
  

  

Abstract— We study in this paper nonlinear control of a 

rotary DC servo motor application. To be more specific, we 

design a reduced-order two-degree-of-freedom (2DOF) 

composite nonlinear feedback (CNF) controller for a Quanser 

QUBE-Servo 2 unit with a disc attachment. We compare our 

results with a carefully tuned proportional-derivative (PD) 

controller with set point weighting. Our simulation and 

experimental results show that the closed-loop system using 

2DOF CNF controller yields much better set point tracking 

performance compared with the conventional PD-controller in 

terms of settling time. 

I. INTRODUCTION 

Transient performance is one of the most important 
characteristics for systems that require fast and precise 
command following. As regards to tracking step signals, 
transient performance is commonly measured by rise time, 
settling time and overshoot. It is well-known that shortening 
the rise time is usually accompanied by large overshoot, 
which eventually translates to increased settling time. 
Therefore, tradeoffs between swiftness and accuracy must be 
made in any typical controller design task. Furthermore, 
almost all real systems have limited control authority e.g., 
control inputs are restricted by actuator saturation 
constraints, which limit the achievable performance.  

Composite nonlinear feedback (CNF) has been proposed 
to overcome common design tradeoffs in linear control. In 
general, CNF controllers consist of linear and nonlinear 
feedback laws such that both laws contribute differently 
during the transient stage. The design of CNF controllers can 
be carried out by the following two design principles. First, a 
lightly-damped linear feedback part is designed for a swift 
response with large overshoot. Then, the linear feedback law 
is supplemented by a parallel-connected nonlinear feedback 
law, which delivers additional damping when the tracking 
error becomes small. That is, the nonlinear part focuses on 
the final stage of the transient response by increasing control 
effort when the output reaches the target reference. Such 
feature is the key property of CNF control, which effectively 
shortens the settling time of closed-loop control systems. In 
fact, additional design freedom can be obtained by 
fabricating a suitable set point filter, which focuses on the 
initial stage of the transient response. Such a filter helps to 
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adjust the initial part of the control input as required by the 
designer.  

The CNF methodology was originally proposed by Lin et 
al. in [1]. Since then, theoretical research has been active in 
scientific community. For example, Chen et al. laid the 
foundation for measurement feedback in [2]. Multivariable 
case was studied by He et al. in [3]. Cheng et al. have 
generalized CNF control for tracking general references in 
[4]. Lan et al. have introduced a scaled nonlinear function 
that achieves robust performance as regards to variation of 
step magnitude in [5]. Furthermore, Pyrhonen provided 
conditions for extending CNF control with arbitrary order set 
point filters, which allowed general dynamic compensators 
to be used in two-degree-of-freedom (2DOF) setting in [6]. 
Active theoretical research has resulted in many successful 
applications of CNF control in different areas of technology. 
For example, CNF control has been applied to hard disk 
drives [7–10], gantry crane systems [11], helicopter flight 
systems [12–14], servo position systems [15–16], robot 
manipulators [17], and chemical reactors [18].  

In this paper, we design a 2DOF CNF controller with a 
set point filter for a rotary DC servo motor; namely, for a 
Quanser QUBE-Servo 2 unit. The QUBE-Servo 2 unit is a 
small-scale testbed intended for education and research, 
which has two different attachments available for feedback 
control. We focus in this paper onto angular position control 
of the rotary disc attachment using an amplitude-constrained 
actuator. We compare the performance of our 2DOF CNF 
controller with a well-tuned Proportional-Derivative (PD) 
controller with set point weighting. We show that the 
tracking performance of our control system using 2DOF 
CNF controller is considerably better as opposed to PD-
controller in both simulation and experimental setups.  

We have organized the material in this paper as follows. 
In Section 2, we present the design procedure of the 2DOF 
CNF controller. In Section 3, we apply our method to the 
angular position control of Quanser QUBE-Servo 2 unit with 
the disc attachment. Finally, in Section 4, we draw some 
concluding remarks.  

II. TWO-DEGREE-OF-FREEDOM COMPOSITE NONLINEAR 

FEEDBACK CONTROL 

We consider in this paper the following class of SISO 
(Single-Input-Single-Output) systems with input nonlinearity 
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where x ∈ ℝ
n
, u ∈ ℝ, y ∈ ℝ and m ∈ ℝ

p
, p ≤ n, are the state, 

control input, controlled output and measured output, 
whereas x0 is an initial condition. The actuator saturation 
constraint is represented by  

  maxsat( ) min{ , }sgn( )u u u u= ,     (2) 

where umax is the saturation limit of the input and sgn denotes 
the sign function. In order to design a CNF controller, the 
following assumptions must be made 

A1: the pair (A, B) is stabilizable; 

A2: the pair (A, Cm) is detectable; 

A3: the triple (A, B, Cy) is invertible and has no invariant  
zeros at the origin; 

A4: the controlled output y is a subset of m i.e. y is also 
   measured. 

