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Abstract—We propose a deterministic recursive algorithm for
approximate Bayesian filtering. The proposed filter uses a func-
tion referred to as the approximate Gaussian flow transformation
that transforms a Gaussian prior random variable into an
approximate posterior random variable. Given a Gaussian filter
prediction distribution, the succeeding filter prediction is approx-
imated as Gaussian by applying sigma point moment-matching to
the composition of the Gaussian flow transformation and the state
transition function. This requires linearising the measurement
model at each sigma point, solving the linearised models analyti-
cally, and introducing the measurement information gradually
to improve the linearisation points progressively. Computer
simulations show that the proposed method can provide higher
accuracy and better posterior covariance matrix approximation
than some state-of-the art computationally light approximative
filters when the measurement model function is nonlinear but
differentiable and the noises are additive and Gaussian. We also
present a highly nonlinear scenario where the proposed filter
occasionally diverges. In the accuracy–computational complexity
axis the proposed algorithm is between Kalman filter extensions
and Monte Carlo methods.

I. INTRODUCTION

The Kalman filter (KF) [1] is the optimal linear filter in
mean square error sense for linear state-space models. How-
ever, many practical systems include nonlinear state transition
and measurement equations. Therefore, several extensions of
KF have been developed to approximate the Bayesian filtering
distribution for nonlinear state-space models. These include
the extended Kalman filter (EKF) [2, Ch. 8.3] and unscented
Kalman filter (UKF) [3]. EKF has difficulties with highly non-
linear models, and UKF as well as other conventional sigma
point filters [4] can have problems with measurement model
functions whose details are too fine-grained for the resolution
of the prior-distribution based sigma point representation. Both
filters can suffer if the filter prediction distribution is highly
diffuse compared to the measurement accuracy [5]. If the
filtering distribution is multimodal, EKF and UKF tend to
follow one mode only.

Fig. 1 shows an example of a measurement update with
a diffuse Gaussian prior and measurements of distances to
three anchors with Gaussian measurement noises. The model

Henri Nurminen receives funding from Tampere University of Technology
Graduate School, Nokia Technologies Oy, Tekniikan edistämissäätiö, the
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Fig. 1. An example of a highly nonlinear measurement update using three
distance measurements with Gaussian noises from the model (18b). EKF and
UKF perform poorly because the measurement anchors are near. HDR75 is
the highest-density region that contains 75 % of the posterior probability.

is highly nonlinear, because one anchor is close to the target.
The EKF is inaccurate because it uses only the prior mean
as the linearisation point, and the UKF cannot capture the
measurement model function’s derivatives properly because
one anchor is inside the sigma point cloud.

Particle flow particle filters (PFPFs) [6]–[8] are Monte
Carlo based filtering algorithms and related to the well-known
particle filters. PFPFs implement the Bayes rule by moving
each sample (a.k.a. particle) using a function that transforms
the samples’ distribution in the desired way. Computation of
this function involves solving an ordinary differential equation
(ODE) that in this context is referred to as the particle flow.
That is, the PFPFs replace or complement the particle weight-
ing step in the measurement assimilation of the conventional
particle filters with the particle flow step. PFPFs mitigate
particle degeneracy by including information about the current
measurement in the particle propagation step of the particle
filter [8], [9]. This can be considered as approximating the
optimal importance distribution of the particle locations [8],
[10]. Intuitively, the idea is to concentrate most approximation
accuracy in the areas where the posterior density is highest.
In this paper this idea is applied to deterministic sigma point
filtering.

In this paper we propose an approximative nonlinear filter
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where deterministic sigma points are propagated using a
particle flow. The proposed method approximates the filter
prediction distribution as a Gaussian distribution which it rep-
resents using sigma points. The sigma points are propagated by
numerically solving the approximate Gaussian flow equations
introduced in [8]. This implies linearising the measurement
model at each sigma point and gradually introducing more
measurement information to move the linearisation points to-
wards the high-density region of the true filtering distribution.
The sigma points are then propagated directly through the state
transition function of the next time instant. This procedure
gives a sigma point based moment-matching approximation
for the composition of the approximate Gaussian flow trans-
formation and the state transition function. The measurement
model function is assumed to be differentiable.

