
Kvazaar 4K HEVC Intra Encoder on FPGA

Accelerated Airframe Server

Panu Sjövall, Vili Viitamäki, Arto Oinonen, Jarno

Vanne, Timo D. Hämäläinen

Laboratory of Pervasive Computing
Tampere University of Technology

Tampere, Finland

Ari Kulmala

Accelerator SoC R&D

Nokia

Tampere, Finland

Abstract— This paper presents a real-time Kvazaar HEVC

intra encoder for 4K Ultra HD video streaming. The encoder is

implemented on Nokia AirFrame Cloud Server featuring a 2.4

GHz dual 14-core Intel Xeon processor and Arria 10 PCI Express

FPGA accelerator card. In our HW/SW partitioning scheme, the

data-intensive Kvazaar coding tools including intra prediction,

DCT, inverse DCT, quantization, and inverse quantization are

offloaded to Arria 10 whereas CABAC coding and other control-

intensive coding tools are executed on Xeon processors. Arria 10

has enough capacity for up to two instances of our intra coding

accelerator. The results show that the proposed system is able to

encode 4K video at 30 fps with a single intra coding accelerator

and at 40 fps with two accelerators. The respective speed-up

factors are 1.6 and 2.1 over the pure Xeon implementation. To the

best of our knowledge, this is the first work dealing with HEVC

intra encoder partitioned between CPU and FPGA. It achieves the

same coding speed as HEVC intra encoders on ASIC and it is at

least 4 times faster than existing HEVC intra encoders on FPGA.

Keywords— High Efficiency Video Coding (HEVC), Kvazaar,

Intra coding, Field-programmable gate array (FPGA), PCI Express

(PCIe), Real-time

I. INTRODUCTION

Internet video traffic is forecast to grow threefold in five
years from that of 2015 and video is estimated to account for
82% of all global consumer Internet traffic by 2020 [1]. This
growth comes from new end users and multimedia applications
entering the market but also from higher video dimensions,
resolutions, frame rates, and color depths. Despite the fast
progress of network capacities, the holistic increase of video
volume makes more efficient video compression inevitable.

High Efficiency Video Coding (HEVC/H.265) [2], [3] is the
latest international video coding standard developed to meet
video storage and transmission needs of modern multimedia
applications. HEVC is published as twin text by ITU, ISO, and
IEC as ITU-T H.265 | ISO/IEC 23008-2. This paper addresses
all-intra (AI) coding configuration [4] of HEVC Main Profile.
HEVC is shown to improve intra coding efficiency by 23% over
that of the preceding state-of-the-art standard AVC/H.264 [5] for
the same objective quality but at a cost of over 3 × encoding
complexity [6]. Therefore, implementing a real-time HEVC
intra encoder with a reasonable coding efficiency,
implementation cost, and power budget requires efficient
encoder optimizations and powerful computing platforms.

The complexity of software (SW) HEVC encoders can be
primarily tackled by two techniques: multithreading through
data-level parallelism [7], [8] and single instruction multiple
data (SIMD) optimizations [9], [10]. Further speedup and lower
power dissipation can be obtained by offloading the compute-
intensive coding tools to hardware (HW) accelerators or
implementing the entire HEVC encoder on HW [11]-[14].
Existing HW encoders include both application specific
integrated circuit (ASIC) [11], [12] and field-programmable
gate array (FPGA) implementations [12]-[14].

The main motivation of this work was to optimize our
Kvazaar HEVC intra encoder [15], [16], for real-time 4K Ultra
High Definition (UHD) coding on Nokia AirFrame Cloud
Server. Airframe includes a 2.4 GHz dual 14-core Xeon
processor an Arria 10 PCI Express (PCIe) FPGA accelerator
card. Airframe rackmount server is easily expandable to large
server farms and an accompanied FPGA brings lots of additional
computing power for a single server. Cloud video encoding on
servers like AirFrame has gained a lot of traction in the recent
years because of the advent of cloud gaming, telco clouds, and
edge computation in general.