In what follows, we present the design procedure of the 
2DOF CNF controller with a dynamic set point filter. The 
procedure can be partitioned in three separate parts, which 
are: A) the design of a linear state feedback part, B) the 
design of a linear dynamic feedforward part, and C) the 
design of a nonlinear state feedback part.  

A. Design of Linear State Feedback Part 

First, assume that Cm = I. Then design a linear feedback 
law 

   
L x r su u u Kx R r= + = − + ,      (3) 

where r is the target step reference and K is the full state 
feedback gain. The gain K should be chosen such that a) all 
eigenvalues of the matrix (A – BK) have strictly negative real 
parts, and b) the closed-loop system Cy(sI – A + BK)

–1
B has a 

small damping ratio. Then the scalar-valued feedforward 
gain  

  1 1[ ( ) ]s yR C A BK B− −= − −        (4) 

assigns unity DC-gain for the model-based closed-loop 
system from the reference r to the controlled output y. We 
note that the inner inverse in (4) exists under the given 
assumptions. 

B. Design of Linear Dynamic Feedforward Part 

Consider the block diagram in Fig. 1, where an additional 
proper set point filter Gf (s) is now connected to the reference 
input path of the closed-loop control system. For a step input 
r = arr1 with ar being the step amplitude and r1 the unit step, 
the feedforward response uFF through the filter and 
feedforward gain can generally be expressed as  
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Figure 1.  Closed-loop control system with full-state 2DOF controller. 

   ,1( ) ( )FF s r fu t R a u t= ⋅ ,         (5) 

where uf,1 corresponds to the unit step response. The 
feedforward unit step response through the set point filter is 
subject to following conditions: 

• uf,1 → 1 in time i.e. the DC-gain of the filter must be 1. 

• uf,1  is differentiable from t > ts onwards, where ts is the  
step starting instant. 

• ,1fuɺ  is uniformly continuous. 

• ,1fuɺ  → 0, t → ∞. 

Please refer to [6] for more details. The designer chooses 
the pole-zero-pattern of the filter such that the decay speed 
of uf,1 is suitable for the closed-loop control system, and, that 
the magnitude of uL does not cause actuator saturation. 
Typically, set point filters are used e.g., to improve the initial 
stage of the transient response. 

C. Design of Nonlinear State Feedback Part 

First, specify a desired state xd using  

               1

,1 ,1( )d d r f s r fx R a u A BK BR a u−⋅ = − − ⋅≜ .   (6) 

Then form a 2DOF CNF control law 

       
L N x FF Nu u u u u u= + = + + ,          (7) 

where the parallel-connected nonlinear feedback law uN is 
given by 

 [ ] [ ]( , ) ( , ) T

N n d du r y K x x r y B P x xρ ρ= − = − ,      (8) 

where P = P
T
 > 0, and where ρ(r, y) is any nonpositive 

function locally Lipschitz in y. The function ρ(r, y) is used to 
smoothly change the closed-loop damping ratio, when the 
controlled output y of the system approaches the target step 
reference r. The matrix P can be obtained by solving the 
Lyapunov equation 

  ( ) ( ) 0
T

A BK P P A BK Q− + − + =      (9) 

for a given Q = Q
T
 > 0. The solution always exists since (A – 

BK) is stable.  

Next, choose a suitable function ρ(r, y) that is used for 
increasing the damping ratio of the closed-loop system, when 
the control error e → 0. In this paper, we select the nonlinear 
function 

  0( ) exp( ),  e e e r yρ β αα= − − = − ,       (10) 

where 

0
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which was originally proposed in [1], and revised in [5]. The 
function (10) is implementable, because y is part of m. 

The revised function (10) is able to adapt for varying step 
sizes, when CNF controller is commanded to follow non-unit 
step references. The tuning parameters α > 0 and β > 0 are 



  

chosen such that the closed-loop control system satisfies the 
desired transient performance requirements i.e., short settling 
time and small overshoot. Several ways to tune the nonlinear 
function exists in literature; see, for example: [5; 10]. The 
design of the 2DOF CNF controller is completed, once the 
tuning parameters α and β are fixed.  