A strength of the proposed filter compared to EKF is
that the proposed filter is not solely based on the local
derivative information in a single point. Instead, the proposed
filter averages the linearisation over several points through
the sigma point distribution. The gradual introduction of the
measurement information aims at improving the linearisations
through the particle flow propagation; sigma points are moved
only slightly when the linearisation points are still mainly
prior-based, and when approaching the complete measurement
update, the linearisation is expected to become more accurate
in areas of high posterior density. A strength compared to UKF
is that the proposed method automatically moves the sigma
points to areas where posterior density is high, thus enabling
the sigma points to capture more fine-grained details of the
measurement model function even when the measurements
have high precision. Furthermore, the proposed filter does not
require Gaussian approximation of the filtering distribution:
the Gaussian approximation is made only once per recursion,
after the prediction step. A strength compared to PFPFs is
that the number of systematically placed sigma points can be
smaller than the number of randomly placed particles typically
needed by particle filters. Further, the proposed method does
not use computationally costly weighting procedures. Weak-
nesses of the proposed method are higher computational com-
plexity compared to EKF and UKF, and flexibility inferior to
that of particle filters in approximating non-Gaussian filtering
prior distributions. The proposed filter also requires analytical
differentiation unlike UKF, although numerical differentiation
could also be used.

In this paper we present computer simulations where the
proposed filter gives more accurate estimates than state-of-
the-art comparison methods. We also show another simulation
with a highly nonlinear measurement model where the pro-
posed filter occasionally diverges, in spite of showing good
overall performance. Providing an adaptive procedure that
damps the sigma point movement in case of a bad linearisation
is a topic for future research.

The structure of this paper is the following: In Section II
we explain the nonlinear Bayesian filtering problem. Then in
Section III we give an overview of the existing particle flow
methods and give a definition of the approximate Gaussian

flow. In Section IV we derive the Gaussian flow sigma point
filter. In Section V we show computer simulations where the
proposed filter gives more accurate estimates than some state-
of-the-art comparison methods. Section VI summarizes the
conclusions.

II. NONLINEAR GAUSSIAN FILTERING PROBLEM

We consider the nonlinear additive Gaussian state-space
model

x0 ∼ N(x0|0, P0|0), (1a)
xk = ak(xk−1) + wk−1, wk−1 ∼ N(0, Qk−1), (1b)
yk = ck(xk) + vk, vk ∼ N(0, Rk), (1c)

where xk ∈ Rnx is the unknown state at time index k,
ak : Rnx → Rnx is the possibly nonlinear state transition
function, Qk ∈ Rnx×nx is the process noise covariance matrix,
yk ∈ Rny is the measurement vector, ck : Rnx → Rny is
the possibly nonlinear but differentiable measurement model
function, Rk ∈ Rny×ny is the measurement noise covariance
matrix, and wk ∈ Rnx and vk ∈ Rny are white and mutually
independent Gaussian noise processes referred to as the pro-
cess noise and the measurement noise. N(µ,Σ) denotes the
multivariate normal distribution with mean µ and covariance
matrix Σ, and x0|0 and P0|0 are the initial state’s mean and
covariance matrix.

At the kth time instant, we want to compute the filtering
distribution p(xk|y1:k). When the functions ak and/or ck
are nonlinear, the filtering distribution does not generally
belong to any known family of probability distributions, so we
approximate it with a distribution defined by a small number
of parameters. These parameters are updated with every new
measurement. The procedure should be recursive in the sense
that a filter update should be based only on the previous
filtering distribution approximation and the new measurement,
not on earlier measurements, whose information is already
contained in the previous filtering distribution.

III. PARTICLE FLOW IN NONLINEAR FILTERING

A. Existing particle flow methods

PFPFs are Monte Carlo methods, where a pseudo-random
sample (a particle) of the previous filtering distribution is
propagated into the current time instant by generating a
pseudo-random realisation from the state propagation model.
After this, the particle is interpreted as the initial value x0
of the particle flow ODE, and the filter update step takes
the ODE final value as a sample of the filtering distribution.
Approximation errors arise because the exact particle flow is
not known or because the flow must be solved using numerical
methods. Some schemes include also particle weighting and
stochastic resampling steps.

PFPFs were originally proposed by Daum and Huang in
[6] and are also related to the ensemble transform filters
of Reich [7], [11]. Particles are generated using the state
transition distribution and are then moved to a new position by
numerically solving the particle flow ODE. This ODE includes



the analytic expression of the filter prediction distribution
which is typically not available but needs to be approximated
with a Gaussian [7] or a Gaussian mixture [11] distribution.
The PFPF of [6] does not include particle weighting or
resampling.

Since formulating and solving the particle flow requires
approximations, a particle weighting scheme based on the
concept of approximate Gaussian flow is proposed in [8]. The
weighting scheme of [8] also involves some approximations,
but if their effect is neglected, the weighting will reduce the
theoretical discrepancy between the particle location distribu-
tion and the true filtering distribution.

In some versions, the particle flow itself is a stochastic
differential equation, and the solution methods use random
number generation [8], [12]. Our method could also be ex-
tended to this direction, but we have not explored this yet.