Our previous works have already investigated parallelization
of Kvazaar intra encoder on multi-core processors [8] and SIMD
optimizations of Kvazaar [10], so the main emphasis here is on
1) HW/SW partitioning of Kvazaar; and 2) HW acceleration of
Kvazaar on FPGA. The HW-oriented C source code of Kvazaar
enables more straightforward HW/SW partitioning than other
eligible open-source HEVC encoders [17], [18]. Kvazaar code
is also written at a suitable abstraction level for high-level
synthesis (HLS) [19] that enables automatic hardware
description language (HDL) generation from C. In this work,
our intra coding accelerator is implemented using Catapult C
[20] HSL tool. Through HLS, the code is more readable, design
and verification times are shorter, and the design reusability is
far better than with handwritten HDL equivalents.

The rest of this paper is organized as follows. Section 2 gives
an overview of the adopted CPU + FPGA platform and the
proposed SW/HW partitioning of Kvazaar on it. Section 3
describes the Kvazaar functionality on CPU, Section 4 the
communication between CPU and FPGA, and Section 5 the
implemented intra coding accelerator on FPGA. In Section 5, the
speedup of HW acceleration is benchmarked against SW only
encoding using 2160p (3840 × 2160) and 1080p (1920 × 1080)
test videos. Section 6 concludes the paper.

II. SYSTEM OVERVIEW

Fig. 1 shows the block diagram of the underlying CPU +
FPGA platform on which Kvazaar encoder is implemented. The
backbone of the system is Nokia AirFrame server [21] with two
Xeon E5-2680 v4 processors and 256 GB of memory. Arria 10
FPGA accelerator card is connected to the CPU via a PCIe bus.
The operating system is CentOS 6.8.

A. Kvazaar HEVC Intra Encoder

Kvazaar [15] is an academic cross-platform open-source
HEVC encoder. It contains all integral coding tools of HEVC
and its modular code facilitates parallelization on multi and
manycore processors as well as algorithm acceleration on HW.

Kvazaar intra encoder supports HEVC Main profile for 8-bit
4:2:0 video with ten presets out of which fast and medium presets
are used in this work for their favorable cost-performance
characteristics. Table I tabulates the settings of these presets.
The medium preset is utilized without rate-distortion optimized
quantization (RDOQ). Kvazaar implements a basic HEVC block
partitioning structure in which the pictures are partitioned into
coding tree units (CTUs) of size 64 × 64. CTUs can be optionally
divided into four equal-sized blocks and the division can be
recursively continued until the maximum hierarchical depth of
the HEVC quadtree is reached. The leaf nodes of the quadtree
are called coding units (CUs).

The proposed implementation of Kvazaar offers two
schemes for parallel CTU coding: 1) Wavefront Parallel
Processing (WPP); and 2) picture-level parallel processing.
These schemes can be enabled concurrently.

B. Kvazaar Partitioning

Kvazaar is run on the platform under AI coding
configuration in which the main coding tools are intra prediction

(IP), discrete cosine transform (DCT), quantization (Q), inverse
Q (IQ), inverse DCT (IDCT), and context-adaptive binary
arithmetic coding (CABAC). In this work, the most
computationally intensive coding tools including IP, DCT, Q,
IQ, and IDCT are implemented with HLS and synthesized to
FPGA. CABAC and other control-intensive coding tools such a
control for WPP and for picture-level parallelism are executed
on CPU. In addition, CPU takes care of raw input video reading,
chrominance coding, and outputting the encoded bit stream.

Arria 10 FPGA has enough resources for two instances of
our intra coding accelerator including the needed peripherals and
on-chip memories. Mapping a major share of CTU coding to
FPGA could be utilized to decrease power dissipation through
lower CPU usage. However, we are aiming at the maximum
HEVC coding speed, so encoding parallelism is increased by
coding additional CTUs entirely in SW with released CPU
resources.

Fig. 1. Block diagram of the proposed encoder system with a single intra coding accelerator.

TABLE I. IMPLEMENTED CODING TOOLS OF KVAZAAR INTRA ENCODER

Feature Fast Medium (wo RDOQ)

Profile Main Main

Internal bit depth 8 8

Color format 4:2:0 4:2:0

Coding mode Intra Intra

Coding units 16×16, 8×8 64×64, 32×32, 16×16, 8×8

Prediction units 16×16, 8×8 32×32, 16×16, 8×8

Transform units 16×16, 8×8 32×32, 16×16, 8×8

IP modes 35 (DC, planar, 33 angular) 35 (DC, planar, 33 angular)

Intra Search Full Full

Transform Integer DCT Integer DCT

Mode decision Sum of absolute difference Sum of absolute difference

Parallelization WPP, Picture level WPP, Picture level

SAO Enabled Enabled

Signhide Disabled Disabled

Rate Control Disabled Disabled

RDO Disabled Disabled

RDOQ Disabled Disabled

III. FUNCTIONALITY ON XEON

On Xeon processors, Kvazaar is run in the user space and the
Linux driver in the kernel space. The Linux driver is used for the
CPU-PCIe-FPGA interfacing. It is accessed by Kvazaar via
ioctl, write, and read system calls.