Some important properties of the closed-loop control 
system comprising the system (1) and the 2DOF CNF 
controller must be addressed. For such purpose, we restate 
the following theorem from [6]. 

Theorem 1. Consider the system (1), the linear control 
law ux + uFF, and the composite nonlinear feedback law (7). 

For any δ ∈ (0, 1), let cδ > 0 be the largest positive scalar 
satisfying  

  max (1 ),  { : }TKx u x x x Px c Sδδ≤ − ∀ ∈ ≤ ≜ .    (12) 

Then, the linear control law ux + uFF tracks the step 
command r = arr1 asymptotically in time without saturating 
the actuator provided that x(0), xd(0), ar and uf,1 satisfy: 

( )(0) (0) (0)
d

x x x S− ∈ɶ ≜ and ,1 max ,  r fa H u u tδ⋅ ≤ ∀ ,  (13) 

where  

1[1 ( ) ]
s

H K A BK B R−− + −≜ .          (14) 

Furthermore, for any ρ as defined above, the composite 
nonlinear feedback law in (7) is able to asymptotically track 
the step command r = arr1 provided that (13) is satisfied. 

Remark 1. We can show that if the initial condition x0 = 0, 
then any step amplitude can asymptotically be tracked by the 
control law ux + uFF provided that 
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δ≤  and ,1 max ,  r fa H u u tδ⋅ ≤ ∀ .   (15) 

The result (15) also indicates that we can either increase or 
decrease the traceable magnitudes of the target step 
references by utilizing an appropriate set point filter. In 
either case, the dynamics of Gf (s) should always be faster 
than the dominating dynamics of the unfiltered closed-loop 
control system.  

Remark 2. A 2DOF CNF controller can be designed under 
measurement feedback i.e. when p < n, if the assumptions 
A1–A4 are satisfied. Specifically, if the system (1) can be 
partitioned as 
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then, a reduced-order 2DOF measurement feedback CNF 
control law is given by 
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where the gain LR is designed such that (A22 – LRA12) is 
stable. We note that CNF control under measurement 
feedback is discussed in detail in [2], when Gf (s) ≡ 1. 

III. DESIGN EXAMPLE 

In this section, we explain the components and hardware 
of Quanser QUBE-Servo 2 unit with a rotating disc. We also 
present the mathematical model of the system along with the 
control requirements and design constraints. Then, we design 
a reduced-order 2DOF CNF controller by following the three 
design steps from the previous section. We compare our 
controller’s tracking performance with Quanser’s Workbook 
PD-controller, which can be found in [19]. Furthermore, we 
experimentally fine-tune the PD-controller for the fastest 
possible strictly monotone response. We show that the 2DOF 
CNF results in much better tracking performance compared 
with the carefully tuned PD-controller.  

A. Quanser QUBE-Servo 2 Unit with Disc Attachment 

The QUBE-Servo 2 unit is a small-scale rotary DC motor 
application, which can serve as a good testbed for control 
algorithms intended for fast set point tracking. The rotating 
disc is driven by an Allied Motion CL40 (model 16705) 
direct-drive 18V brushed DC motor. The DC motor is 
powered by a Pulse-Width Modulation (PWM) amplifier 
with integrated current sense. The PWM amplifier receives 
control commands from Data Acquisition (DAQ) device, 
which is connected to a PC via USB connection. All 
controllers in this paper are configured in Matlab/Simulink 
environment using Quanser Real-Time Control (QUARC) 
software, which provide necessary blocks to communicate 
with the servo unit. The QUBE-Servo 2 unit with the disc 
attachment is depicted in Fig. 2. 

The angular position of the rotating disc is measured by a 
US Digital (model E8P-512-118) relative single-ended 
rotary optical shaft encoder, which generate 2048 counts per 
revolution. Such characteristics translate to 0.176 degrees 
per count accuracy. The motor encoder is connected to the 
DAQ device, which transmits the output data back to 
Matlab/Simulink environment via USB connection. The 
main parameters of the QUBE-Servo 2 device are listed in 
Table 1.  

 

Figure 2.  Quanser QUBE-Servo 2 unit with disc attachment. 