The iterated posterior linearisation filter (IPLF) of [13]
also seeks to move deterministic sigma points towards the
areas with high posterior density. However, this filter does not
introduce the measurement information gradually, which can
be problematic if the initial sigma point update overshoots or
is otherwise inaccurate. Furthermore, the algorithm makes a
Gaussian approximation after each iteration, so the sigma point
constellation always follows a Gaussian sigma point rule, and
the filtering distribution is always approximated as Gaussian.

The progressive Bayesian filter of [14] is similar to ours in
the sense that it uses a deterministic sigma point representation
of the filtering distributions, and introduces measurement
information gradually to move the sigma points closer to
the areas with high filtering density. However, in [14], the
sigma points are moved differently from our filter: at each
progression step each sigma point is copied, and the child
sigma points are slightly spread and weighted using part of
the measurement-based likelihood. The representation is then
downsampled and the weights equalised using a deterministic
procedure, where a nonlinear optimisation problem is solved
to attain an optimal Dirac delta mixture approximation with
a certain number of components. No concept of continuous
flow equations is used. This approach requires implemen-
tation and tuning of rather complicated details such as the
upsampling algorithm, and the filter does not become a KF
for a linear–Gaussian model. This approach can also become
computationally heavy due to the nonlinear optimisation at the
downsampling procedure that lacks a closed-form solution.

The proposed algorithm also shares some similarity with
the recursive update sigma point filter [15], [16]. However,
in this approach the partial measurement information is in-
cluded in the state distribution and the remaining part of the
measurement information is then treated as correlated with the
state distribution. This may result in filter divergence due to
accumulation of approximation errors as reported in [17].

B. Approximate Gaussian flow

Consider now a nonlinear Gaussian model with prior p(x) =
N(x;m0, P0) and likelihood p(y|x) = N(y; c(x), R). We

denote the “pseudo-time” with λ ∈ [0, 1], i.e. the integration
variable of the flow. For any λ, the distribution

p̂λ(x|y) =
p(x) p(y|x)λ∫
p(x) p(y|x)λ dx

(2)

is conventionally approximated by a Gaussian distribution
using the information form of the first-order linearised Kalman
filter update

P
[x∗]
λ =

(
P−10 + λ(C [x∗])TR−1C [x∗]

)−1
(3a)

m
[x∗]
λ = P

[x∗]
λ

(
P−10 m0 + λ(C [x∗])TR−1ŷ[x

∗]
)
, (3b)

where the subscript λ indicates direct dependence on λ, the
superscript [x∗] indicates that the quantity is with respect to
the first-order Taylor series approximation of c at the point
x∗, C [x∗] is the Jacobian matrix of c evaluated at x∗, and
ŷ[x
∗] = y − c(x∗) + C [x∗]x∗.
Following [8], the approximate Gaussian flow is defined to

be the solution xλ, λ ∈ [0, 1], of the ODE

dxλ
dλ

= A
[xλ]
λ xλ + b

[xλ]
λ , (4)

where

A
[xλ]
λ = − 1

2P
[xλ]
λ (C [xλ])TR−1C [xλ], (5)

b
[xλ]
λ = P

[xλ]
λ (C [xλ])TR−1

(
ŷ[xλ] − 1

2C
[xλ]m

[xλ]
λ

)
, (6)

where the matrix P
[x∗]
λ and the vector m[x∗]

λ are as given in
(3).

The solution of the ODE (4) can be approximated using the
special structure of the problem. We use a step-wise method
by solving exactly the ODEs

dxλ
dλ

= A
[xλi ]

λ xλ + b
[xλi ]

λ , λ ∈ [λi, λi+1] (7)

between the pseudo-time discretisation points λ0 =
0, λ1, λ2, . . . , λi, . . . , λnλ = 1, where nλ is the number of
pseudo-time discretisation steps. Each step is an exact Gaus-
sian flow [8], so the analytical solution of the ith step is given
by

xλi+1
= m

[xλi ]

λi+1
+
(
P

[xλi ]

λi+1
(P

[xλi−1
]

λi
)−1
) 1

2 (xλi −m
[xλi−1

]

λi
),

(8)

where the matrix square root is the principal square root de-
fined by A

1
2A

1
2 =A, as shown in [8]. Intuitively speaking, the

vector xλi+1 is now a deterministic sample of the distribution
N(m

[xλi ]

λi+1
, P

[xλi ]

λi+1
).

The ODE (4) can also be solved directly with standard
numerical ODE solvers.

IV. GAUSSIAN FLOW SIGMA POINT FILTER

A. Algorithm derivation

Let us denote the approximate Gaussian flow transformation
with the function g(x0) = x1, where the vector x1 is the final
value of the solution xλ of the approximate Gaussian flow (4)
with the initial value x0.