A. User Space: Kvazaar

Kvazaar parallelization is implemented using a CPU thread
pool with a single CTU as the smallest work unit. The CTUs are
put in a queue in the order they would be processed in a single
threaded case, and the free worker threads start processing the
first CTU with no dependencies. In this work, a CTU search
function of Kvazaar is modified to offload a majority of coding
tasks to the HW accelerator on FPGA. Offloading is performed
through system calls to the kernel driver. A worker thread sends
its CTU data to the HW accelerator and sleeps until the
accelerator notifies that the CTU coding on FPGA is completed.
Then, the worker thread performs chrominance coding and
CABAC coding for the CTU according to the results from
FPGA. The threads not being able to be served by FPGA are
encoded on CPU. Intra coding on FPGA has the highest priority
for new CTUs and the CPU is used only when the pipeline of the
HW accelerator is full.

B. Kernel Space: Driver

Fig. 2 shows the sequence chart of system calls between
Kvazaar and the kernel driver. At first, Kvazaar calls the ioctl
function to request a free index from the driver, which returns a
nonnegative index if the HW accelerator can accept a new CTU
for encoding. The driver uses semaphores initialized to the
maximum CTU count supported by the accelerator. In the next
step, Kvazaar calls the write function to copy all necessary data
of the processed CTU to FPGA. The data being sent to FPGA is
aligned in consecutive virtual memory addresses in the user
space and in consecutive physical memory addresses in the
kernel space. A worker thread uses the read function to request
intra coding results for the CTU of interest. The thread will sleep
in the kernel space until the CTU of interest has finished and the
accelerator sends an interrupt signal. Both the write and read
system calls return the amount of bytes (length) read or written
successfully.

IV. INTERFACE BETWEEN XEON AND FPGA

Fig. 1 shows the FPGA interface made of the Avalon-MM
Hard IP for PCIe, separate Direct Memory Access (DMA) blocks
for reading and writing, and the on-chip memories of the intra
coding accelerator.

A. PCIe Interface

The CPU communicates with the FPGA via the PCIe bus.
The PCIe IP is configured to PCIe generation 3 × 4 with 128-bit
interface and 250 MHz application clock. The IRQ Buffer block
is used for generating the interrupt through the PCIe IP. The IRQ
buffer detects the rising edges of the CTU ready signals from the
intra coding accelerator and buffers them. The interrupt is
delayed until the CPU acknowledges the previous interrupt. This
is done in order to prevent two interrupts from happening in
consecutive cycles, which is a limitation of the PCIe IP.

B. DMAs

A single intra coding accelerator consists of two DMA
blocks. One DMA block is used for reading data from the shared
memory and the other one is for writing data to the shared
memory. This separation allows the DMA blocks to better utilize
the bandwidth of the PCIe interface to the CPU memory. Our
tests showed that this scheme increases the data transfer speed
by 54% compared with sequential reading and writing.

The accelerator utilizes Reader and Writer indexer blocks for
address translation. The blocks are configured with the CTU
index before the DMA transfers are started. The DMA blocks
read and write to consecutive memory addresses, but the
memory structure of the on-chip memories on FPGA requires
non-consecutive addresses depending on the index of the CTU.

C. On-Chip Memories

For each CTU, the HW accelerator requires the
corresponding reference pixels, information about the CU
borders (reconstructed pixels and modes), as well as the CTU
CABAC states. The reference pixels are used to calculate Sum
of Absolute Difference (SAD) values for intra mode selection and
Sum of Squared Differences (SSD) values for final mode
decision. CTU border pixels are used to calculate intra
predictions for the CUs on the CTU borders whereas border
modes are used as candidate modes when selecting the best intra
mode. The CABAC states are used for mode decision (MD).