  

TABLE I.  QUBE-SERVO 2 DEVICE PARAMETERS 

 Symbol Description Value 

DC-Motor Rm Terminal resistance 8.4 Ω 

 kt Torque constant 0.042 Nm/A 

 km Back-emf constant 0.042 V/(rad/s) 

 Jm Rotor inertia 4.0 · 10-6 kgm2
 

 mh Hub mass 0.0106 kg 

 rh Hub radius 0.0111 m 

 Jh Hub inertia 0.6 · 10-6 kgm2
 

Disc md Disc mass 0.053 kg 

 rd Disc radius 0.0248 m 

 

The dominating dynamics of the QUBE-Servo 2 unit can 
be derived using first principles modeling, see [19]. The 
equations of motion are obtained using Kirchoff’s law  

    ( ) ( ) ( ) 0m m m m mv t R i t k tω− − = ,       (18) 

where vm is the motor voltage, Rm is the terminal resistance, 
im is the motor current, km is the motor back-emf constant, 
and ωm is the angular speed of the motor. The motor shaft 
equation can be expressed as 

   ( ) ( )eq m mJ t tω τ=ɺ ,        (19) 

where Jeq is the total moment of inertia acting on the motor 
shaft, and where τm is the applied torque from the DC motor. 
The torque τm is given by 

  ( )m t mk i tτ = .         (20) 

The total moment of inertia is 

      eq m h dJ J J J= + + ,         (21) 

where Jm is the rotor inertia, Jk is the hub inertia, and Jd is the 
disc inertia given by  

     21

2
d d dJ m r= .         (22) 

Based on the equations (18)–(22), we can write the following 
set of first-order ordinary differential equations 
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The motor voltage vm is the control input u, which is limited 
by umax = 15V. 

Unfortunately, we can only measure the relative angular 
position of the disc attachment θ, which is also the controlled 
output. Therefore, the output equations are 

    [ ]1    0 ,  (0) (0) 0m y m
θ

θ θ
ω
 

= = = = = 
 

.        (24) 

Nonetheless, it is easy to see that all assumptions A1–A4 are 
satisfied. Therefore, we can design a reduced-order 2DOF 
CNF controller for the QUBE-Servo 2 unit. In what follows, 

we present the control requirements, design constraints and 
controller design.  

B. Requirements, Constraints and Controller Design 

Here, feedback controllers must be designed according to 
the following requirements and design constraints: 

• The set point response should be monotone for a  
     large amplitude step reference; 

• The settling time Ts as measured by the 2% criterion 
should be as short as possible; 

• The control input voltage vm is limited by ±15V; 

• The phase margin PM should be ≥ 35 degrees; 

• The gain margin GM should be ≥ 2; 

• The stability margin sm should be ≥ 0.5. 

We begin by designing the linear feedback part of the 2DOF 
CNF controller. First, we place the dominating pair of the 
closed-loop poles at 

2 1 15 35
n n

s j jζω ω ζ= − ± + = − ± ,     (25) 

which corresponds to the damping ratio ζ ≈ 0.3939 and 
natural frequency ωn ≈ 38.08 rad/s. The chosen pair of poles 
results in state feedback and reference tracking gains: 

   [6.0606    0.0834]K =         (26) 

1 1[ ( ) ] 6.0606s yR C A BK B− −= − − = .         (27) 

Next, we select an appropriate set point filter that would 
improve the initial stage of the transient response. It is 
reasonable to choose the filter dynamics with respect to e.g., 
the rise time of the unfiltered step response. We find that the 
rise time Tr of the closed-loop system is approximately 40 
milliseconds. We therefore use Tr as a design parameter, and 
we require that the transient response through the filter 
converges to the desired value of the given step reference 
within Tr. The requirement motivates us to select the 
following set point filter 

0.011 1
( )

0.0091 1
f

s
G s

s

+=
+

,         (28) 

which completes the design of the linear feedforward part. 

In what follows, we design the nonlinear feedback part of 
the 2DOF CNF controller. For such purpose, we solve the 
Lyapunov equation (9) for Q = diag(15, 1), which results in 

     
24.5718    0.0052

,  0
0.0052      0.0168

T
P P P

 
= = > 
 

.     (29) 

The gain of the nonlinear part is then given by 

      [1.2375    4.0288]T

n
K B P= = .       (30) 

Then we seek suitable tuning parameter values for the 
nonlinear function (10). It is clear from (10) that the function 
ρ → –β when e → 0. Therefore, we select the parameter β 
such that the damping ratio of the closed-loop system is large 
when the control error becomes small. We select β = 0.16, 
which yields the desired result. Then, we need to select the 
parameter α for appropriate convergence speed when e → 0. 
Following a few simulation tryouts, we find that α = 8 gives 