The idea of our proposed Gaussian flow sigma point filter
(GFSPF) is the following: Assume first that we have a Gaus-
sian filter prediction distribution

p(xk|y1:k−1) = N(xk;xk|k−1, Pk|k−1), (9)

where xk|k−1 and Pk|k−1 are known or given by the previous
recursions of the algorithm. We use the third order spherical
cubature rule [18], [19] to compute the approximate mean
xk+1|k and covariance matrix Pk+1|k of the transformed ran-
dom variable ak(gk(xk))|y1:k−1, where gk is the approximate
Gaussian flow transformation for the measurement at time k
and ak is the state transition function from (1b). Then, we
make the Gaussian moment-matching approximation

p(xk+1|y1:k) ≈ N(xk+1|xk+1|k, Pk+1|k). (10)

This approximation completes the recursion.
In the spherical cubature approximation, a sigma point rule

is used to choose a set of nσ points χ(i)
k|k representing the

distribution N(xk;xk|k−1, Pk|k−1), and the composite function
ak ◦gk is then evaluated in the sigma points. The mean and
covariance matrix are approximated using the weighted sample
statistics

xk+1|k =

nσ−1∑
i=0

ωi · ak(gk(χ
(i)
k|k)) (11)

≈
∫
ak(gk(xk)) N(xk;xk|k−1, Pk|k−1) dxk, (12)

and

Pk+1|k =

nσ−1∑
i=0

ωi ·
(
ak(gk(χ

(i)
k|k))−xk+1|k

)
×
(
ak(gk(χ

(i)
k|k))−xk+1|k

)T
+Qk (13)

≈
∫ (

ak(gk(xk))−xk+1|k
)(
ak(gk(xk))−xk+1|k

)T
×N(xk;xk|k−1, Pk|k−1) dxk+Qk. (14)

In the third order spherical cubature rule the number of the
sigma points is nσ = 2nx + 1, the sigma point locations are
[19]

χ
(i)
k|k =


xk|k−1 , i = 0

xk|k−1 +
√
nx + κ · [P

1
2

k|k−1]:,i , 0 < i ≤ nx
xk|k−1 −

√
nx + κ · [P

1
2

k|k−1]:,i , nx < i ≤ 2nx
(15)

where [P
1
2 ]:,i denotes the ith column of any matrix square

root for which P
1
2 (P

1
2 )T = P , and the sigma point weights

are [19]

ω(i) =

{ κ
nx+κ

, i = 0
1

2(nx+κ)
, i 6= 0

. (16)

The matrix square root can be the principal square root, and
κ∈(−nx,∞) is a parameter that determines the spread of the
sigma points and affects the sigma point weighting. Higher-
order cubature rules are also available, but they require a

Fig. 2. An example of a highly nonlinear measurement update using three
distance measurements with Gaussian noises from the model (18b). The
proposed GFSPF outperforms EKF and UKF. HDR75 is the highest-density
region that contains 75 % of the posterior probability.

superlinear number of sigma points [18]. Other possibilities
include Gauss–Hermite rules [20], [21, Ch. 6.3] and optimal
Dirac mixture approximations [22]. The details of the proposed
filtering algorithm are given in Algorithm 1.

Fig. 2 shows an example of a measurement update of the
GFSPF. It depicts the same scenario as Fig. 1. The GFSPF
places the sigma points close to the posterior distribution, and
thus achieves highest approximation accuracy in this area, out-
performing EKF and UKF. Furthermore, the resulting sigma
point set is not symmetric, thus capturing some non-Gaussian
properties of the posterior. In our proposed algorithm the
sigma point configurations are more flexible than in standard
sigma point methods. The proposed filter does not require
Gaussian approximation of the filtering distribution; only the
filter prediction distribution is approximated as Gaussian.
This can be an advantage especially if the Gaussian process
noise has a relatively large variance, as this makes the filter
prediction distribution closer to Gaussian.

The proposed algorithm has some important special cases.
With a linear model, it becomes the KF because the ODEs
can be solved exactly and the moment-matching becomes
exact. If there is only one step in the λ-discretisation, the
algorithm becomes a form of approximate statistical linearisa-
tion, although different from the form presented in [21, Sec.
5.3]: it approximates the expectation of the whole KF update
step of the linearised model, not only the expectation of the
linearisation. Algorithm 1 uses a sigma point representation
based on the third order spherical cubature rule, but any other
valid sigma point representation is also possible. In Algorithm
1 the λ-discretisation is fixed, but the discretisation can be
determined separately for each time instant and each sigma
point, if necessary.

