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Abstract—This short empirical paper investigates a snapshot
of about two million files from a continuously updated big
data collection maintained by F-Secure for security intelligence
purposes. By further augmenting the snapshot with open data
covering about a half of a million files, the paper examines two
questions: (a) what is the shape of a probability distribution
characterizing the relative share of malware files to all files
distributed from web-facing Internet domains; and (b) what is the
distribution shaping the popularity of malware files? A bimodal
distribution is proposed as an answer to the former question,
while a graph theoretical definition for the popularity concept
indicates a long-tailed, extreme value distribution. With these two
questions – and the answers thereto, the paper contributes to the
attempts to understand large-scale characteristics of malware at
the grand population level – at the level of the whole Internet.

Index Terms—malware, web crawling, security intelligence

I. INTRODUCTION

This short paper operates with two theoretical concepts:
distribution and popularity, both of which are observed through
downloadable files. A distribution rate is defined as the share
of malware files to all files made available for download from
a domain. Analogously, the popularity of a malware file is de-
fined as the number of domains that have distributed the same
unique file. These two concepts are utilized for investigating a
dataset that covers over two million files from which well over
hundred thousand are suspected to be malware. The empirical
analysis operates under a so-called post-mortem setting, which
is a common approach in network forensics research and
practice [1]. In other words, it should be emphasized that
the dataset provides only a snapshot for analyzing a historical
period from late 2015 to early 2016. In general, the intention
is to hypothesize about the population level characteristics
behind the two subsequently operationalized concepts. For this
purpose, the investigated snapshot is credible and even ideal.

A. Distribution
The primary data source is based on a web crawling frame-

work. To quickly outline the underlying crawling framework

from a software engineering perspective, consider three basic
modules: a crawler C, a milker M, and a pool of detectors
for malicious software, D1, . . . ,Dd. Ideally, a single crawling
snapshot would output a sample that is generalizable to the
whole web-facing Internet – and theoretically even the Internet
beyond WWW. The crawler thus crawls the Internet, using an
initial seed of web sites for moving onward in a continuously
updated graph comprised of WWW hyperlinks. For each
hyperlinked host, whether a domain or an IP address, C passes
the links forM, which “milks” [2] the links for downloadable
files, irrespective whether a subsequent download occurs via
the hyper text transfer protocol, the file transfer protocol, or
any other supported, conventional protocol for transferring
files. Having milked all files for a given host, M then passes
the downloaded files for D1, . . . ,Dd, which classify the files
as “clean” or “malicious” according to best of their abilities.

While not necessitated by the general framework, in this
paper a further module, say aggregator A, preprocess the raw
sample by first (a) excluding hosts represented as IP addresses
in the embedded hyperlinks, and then (b) aggregating the
remaining fully qualified domain names to the second-highest
level. That is, to use a so-called λ-notation [3], this aggregation
is done by separating the 2-LD and the top-level domain
(1-LD) from the associated uniform resource locators, and then
summing the output from D1, . . . ,Dd accordingly.1

Then, for the i:th file, fi, in a non-empty set of files,
fi ∈ Fj , downloaded from the j:th crawled, milked, and
aggregated 2-LD/1-LD, the k:th detector outputs an integer:

δkfi | Fj
= Dk(fi | Fj) =

{
0 if the file is clean, and
1 if the file is malicious.

(1)

1 Henceforth, the term domain is also a synonym for a 2-LD/1-LD.



The overall detection rate can be thus defined as:

δfi | Fj
= s

(
1

d

d∑
k=1

δkfi | Fj

)
, s(x) =

{
0 if x ≤ τ
1 otherwise

, (2)

where s(x) is used to dichotomize the relative rate according
to a predefined threshold scalar 0 ≤ τ < 1. The simplest case
would be τ = 0 and, hence, s(x) would be a simple indicator
function, outputting zero only in case all of the d detectors
agreed upon the “cleanness” of a fi associated with the set of
downloaded files Fj from a given aggregated domain.

Analogously, the relative detection rate in (2) can be ex-
tended to the files distributed from the j:th domain:

r = δFj =
100

|Fj |

|Fj |∑
i=1

δfi | Fj
. (3)

In other words, a domain’s distribution rate of malware files
is simplified to a percentage computed from

r = # of malicious files
/

# of all files× 100, (4)

which is a simple but sufficient metric to proxy the hy-
pothesized population level distributional characteristics. Even
though the aggregation with A leads to the presence of
encompassing domains, such as co.uk, malware is still only
a tiny drop in the ocean of files distributed in the web-facing
Internet. Therefore, it should be expected that a vector-valued
r = [r1, r2, . . .]

′ from a mass-scale crawling endeavor would
show a large subsample of zero-valued distribution rates.