There are also on-chip memories for the final reconstructed
pixels and quantized coefficients, which are flushed from the
intermediate buffer. The CU info contains the resulting modes
and depths from the accelerator. The RAM aligners are used as
wrappers with the on-chip memories because the PCIe interface
and the HW accelerator have different memory access widths.

Fig. 2. Message sequence chart between Kvazaar and the kernel driver.

V. INTRA CODING ON FPGA

Fig. 3 shows a block diagram of the intra coding accelerator.
It consists of the following units implemented with HLS.

A. Intra Coding Control (Ctrl)

The Ctrl unit receives instructions from the CPU. It is split
into Initialization, Scheduler, Start, and End blocks.

The Initialization block generates a full instruction set for
processing a CTU. The instruction set contains operations for
calculating IPs with different configurations and MD operations
for selecting a CTU configuration. The HW generates the
instruction set for each CTU individually.

The Scheduler block is responsible for the CTU
parallelization in the HW accelerator. It loads the valid
instructions for each CTU and selects the ones with the highest
priority for processing. The priority for each instruction is
determined so that there will be a minimal delay on the intra
coding pipeline.

The Start block processes instructions from the Scheduler in
order. It initializes the IP configuration for the CU according to
the input instruction and sends CU information to the Get Border
unit. It also notifies the CPU about finishing the CTU search if
it receives the instruction for terminating the search.

The End block is at the end of the intra coding pipeline, from
where it receives the search results. The results include the
selected intra mode, SSD, and the estimated coding cost of the
CU coefficients. The End block uses the results to calculate the
MD cost for every CU configuration and stores them to the
internal memory. With the MD instructions, the End block
determines the best CU partitioning for the CTU according to
stored cost values and flushes the pixels and the coefficients for
that configuration from the buffer.

B. Get Reference Border (Get Border)

The Get Border unit reads the reconstructed reference pixels
and sends them to the IP unit. It operates according to the
configuration data consisting of CU block size and coordinates
of the CU in the CTU. The coordinates are utilized when reading
reconstructed pixels, i.e., either the neighboring column on the
left to the CU or the neighboring row above the CU. The
reconstructed pixels are read from either the CTU memory or the
CTU borders memory, depending on the location of the CU
within the CTU.

C. Intra Prediction (IP)

The IP unit is composed of an IP control block, SAD block,
and the following IP blocks that predict 35 IP modes in parallel:
DC IP (mode 0), Planar IP (mode 1), Positive Angular IP (modes
2-9, 27-34), Negative Angular IP (modes 11-25), and Zero
Angular IP (modes 10, 26). All these IP blocks predict four
pixels at a time, i.e., 32 × 32 block is predicted in 256 cycles, 16
× 16 block in 64 cycles, etc. The IP unit used here is an improved
version of our previous IP accelerator presented in [22].

The IP unit operates according to the configuration data
consisting of the CU block size and the corresponding reference
pixels from the Get Border block. The IP control block filters
reference pixels if needed and configures all the IP blocks that
perform the prediction algorithm for a proper CU size, and all
angular IP blocks for the right angle. This configurability makes
the IP blocks more generic and easy to instantiate.

All angular IP blocks calculate the predicted pixels in
original order, so additional transposing is not needed. The
blocks also have a common control. Furthermore, IP modes with
an equal distance to the horizontal (mode 10) and vertical (mode
26) modes are computed by the same IP block. For example,
modes 2 and 34 are calculated in the same Positive Angular IP
block since 10 - 2 = 34 - 26. This allows a reduced number of
intra prediction IPs and saves area.

Fig. 3. The block diagram of the intra coding accelerator on FPGA.

The SAD block reads the reference pixels of the processed
CU from the corresponding on-chip memory. It also receives
predicted pixels from the IP blocks and calculates the SAD in
parallel for all modes. The SAD block sends all the predicted
pixels and the reference pixels to a buffer, four pixel at a time.
After the SAD calculation is done and the best mode is
determined, SAD block notifies the buffer. The buffer
recalculates the residual vector and reference pixels for the best
mode and sends them to the DCT unit.

D. Discrete Cosine Transform (DCT)

The DCT unit equals the high-speed variant of our 8/16/32-
point DCT unit presented in-depth in [23]. The unit performs the
2-D DCT in two successive passes and the intermediate data is
stored in a transpose memory. It can process 32 residuals in
parallel so that a constant data rate with full HW utilization is
achieved. The latency for both passes is three cycles because of
the DCT pipeline. After the 2-D transform, the 16-bit transform
coefficients (tcoeffs) are passed to the Q unit.