  

satisfactory performance. Finally, we select the reduced-
order observer gain LR = 150. Our reduced-order 2DOF CNF 
control law is then given by 

 160.0485 239.2509sat( ) 24007 ,  (0) 0v v m vx x v xθ= − + − =ɺ  
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with 

       0( ) 0.16exp( 8 ),   ,  e e e r m yρ α θ θ= − − = − = = .   (32) 

We compare the performance of our 2DOF CNF 
controller with the Quanser’s Workbook PD-controller in 
[19]. The PD-controller in [19] is implemented using 
position-velocity algorithm, in which the derivative path acts 
on the negative velocity instead of the velocity of the error. 
Such construction is equivalent to 2DOF set point weighting, 
where the error signal ec(t) = cr(t) – m(t) with c = 0 is fed 
into the derivation channel of the PD-controller. This type of 
controller is also known as the preceded-derivative PD-
controller, see e.g., [20] for more details. The structure of an 
ideal proportional-velocity controller is 

( ) ( ( ) ( )) ( )p du t K r t m t K m t= − − ɺ ,      (33) 

where Kp is the proportional gain and Kd is the velocity gain. 
Furthermore, a first-order low-pass filter is used in-line with 
the derivative action to suppress measurement noise, and to 
ensure feasible implementation of the derivative action. 
Therefore, the derivation is implemented through the transfer 
function 

  ( )
f

f

s
G s

s

ω
ω
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,            (34) 

where ωf is the cut-off frequency of the filter. In general, the 
cut-off frequency is chosen such that appropriate filtering is 
maintained without distracting the signal components of the 
controlled output. The parameter values for the Quanser’s 
PD-controller are Kp = 6.10, Kd = 0.25 and ωf = 100. In what 
follows, we present our simulation results for the 2DOF CNF 
controller and for the preceded-derivative PD-controller. 

C. Simulation Results 

Here, time domain simulations are performed using a 
step reference with magnitude ar = 2 rad, which is roughly 
115 degrees. The step is large enough to utilize full-scale 
control voltage for the DC motor. We have collected the 
closed-loop tracking performances in Fig. 3 along with the 
control components ux, uFF and uN. We have recalibrated the 
gain Rs = [Cy (A–BK–βBB

T
P)

–1
B]

–1
 to cancel a small steady-

state bias introduced by uN. Referring to Fig. 3, the 2DOF 
CNF controller gives considerably better tracking 
performance compared with the PD-controller. We have also 
included the performance of a strictly linear measurement 
feedback controller consisting of the state feedback gain 
(26), reference tracking gain (27), set point filter (28), and 
the reduced-order observer with the gain LR = 150.  

We see that the lightly damped linear controller does not 
give satisfactory tracking performance, and the settling time 
is far worse compared with the 2DOF CNF. We would like 
to note that the 2DOF CNF controller yields an identical 
initial transient performance as the strictly linear 
measurement feedback controller does. However, when the 
control error e → 0, the nonlinear feedback part of the 2DOF 
CNF activates. Because of such activation, more control 
energy is used at the late stage of the transient response, 
which better utilizes actuator capabilities. As a result, a notch 
is observed in controller’s output, which suppresses 
overshoot of the linear part. Such feature is the key property 
of all CNF controllers, which effectively reduce settling time 
of closed-loop control systems.  

Next, we investigate stability properties of the control 
systems using open-loop frequency responses. For such 
purpose, we set the reference input r = 0, and draw the 
Nyquist plots of the open-loop systems into Fig. 4. As 
regards to CNF control, we have included two Nyquist plots, 
which correspond to 1) the initial system when ρ = 0, and 2) 
the final steady-state system when ρ = –β. The initial system 
is identical to the strictly linear measurement feedback 
system, which smoothly and automatically changes towards 
the final system when e → 0.  

 
Figure 3.  Simulation result: tracking performances of closed-loop systems. 

 
Figure 4.  Simulation result:  open-loop Nyquist-diagram. 



  

According to Fig. 4, all control systems satisfy all 
frequency domain design constraints. Also, the maximum 
sensitivities of all control systems are less than 2, because 
the maximum sensitivity is given by the reciprocal of the 
stability margin [21]. We would like to note that the set point 
filter (28) increases the closed-loop bandwidth (BW) from 
the target reference r to the controlled output y. However, it 
does not affect to stability properties of the control loop, and 
hence, the open-loop Nyquist plots are the same regardless 
of the filter. We can therefore tune the 2DOF CNF controller 
such that the Nyquist curves stay outside the stability margin 
circle, and, at the same time, we can speed up the initial 
stage of the transient response without compromising the 
control loop robustness.  