V. SIMULATIONS

We demonstrate the performance of the proposed Gaussian
flow sigma point filter (GFSPF) using simulated data. The
tests were carried out using Matlab. The compared algorithms
are GFSPF, the extended Kalman filter (EKF), the unscented
Kalman filter (UKF), the iterated posterior linearisation filter



Algorithm 1 Approximate Gaussian Flow Sigma Point Filter
1: Inputs: initial prior x0|0, P0|0; process model ak, Qk;

measurement model ck(x), C [x]
k , Rk; measurements y1:K ;

filter parameter κ; pseudo-time discretisation λ0 =
0, λ1, · · · , λnλ =1.

2: Outputs: xk|k, Pk|k for k = 0, . . . ,K.

Initial prior sigma points
3: ω0 ← κ

nx+κ
, ωi ← 1

2(nx+κ)
for i = 1, 2, . . . , 2nx

4: χ
(0)
0|0 ← x0|0

5: for i = 1 to nx do
6: χ

(i)
0|0 ← x0|0 +

√
nx + κ

[
P

1
2

0|0]:,i

7: χ
(nx+i)
0|0 ← x0|0 −

√
nx + κ

[
P

1
2

0|0]:,i
8: end for
9: for k = 1 to K do

Prediction step
10: for i = 0 to 2nx do
11: χ

(i)
k|k−1 ← ak(χ

(i)
k−1|k−1)

12: end for
13: xk|k−1 ←

∑2nx
i=0 ωiχ

(i)
k|k−1

14: Pk|k−1←
∑2nx

i=0 ωi(χ
(i)

k|k−1−xk|k−1)(χ
(i)

k|k−1−xk|k−1)
T+Qk

Update step
15: χ

(0)
k|k ← xk|k−1 . Prediction sigma points

16: for i = 1 to nx do
17: χ

(i)
k|k ← xk|k−1 +

√
nx + κ

[
P

1
2

k|k−1]:,i

18: χ
(nx+i)
k|k ← xk|k−1 −

√
nx + κ

[
P

1
2

k|k−1]:,i
19: end for
20: for i = 0 to 2nx do
21: m− ← xk|k−1, S− ← Pk|k−1
22: for j = 1 to nλ do . Flow transformation

23: J ← C
[χ

(i)

k|k]

k

24: S ←
(
P−1k|k−1 + λjJ

TR−1k J
)−1

25: m← S
(
P−1k|k−1xk|k−1

26: +λjJ
TR−1k (yk − ck(χ

(i)
k|k) + Jχ

(i)
k|k)
)

27: χ
(i)
k|k←m+(SS−1− )

1
2 (χ

(i)
k|k−m−) .A

1
2A

1
2=A

28: m− ← m, S− ← S
29: end for
30: end for
31: xk|k ←

∑2nx
i=0 ωiχ

(i)
k|k

32: Pk|k ←
∑2nx
i=0 ωi(χ

(i)
k|k − xk|k)(χ

(i)
k|k − xk|k)T

33: end for

(IPLF) of [13], and the Gaussian flow based particle flow
particle filter (PFPF) of [8].

In the tests, GFSPF and PFPF used a fixed 8-
step discretisation grid for pseudo-time λ, λ1:8 =
2[−20,−15,−10,−5,−3,−1,−0.5,0]. The PFPF used only 2nx + 1
particles, which equals the number of the sigma points in
GFSPF. The parameter κ was set to 0.5 for UKF, IPLF, and
GFSPF to give uniformly weighted sigma points. The UKF
used the third order spherical cubature rule, i.e. the parameter
values αUKF = 1, κUKF = κ, and βUKF = 0 in the conven-

tional UKF parametrisation [21, Ch. 5.5], which matches the
cubature Kalman filter (CKF) [19]. The IPLF’s iterations were
terminated when the Kullback–Leibler divergence between
two consecutive posterior approximations was less than or
equal to 0.005 or after 50 iterations. The matrix square roots
in UKF, PFPF, IPLF, and GFSPF were computed as lower
triangular Cholesky decompositions, except for the principal
square root in GFSPF in line 27 of Algorithm 1.

A. Nonlinear benchmark model

We generated a realisation of the classical nonlinear bench-
mark model [23], [24]

x0 ∼ N(0, 102), (17a)

xk = 0.5xk−1 + 25xk−1

1+x2
k−1

+ 8 cos(1.2(k−1)) + wk−1, (17b)

yk =
x2k
20

+ vk, (17c)

where wk−1
iid∼N(0, 32) and vk

iid∼N(0, 12). This measurement-
based likelihood is unimodal when the measurement is close
to zero or negative, but with large positive measurements the
likelihood is bimodal [24].