E. Quantization (Q)

The Q unit operates according to the configuration data
consisting of the block size and the quantization parameter. The
unit receives one or several columns of tcoeffs from the DCT
unit per write, depending on the block size. Then it performs the
quantization to all tcoeffs in parallel and outputs the quantized
tcoeffs to the IQ unit and the Coeff Cost unit.

F. Inverse Quantization (IQ)

The IQ unit operates according to the configuration data
consisting of the block size and the quantization parameter. The
unit receives one or several columns of quantized tcoeffs from
the Q unit per write, depending on the block size. Then it
performs the inverse quantization to all quantized tcoeffs in
parallel and outputs them to the IDCT unit.

G. Inverse Discrete Cosine Transform (IDCT)

The IDCT unit equals the 8/16/32-point IDCT unit presented
by us in-depth in [24]. The unit performs the 2-D IDCT in two
successive passes and the intermediate data is stored in a
transpose memory. The IDCT unit can process 32 tcoeffs in
parallel to ensure a more constant HW utilization. The latency
for both passes is three clock cycles. After the 2-D inverse
transform, the 16-bit residuals are passed to the Rec unit.

H. Coefficient Cost (Coeff Cost)

The Coeff Cost unit operates according to the configuration
data consisting of the block size. The unit reads all the columns
of the quantized tcoeffs, which are transposed back to the
original order. After the transpose, the block calculates the
approximate coding cost for the CU coefficients, processing 32
coefficients in parallel.

I. Reconstruction (Rec)

The Rec module reads the reconstructed residuals from the
IDCT unit and the original and predicted pixels from the
memory in parallel. It generates the final reconstructed pixels
and calculates the SSD for the processed CU. The reconstructed
pixels are stored to memory through a buffer in order to store the
right CU in the CTU sized memory.

VI. EXPERIMENTAL RESULTS

Table II tabulates the characteristics of the proposed and
other existing HEVC intra encoders on ASIC and FPGA. The
real-time coding speed of the ASIC-based HEVC intra encoder
in [11] is limited to 1080p video. The HEVC intra encoder in
[12] supports real-time 2160p video encoding on ASIC but the
respective FPGA implementation is limited to 1080p resolution.
Similarly, the FPGA-based HEVC intra encoder in [13] is
restricted to 1080p video coding. The intra/inter HEVC encoder
in [14] is able to encode 1080p at 60 fps with a custom board of
three separate FPGA chips. Higher resolutions are also
supported but not without increasing the number of boards. To
sum up, our proposal is the only FPGA-based implementation
that supports real-time HEVC encoding up to 2160p resolution
with a single board.

 TABLE III. CODING SPEED WITH 2160P VIDEO (FAST PRESET)

TABLE IV. CODING SPEED WITH 1080P VIDEO (MEDIUM PRESET)

No acceleration

Speed (fps) Speed (fps) Speedup Speed (fps) Speedup

Beauty 20 31 1.6× 40 2.0×

Bosphorus 21 32 1.6× 42 2.1×

HoneyBee 19 31 1.6× 41 2.1×

Jockey 22 35 1.6× 47 2.1×

ReadySetGo 20 31 1.6× 41 2.0×

ShakeNDry 17 26 1.6× 35 2.1×

YachtRide 19 30 1.6× 40 2.1×

Average 20 31 1.6× 41 2.1×

Sequence

(2160p)

1 accelerator 2 accelerators

No acceleration

Speed (fps) Speed (fps) Speedup Speed (fps) Speedup

Beauty 63 102 1.6× 136 2.2×

Bosphorus 51 82 1.6× 110 2.2×

HoneyBee 46 73 1.6× 98 2.2×

Jockey 52 84 1.6× 113 2.2×

ReadySetGo 51 79 1.6× 107 2.1×

ShakeNDry 44 70 1.6× 94 2.2×

YachtRide 49 78 1.6× 105 2.1×

Average 51 81 1.6× 109 2.2×

Sequence

(1080p)

1 accelerator 2 accelerators

TABLE II. COMPARISON OF THE PROPOSED AND RELATED HEVC INTRA ENCODERS

Architecture Technology Board HW Lang. Frequency Resolution Coding mode Cells DSPs