Nonetheless, we simulate the effect of parameter 
uncertainties to the closed-loop tracking performances by 
perturbing the disc load characteristics. To be more specific, 
we assign ±30% perturbations on the disc mass and disc 
radius, which change the disc inertia more than ±50%. The 
step responses of closed-loop control systems under such 
load perturbations are depicted in Fig. 5. Judging from Fig. 
5, the system using 2DOF CNF controller is much better 
with smaller loads, but the system using PD-controller seems 
to be better when the load increases. 

D. Experimental Results 

In this subsection, we test controller performances using 
the actual device. We reselect β = 0.23, since we observed 
small overshoot on the step experiment. Otherwise, we keep 
the tuning of the 2DOF CNF controller unchanged. The 
experimentally obtained step responses are collected in Fig. 
6. We observe very similar responses as in the previous 
subsection. However, we want to push the performance of 
the preceded-derivative PD-controller as good as we can. 
Performing several tests using the actual equipment, we find 
that the tuning of the PD-controller can somewhat be 
improved. The best PD-controller that results in strictly 
monotone response under the limited control authority is 
achieved by Kp = 7.5, Kd = 0.23, and ωf = 150. The tracking 
performance of the retuned PD-controller is compared with 
the 2DOF CNF controller in Fig. 7. 

 
Figure 5.  Simulation result: tracking performances of closed-loop systems 

under load perturbations. 
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Figure 6.  Experimental result: tracking performances of closed-loop 

systems. 
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Figure 7.  Experimental result: tracking performances of closed-loop 

systems with retuned PD-controller. 

Referring to Fig. 7, the performance of the PD-controller is 
clearly improved; although, the settling time is still about 
20% slower compared with the 2DOF CNF controller. 
Attempts to make PD-controller any faster will result in an 
overshoot, or to saturated actuator. That is, we cannot select 
the fixed tuning parameter values of the PD-controller such 
that short settling time and small overshoot could 
simultaneously be achieved. We also note that the system 
with retuned PD-controller is more sensitive to load changes, 
i.e. the set point response is deteriorated with heavier loads. 

We have collected all relevant performance measures 
into Table 2. As regards to 2DOF CNF control, we have 
included an interval of values for some performance 
measures. The initial value of the interval corresponds to the 
initial system when ρ = 0. The end value of the interval  



  

TABLE II.  QUBE-SERVO 2 PERFORMANCE MEASURES 

 2DOF CNF PD retuned PD 

Ts (ms) 56.8 129.7 71.1 

GM ∞ ∞ ∞ 

PM (deg) 39.0–77.5 66.5 78.3 

sm 0.63–0.87 0.77 0.83 

BW (rad/s) 63.1–125.3 25.7 44.4 

 

corresponds to final system when ρ = –β. In literature e.g., in 
[9], the final system characteristics are used to report 
stability properties of CNF control. We believe that the final 
system characteristics are more representative than the initial 
system characteristics are, because the control system is 
expected to operate most of the time like the final system. 
The closed-loop system with CNF controller functions as an 
initial system only instantly when the reference input is 
changed, and then, the initial system smoothly changes 
towards the final system.  

The bandwidth of the closed-loop system with 2DOF 
CNF controller also changes significantly between the initial 
and final systems. Such feature is not surprising, since one 
pole of the closed-loop system is drawn towards a strictly 
real stable invariant zero, which is placed relatively close to 
the imaginary axis. The location of the zero is here 
determined by the ratio of the gain elements of the nonlinear 
part. That is, the zero is placed at s = –1.2375/4.0288 = –
0.3072.  

We would like to note that all feedback controllers in this 
paper have the same dynamic order. However, the 2DOF 
CNF controller results in better tracking performance, 
because it has more structural freedom to generate feedback 
control compared with strictly linear controllers of the same 
order. Hence, we can conveniently adjust the shape of the 
responses using additional design freedom under the given 
constraints and limitations. 

IV. CONCLUSION 

We have designed in this paper a reduced-order 2DOF 
CNF controller for a rotary servo system; namely, to a 
Quanser QUBE-Servo 2 unit with a disc attachment. We 
compared the performance of our reduced-order 2DOF CNF 
controller with a carefully tuned preceded-derivative PD-
controller. Our simulation and experimental results show that 
the closed-loop system with the 2DOF CNF controller yields 
much better set point tracking performance as opposed to the 
closed-loop system with the PD-controller. 
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