Fig. 3 presents 51 first time instants of the realisation as
well as the estimates and 95 % posterior credibility intervals
of each compared algorithm. The credibility intervals were
computed by assuming that each posterior approximation is
Gaussian with the mean and variance given by the respective
algorithm. The figure shows that the proposed GFSPF gives
a mean value between the modes and a large variance, while
the other methods are prone to choose one peak and omit
the rest. Between time instants 26 and 31, for example, EKF,
UKF, and IPLF estimate the state as being positive with a
very small 95 % interval, while the true state is negative with
about the same absolute value. The GFSPF’s estimate is close
to zero with the 95 % interval including the true value. Near
k = 32 the state value is close to zero, which pulls all the
estimates closer to the true value and diminishes the GFSPF’s
uncertainty. In some cases, such as between time instants 10
and 16, EKF, UKF, and IPLF give more precise estimates
than GFSPF because they happen to track the correct posterior
mode.

During the first 1000 time instants of the generated reali-
sation, the true state was within the 95 % posterior credibility
interval at 40 % of the time instants for EKF, 71 % for UKF,
57 % for IPLF, and 92 % for GFSPF. That is, all the algorithms
underestimate the uncertainty of the posterior estimate, but
the proposed GFSPF gives the least underestimated posterior
variance approximation. The root mean square error (RMSE)
was 23.2 for EKF, 11.9 for UKF, 14.1 for IPLF, and 9.1 for
GFSPF. That is, the GFSPF estimate is also the most accurate
in RMSE in this test.

B. Navigation with distance measurements

In this example the state consists of position pk ∈ R2 and
velocity vk ∈ R2. The dynamical model is a damped constant
velocity model and the state is observed through distance



Fig. 3. Filter estimates and 95 % posterior credibility intervals for the
nonlinear benchmark model (17). When the posterior is multimodal, the
proposed GFSPF gives a mean value between the modes and a large variance,
while the other methods follow one peak and underestimate the uncertainty.

measurements to anchors at known locations sj,k ∈ R2. The
state-space model is thus[

pk
vk

]
=

[
I2

1−e−0.1

0.1 I2
O2 e−0.1I2

] [
pk−1
vk−1

]
+ wk−1, (18a)

[yk]j = ‖xk − sj,k‖+ [vk]j , (18b)

where

wk−1
iid∼

[
0.2−3+4e−0.1−e−0.2

2·0.13 I2
1−2e−0.1+e−0.2

2·0.12 I2
1−2e−0.1+e−0.2

2·0.12 I2
1−e−0.2

0.2 I2

]
, (19)

[vk]j
iid∼ N(0, r2), (20)

and the measurement noise standard deviation r is a parameter.
The anchor positions sj,k ∈ R2 were generated at every fifth
time instant from the distribution sk,j ∼ N(µk, ρ

2I2), where
µk is the average of the ground truth positions pk:k+4 and ρ is
a parameter. The anchors were located relatively close to the
true positions to generate high nonlinearity, and ρ was varied
to compare performances with different levels of nonlinearity;
roughly speaking, the smaller ρ is, the closer the anchors are to
the true position and the higher the nonlinearity. This example
is therefore tailored to favour filters that work well even in
highly nonlinear situations. If GFSPF or EKF required deriva-
tive at any sj,k, the linearisation point was perturbed slightly to
make the measurement function differentiable. We generated
trajectories of 300 time instants and measurement sets from the
state-space model (18). Our criteria for evaluating the filters’
accuracy are the position RMSE

RMSE =

√√√√ 1
300

300∑
k=1

∥∥[pk|k]estimate − [pk]true
∥∥2 (21)

and the average normalised estimation error squared (NEES)
of the final time instant’s position estimate

NEES300 =
1

NMC

NMC∑
i=1

([p300|300]estimate − [p300]true)
T

× [P300|300]−11:2,1:2([p300|300]estimate − [p300]true), (22)

TABLE I
NEES300 VALUES (22) AVERAGED OVER 1000 MONTE CARLO

REPLICATIONSFOR NAVIGATION WITH TWO SIMULTANEOUS
MEASUREMENT ANCHORS. ON THE LEFT ρ=5, AND ON THE RIGHT
r=0.5. THE NOMINAL NEES IS 2, SO GFSPF UNDERESTIMATES THE

POSTERIOR COVARIANCE MATRIX LESS THAN THE OTHER ALGORITHMS.

r EKF UKF IPLF GFSPF

0.1 1900 600 230 2.1

0.25 210 47 38 2.2

0.5 72 14 29 2.2

0.75 55 8.0 20 2.2

1 35 4.7 15 2.0

2 21 3.0 7.2 2.1

ρ EKF UKF IPLF GFSPF

0.5 49 1.1 11 2.5

1 56 5.6 11 2.5

2 69 12 15 2.7

3 73 22 22 2.6

4 70 23 23 2.3

5 76 23 25 2.1

where NMC is the number of Monte Carlo replications. Under
the hypothesis that the filter gives a realistic Gaussian pos-
terior, the NEES is chi-squared-distributed with 2 degrees of
freedom [25, Ch. 5.4.2]. Thus, the expected value of the NEES
should be 2.

