC
parallelization approaches,” IEEE Trans. Circuits Syst. Video Technol.,

vol. 22, no. 12, Dec. 2012, pp. 1827-1838.

[9] Y. J. Ahn, T. J. Hwang, D. G. Sim, and W. J. Han, “Implementation of
fast HEVC encoder based on SIMD and data-level parallelism,”

EURASIP J. Image Video Process., vol. 16, Dec. 2014, pp. 1-19.

[10] J. Zhu, Z. Liu, D. Wang, Q. Han, and Y. Song, “HDTV1080p HEVC Intra
encoder with source texture based CU/PU mode pre-decision,” in Proc.

Asia and South Pacific Design Automation Conf., Singapore, Jan. 2014.

[11] G. Pastuszak and A. Abramowski, “Algorithm and architecture design of
the H.265/HEVC intra encoder,” IEEE Trans. Circuits Syst. Video

Technol., vol. 26, no. 1, Jan. 2016, pp. 210-222.

[12] S. Atapattu, N. Liyanage, N. Menuka, I. Perera, and A. Pasqual, “Real
time all intra HEVC HD encoder on FPGA,” in Proc. IEEE Int. Conf.

Application-specific Syst., Architectures and Processors, London, United

Kingdom, Jul. 2016.

[13] K. Miyazawa, H. Sakate, S. Sekiguchi, N. Motoyama, Y. Sugito, K.

Iguchi, A. Ichigaya, and S. Sakaida, “Real-time hardware implementation
of HEVC video encoder for 1080p HD video,” in Proc. Picture Coding

Symp., San Jose, California, USA, Dec. 2013.

[14] A. Ylä-Outinen, A. Lemmetti, M. Viitanen, J. Vanne, and T. D.
Hämäläinen, “Kvazaar: HEVC/H.265 4K30p intra encoder,” in Proc.

IEEE Int. Symp. Multimedia, Taichung, Taiwan, Dec. 2017.

[15] T. K. Heng, W. Asano, T. Itoh, A. Tanizawa, J. Yamaguchi, T. Matsuo,
and T. Kodama, “A highly parallelized H.265/HEVC real-time UHD

software encoder,” in Proc. IEEE Int. Conf. Image Processing, Paris,

France, Oct. 2014.

[16] P. Sjövall, V. Viitamäki, A. Oinonen, J. Vanne, T. D. Hämäläinen, and A.

Kulmala, “Kvazaar 4K HEVC intra encoder on FPGA accelerated
Airframe server,” in Proc. IEEE Workshop Signal Process. Syst., Lorient,

France, Oct. 2017.

[17] Kvazaar HEVC encoder [Online]. Available:

https://github.com/ultravideo/kvazaar

[18] AirFrame data center solution [Online]. Available:

https://networks.nokia.com/solutions/airframe-data-center-solution

[19] Catapult: Product Family Overview [Online]. Available:

http://calypto.com/en/products/catapult/overview

[20] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An introduction
to high-level synthesis,” IEEE Des. Test Comput., vol. 26, no. 4, Jul.-Aug.

2009, pp. 8-17.

[21] P. Sjövall, V. Viitamäki, J. Vanne, and T. D. Hämäläinen, “High-level
synthesis implementation of HEVC 2-D DCT/DST on FPGA,” in Proc.

IEEE Int. Conf. Acoustics, Speech, Signal Process., New Orleans,

Louisiana, USA, Mar. 2017.

[22] V. Viitamäki, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “High-level

synthesized 2-D IDCT/IDST implementation for HEVC codecs on
FPGA,” in Proc. IEEE Int. Symp. Circuits Syst., Baltimore, Maryland,

USA, May 2017.

[23] Test Sequences [Online]. Available:

http://ultravideo.cs.tut.fi/#testsequences