Proposed CPU + FPGA Arria 10 C/C++ 125 MHz 2160p@30fps Intra 308k ALUTs 862

Zhu et al. [11] ASIC - Verilog 357 MHz 1080p@44fps Intra 2296k gates -

Pastuszak et al. [12] ASIC - VHDL 200/400 MHz 2160p@30fps Intra 1086k gates -

Pastuszak et al. [12] FPGA Arria II VHDL 100/200 MHz 1080p@30fps Intra 93k ALUTs 481

Atapattu et al. [13] FPGA Zyng ZC706 Verilog 140 MHz 1080p@30fps Intra 84k LUTs 34

Miyazawa et al. [14] FPGA Custom 3xFPGA N.A. N.A. 1080p@60fps Intra/Inter N.A. -

Table III and Table IV report HEVC coding speed of the
proposed system with fast and medium presets (Table I) using
2160p and 1080p test videos, respectively. The 8-bit 4:2:0 2160p
test sequences were taken from Ultra Video Group test sequence
set [25] and scaled down to 1080p resolution for our tests. In
both cases, the results are given for our system with 0, 1, and 2
intra coding accelerators.

The average results with the fast preset show that our
implementation is able to encode 2160p video at 20 fps without
HW acceleration, at 30 fps with a single accelerator, and at 40
fps with two accelerators. The speedups obtained with one and
two accelerators are 1.6× and 2.1× over the pure SW
implementation, respectively. In 2160p case, real-time coding
speed (30 fps) requires at least one accelerator. The coding
speeds of 1080p test videos are approximately 2.6 times as high
as those of 2160p sequences even though a more complex
medium preset (without RDOQ) is used. Hence, real-time
coding speed is attainable without any HW acceleration in 1080p
case. Our implementation would also be able to encode three
separate real-time 1080p sequences in parallel.

VII. CONCLUSION

This paper presented the first known 4K HEVC intra encoder
partitioned between a processor and a PCIe-connected FPGA.
The encoder functionality is based on C source code of Kvazaar
HEVC intra encoder and HLS was used to implement the most
compute-intensive Kvazaar coding tools on FPGA. For the first
time, HLS was applied to the whole intra coding chain from intra
prediction to block reconstruction. HLS is generally known to
reduce design and verification times over a traditional HDL
workflow. This work shows that these benefits do not come at a
cost of coding performance.

The proposed encoder implementation was prototyped on
Nokia AirFrame Cloud Server composed of dual 14-core Intel
Xeon processor and Arria 10 FPGA. On AirFrame, our solution
is able to encode one 2160p video in real-time. The introduced
HW acceleration roughly doubles coding speed over that of a
pure SW encoder. Further performance boost could be easily
obtained by inserting another FPGA card in the available slot in
the server and replacing the current FPGAs with larger ones.
This way, up to four times as high coding speed is anticipated.

ACKNOWLEDGMENT

This work was supported in part by Nokia, the European
Celtic-Plus Project 4KREPROSYS, and the Academy of
Finland (decision no. 301820).

REFERENCES

[1] Cisco, Cisco Visual Networking Index: Forecast and Methodology, 2015-

2020, Jun. 2016.

[2] High Efficiency Video Coding, document ITU-T Rec. H.265 and ISO/IEC

23008-2 (HEVC), ITU-T and ISO/IEC, Apr. 2013.

[3] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the

High Efficiency Video Coding (HEVC) standard,” IEEE Trans. Circuits

Syst. Video Technol., vol. 22, no. 12, Dec. 2012, pp. 1649-1668.

[4] J. Lainema, F. Bossen, W. J. Han, J. Min, and K. Ugur, “Intra coding of

the HEVC standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 22,

no. 12, Dec. 2012, pp. 1792-1801.

[5] Advanced Video Coding for Generic Audiovisual Services, document

ITU-T Rec. H.264 and ISO/IEC 14496-10 (AVC), ITU-T and ISO/IEC,

Mar. 2009.

[6] J. Vanne, M. Viitanen, T. D. Hämäläinen, and A. Hallapuro,

“Comparative rate-distortion-complexity analysis of HEVC and AVC

video codecs,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12,

Dec. 2012, pp. 1885-1898.