Fig. 4 shows the RMSE distributions as a function of the
measurement noise standard deviation r and with ρ= 5. The
results are shown for scenarios with three and two simultane-
ous measurement anchors. The box levels are 5 %, 25 %, 50 %,
75 %, and 95 % quantiles of RMSE, and the asterisks show the
minimum and maximum values. The results are based on 1000
Monte Carlo replications per each value of r. With large r
values the proposed GFSPF outperforms the other methods in
accuracy. With small r and three simultaneous measurements
the proposed method shows slightly higher median RMSE
than UKF and IPLF but is reliable, having a low maximal
RMSE. When there are only two distance measurements per
time instant, the proposed algorithm is the most accurate with
any r also in median RMSE, although with small r UKF and
IPLF have occasional runs with very low RMSE. In almost
all scenarios, PFPF has accuracy similar or worse than that
of GFSPF. PFPF’s accuracy could be improved by adding
particles, but this would come with the cost of increased
computational burden.

The good performance of the proposed GFSPF in the two-
anchor case can be explained by the fact that this measurement
model is underdetermined and thus prone to multimodal
posterior distributions. When the exact posterior distribution is
multimodal, the proposed GFSPF tends to move some sigma
points to each mode, so the posterior approximation will have
the mean in between the modes and a covariance matrix that
covers all the modes. This difference is illustrated by Fig. 5.
In conclusion, the low-RMSE runs of UKF and IPLF are cases
where UKF and IPLF choose the correct mode, while they are
also likely to diverge when a wrong mode is chosen, which
makes GFSPF more reliable.

Fig. 6 shows the RMSE distributions as a function of
different anchor distances ρ and with measurement noise
level r = 0.5, for the cases with three and two simultaneous
measuring anchors. The proposed GFSPF is the most accurate
especially with small ρ and in two-measurements-only cases,
i.e. when the system is most nonlinear and underdetermined.
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Fig. 4. RMSE distributions for the distance measurement model as a function
of the measurement noise standard deviation r for three (upper) and two
(lower) measurement anchors.

Fig. 5. Gaussian prior and two distance measurements resulting in a bimodal
posterior. The posterior sigma point set of the proposed GFSPF tends to cover
all posterior modes, while IPLF typically converges to one mode. HDR75 is
the highest-density region that contains 75 % of the posterior probability.

With large ρ and three simultaneous measurements, the pro-
posed algorithm again shows a larger median RMSE but lower
maximal RMSE than UKF and IPLF.

Table I shows the average NEES300 values (22) for the
case with two simultaneous measurement anchors. The average
NEES of GFSPF is slightly larger than 2, which indicates
a slight underestimation of the posterior covariance matrix.
However, the other compared algorithms show drastically
larger NEES for most parameter values, indicating that they
underestimate the posterior covariance matrix more seriously
than GFSPF.

The computational burden of GFSPF with the eight-step λ-
discretisation is roughly 8·(2nx+1) times that of the EKF plus
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Fig. 6. RMSE distributions for the distance measurement model as a
function of the anchor distance parameter ρ for three (upper) and two (lower)
measurement anchors. The proposed GFSPF outperforms EKF, and UKF when
ρ is small or when there are only two measurements per time instant, i.e. when
the model is most nonlinear.

8 matrix square roots of nx×nx matrices. The runtime of our
GFSPF implementation is typically between one to five times
the IPLF’s runtime. IPLF becomes faster with large r and ρ
because the adaptive scheme sets the number of IPLF iterations
low. Because the number of particles in PFPF equals the
number of sigma points in GFSPF, the PFPF’s computational
complexity is at least as high as that of the GFSPF, in practice
considerably higher because PFPF involves extensive weight
computations.

C. Navigation with logarithmic-distance measurements

In this example we replace the measurement model (18b)
with logarithmic-distance model that is typically used with
received signal strength measurement measurements. The mea-
surement model used in this simulation is

[yk]j = −45− 17 log10

(
‖xk − sj,k‖

)
+ [vk]j , (23)

where [vk]j
iid∼ N(0, r2). We used r = 5, and the anchor

positions sj,k were generated similarly to the previous section.
The RMSE distributions for the case with three simltaneously
measured anchors are shown in Fig. 7. The results show
that with ρ ≥ 1 the proposed GFSPF outperforms the other
algorithms in median RMSE but has large maximal RMSEs.
This implies that the proposed filter can diverge when the
model is highly nonlinear. This seems to happen when a strong
signal strength is received and the filter covariance is large.
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Fig. 7. RMSE distributions for the logarithmic-distance measurement model
(23). The proposed GFSPF has low median RMSEs, but large maximal
RMSEs indicate that with a non-adaptive λ-discretisation the proposed filter
can diverge in highly nonlinear situations. The use of ode23 solver fixes the
divergence problem but increases computational burden.