[7] C. C. Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare, F. Henry, S. Pateux,

and T. Schierl, “Parallel scalability and efficiency of HEVC

parallelization approaches,” IEEE Trans. Circuits Syst. Video Technol.,

vol. 22, no. 12, Dec. 2012, pp. 1827-1838.

[8] A. Koivula, M. Viitanen, J. Vanne, T. D. Hämäläinen, and L. Fasnacht,

“Parallelization of Kvazaar HEVC intra encoder for multi-core

processors,” in Proc. IEEE Workshop Signal Process. Syst., Hangzhou,

China, Oct. 2015, pp. 1-6.

[9] Y. J. Ahn, T. J. Hwang, D. G. Sim, and W. J. Han, “Implementation of

fast HEVC encoder based on SIMD and data-level parallelism,”

EURASIP J. Image Video Process., vol. 16, Dec. 2014, pp. 1-19.

[10] A. Lemmetti, A. Koivula, M. Viitanen, J. Vanne, and T. D. Hämäläinen,

“AVX2-optimized Kvazaar HEVC intra encoder,” in Proc. IEEE Int.

Conf. Image Processing, Phoenix, Arizona, USA, Sep. 2016, pp. 549-553.

[11] J. Zhu, Z. Liu, D. Wang, Q. Han, and Y. Song, “HDTV1080p HEVC Intra

encoder with source texture based CU/PU mode pre-decision,” 2014 19th

Asia and South Pacific Design Automation Conf., Singapore, 2014.

[12] G. Pastuszak and A. Abramowski, “Algorithm and architecture design of

the H.265/HEVC intra encoder,” IEEE Trans. Circuits Syst. Video

Technol., vol. 26, no. 1, Jan. 2016, pp. 210-222.

[13] S. Atapattu, N. Liyanage, N. Menuka, I. Perera, and A. Pasqual, “Real

time all intra HEVC HD encoder on FPGA,” in Proc. IEEE Int. Conf. on

Application-specific Syst., Architectures and Processors, London, Jul.

2016, pp. 191-195.

[14] K. Miyazawa, H. Sakate, S. Sekiguchi, N. Motoyama, Y. Sugito, K.

Iguchi, A. Ichigaya, and S. Sakaida, “Real-time hardware implementation

of HEVC video encoder for 1080p HD video,” in Proc. Picture Coding

Symposium, San Jose, California, USA, Dec. 2013, pp. 225-228.

[15] Kvazaar HEVC encoder [Online]. Available:

https://github.com/ultravideo/kvazaar

[16] M. Viitanen, A. Koivula, A. Lemmetti, A. Ylä-Outinen, J. Vanne, and T.

D. Hämäläinen, “Kvazaar: open-source HEVC/H.265 encoder,” in Proc.

ACM Int. Conf. Multimedia, Amsterdam, The Netherlands, Oct. 2016, pp.

1179-1182.

[17] x265 [Online]. Available: http://x265.org/

[18] Turing codec [Online]. Available: https://github.com/bbc/turingcodec

[19] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An introduction

to high-level synthesis,” IEEE Des. Test Comput., vol. 26, no. 4, Jul.-Aug.

2009, pp. 8-17.

[20] Catapult: Product Family Overview [Online]. Available:

http://calypto.com/en/products/catapult/overview

[21] AirFrame data center solution [Online]. Available:

https://networks.nokia.com/solutions/airframe-data-center-solution

[22] P. Sjövall, J. Virtanen, J. Vanne, and T. D. Hämäläinen, “High-level

synthesis design flow for HEVC intra encoder on SoC-FPGA,” in Proc.

Euromicro Symp. Digit. Syst. Des., Funchal, Madeira, Portugal, Aug.

2015, pp. 49-56.

[23] P. Sjövall, V. Viitamäki, J. Vanne, and T. D. Hämäläinen, “High-level

synthesis implementation of HEVC 2-D DCT/DST on FPGA,” in Proc.

IEEE Int. Conf. Acoustics, Speech, Signal Process., New Orleans,

Louisiana, USA, Mar. 2017, pp. 1547-1551.

[24] V. Viitamäki, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “High-level

synthesized 2-D IDCT/IDST implementation for HEVC codecs on

FPGA,” in Proc. IEEE Int. Symp. Circuits Syst., Baltimore, Maryland,

USA, May 2017.

[25] Test Sequences [Online]. Available:

http://ultravideo.cs.tut.fi/#testsequences