Some linearisations are then made far from the anchor, which
can result in a bad approximation of the logarithmic model.

In order to better cope with the aforementioned situation, the
fixed ODE integration step could be replaced by an adaptive
stepping procedure. This algorithm variant is GFSPF-ODE23
in Fig. 7, which solves the ODE (4) using Matlab’s standard
ODE solver ode23 with the relative error tolerance 0.01.
Using the standard solver can increase the computational
burden by an order of magnitude, but the improvement in
position accuracy is impressive with small ρ. This indicates
that the divergence problem of the GFSPF is mainly only due
to insufficient ODE solver accuracy.

VI. CONCLUSIONS

In this paper we propose a novel deterministic approxi-
mative Bayesian filter that is based on the concept of flow
transformation, which is a function that transforms a prior-
distributed random variable into a posterior-distributed one.
The proposed filter uses three approximations:

1) Gaussian cubature based moment matching is applied to
the composition of the flow transformation and the time
update to approximate the filter prediction distribution.

2) The optimal flow transformation is approximated by the
approximate Gaussian flow transformation.

3) The approximate Gaussian flow ODE is integrated nu-
merically.

The filter is applicable to nonlinear and Gaussian state-space
models where the measurement function is differentiable. Our
simulations showed that the proposed filtering algorithm can
outperform some state-of-the-art low-complexity algorithms in
accuracy when the model is nonlinear. However, the proposed
filter occasionally diverges in some highly nonlinear models,
but this problem is rectified adaptively adjusting the step
lengths in the numerical integration of the flow. Future work
is however needed to speed up the adaptive-step solver.
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“Posterior linearization filter: Principles and implementation using sigma
points,” IEEE Transactions on Signal Processing, vol. 63, no. 20, pp.
5561–5573, October 2015.

[14] U. D. Hanebeck and M. Pander, “Progressive Bayesian estimation with
deterministic particles,” in 19th International Conference on Information
Fusion (FUSION), July 2016.

[15] R. Zanetti, “Recursive update filtering for nonlinear estimation,” IEEE
Transactions on Automatic Control, vol. 57, no. 6, pp. 1481–1490, 2012.

[16] Y. Huang, Y. Zhang, N. Li, and L. Zhao, “Design of sigma-point Kalman
filter with recursive updated measurement,” Circuits, Systems and Signal
Processing, vol. 35, no. 5, pp. 1767–1782, May 2016.

[17] M. Raitoharju, R. Piché, and H. Nurminen, “A systematic approach for
Kalman-type filtering with non-Gaussian noises,” in 19th International
Conference on Information Fusion (FUSION), July 2016.

[18] Y. Wu, D. Hu, M. Wu, and X. Hu, “A numerical-integration perspective
on Gaussian filters,” IEEE Transactions on Signal Processing, vol. 54,
no. 8, pp. 2910–2921, August 2006.

[19] I. Arasaratnam and S. Haykin, “Cubature Kalman filters,” IEEE Trans-
actions on Automatic Control, vol. 54, no. 6, pp. 1254–1269, June 2009.

[20] K. Ito and K. Xiong, “Gaussian filters for nonlinear filtering problems,”
IEEE Transactions on Automatic Control, vol. 45, no. 5, pp. 910–927,
May 2000.

[21] S. Särkkä, Bayesian Filtering and Smoothing. Cambridge, UK:
Cambridge University Press, 2013.

[22] U. D. Hanebeck, M. F. Huber, and V. Klumpp, “Dirac mixture approxi-
mation of multivariate Gaussian densities,” in 48th IEEE Conference on
Decision and Control (CDC), December 2009.

[23] M. Andrade Netto, L. Gimeno, and M. Mendes, “On the optimal and
suboptimal nonlinear filtering problem for discrete-time systems,” IEEE
Transactions on Automatic Control, vol. 23, pp. 1062–1067, 1978.

[24] N. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation,” IEE Proceedings F,
vol. 140, no. 2, pp. 107–113, April 1993.

[25] Y. Bar-Shalom, R. X. Li, and T. Kirubarajan, Estimation with Appli-
cations to Tracking and Navigation, Theory Algorithms and Software.
John Wiley & Sons, 2001.