B. Popularity

A graph theoretical approach is well-suited for quantifying
the popularity of a unique malware file. Motivated by recent
work [4], the MD5 hashes associated with each file are used
to construct an undirected bipartite graph as follows. First, for
each milked file, a MD5 hash is added to the graph as a vertex
with a binary-valued label from (2). Second, each 2-LD/1-LD
is added with a label that identifies the added vertex as a
domain. Third, edges are placed between domains and the
distributed files (hashes) from these domains, such that two
domains are “connected” via an additional file-labeled vertex
in case these two domains have shared at least one unique file.

This labeled graph representation allows to define the pop-
ularity of a particular file: it is the degree of a file-labeled
vertex; the number of domains that have distributed the same
unique file. The label set of the MD5 vertices allows to
further identify whether a given file is clean or malware. While
differing slightly from existing operationalizations [5], this
degree-based definition is intuitive and easy to use in practice.2

II. EXPERIMENTAL RESULTS

The experimental empirical results are presented in two brief
steps: after having outlined the dataset, the distribution and
popularity metrics are evaluated with descriptive statistics.

2 It should be emphasized that the graph construction is only a convenient
abstraction; the interest is to observe the probability distribution characterizing
the popularity of files – and not the bipartite graph construction as such.

A. Data

The dataset is assembled from two continuously updating
data sources. The primary part – amounting to about 85 % of
the files – comes from a module in the security intelligence
infrastructure of a well-known security company, F-Secure.
This proprietary data source is augmented with an open data
feed from a project known as “CleanMX” [6], which has
provided a valuable data asset also previously [7]. No attempts
are made to separate different taxonomic types of malware
files; every kind of “maliciousness” is covered from the “drive-
by-download-style” (cf. [2], [5]) Flash exploits to traditional
computer viruses embedded in Windows executables.3

B. Results

The results can be summarized by starting from the graph
theoretical popularity metric. A basic breakdown can be
conveniently represented by subsetting the degree distribution
according to the labels that the vertices carry. This breakdown
is shown in Fig. 1. The upper-left plot (a) refers to the whole
graph, ignoring the subsequently illustrated label subsets.
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Fig. 1. Vertex Degree Histograms
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Fig. 2. The Popularity of Malware Files (GPD quantile-quantile)

3 It is important to further point out a third “intermediate” source of
empirical data, VirusTotal [8]. In other words, all of the 2,139,414 files
milked by M were further passed to VirusTotal such that, for each file,
the abstract detectors D1, . . . ,Dd refer to the tens of proprietary and open
source detection engines that VirusTotal uses to scan a particular file type.
The threshold scalar in (2) was set to the highest possible alert level. While
this choice, τ = 0, presumably increases the number of false positives and
negatives, there exists a statistical trade-off: as τ → 1, the applied ground for
statistical analysis reduces due to the diminishing amount of files detected as
being malicious. Moreover, regarding practical applications, the value τ = 0 is
not necessarily a bad choice for logging entries in proxy servers, say. Finally,
it is worth noting that only 8,627 (or about 3 %) hosts were represented as
IPv4s, and, thus, the sample is not biased by the exclusion of these addresses.



As can be seen, the degree distribution is highly similar
in all subsets. Although the majority of vertices have only a
low degree, the distribution exhibits also a substantial positive
skew caused by the outlying vertices at the right tail. Moreover,
by turning the attention to the last two plots, (c) and (d), it
is evident that no large differences exist between the files
that were detected as clean and malware. On average, a
single unique file is typically distributed from a single unique
2-LD/1-LD. While the standard deviations are also rather
small, these are mostly caused by the few extreme outliers.

The popularity metric can be hypothesized to follow any
of the so-called extreme value distributions (Gumbel, Fréchet,
and Weibull) including the often used generalized Pareto dis-
tribution (GPD). This conclusion is enforced by Fig. 2, which
uses the quantile function shipped in the evir R package [9]
for computation. The two extreme outliers are suspected to
be Flash exploits, although only by two detection engines.
These two popular files – whether truly malicious or not – are
located in the bottom-right disconnected subgraph in Fig. 3,
which was constructed by first obtaining all malware file
vertices with a degree of 25 or more, and then querying for
all domain-labeled vertices to which these were adjacent to.
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Fig. 3. Subgraphs of Popular Malware Files
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The distribution rate across the about 0.3 million domains
is summarized in Fig. 4. As was expected, the clear majority
(about 92 %) of the aggregated domains have not distributed
malware files at all. More interestingly, however, only a rela-
tively few domains exhibit a rate in the interval 0 < r < 100.
That is to say: those domains that have distributed malware
files have mostly distributed these without also distributing
clean files. The total share of “100 % malware distribution”
is about 3.8 %, but the share of r = 100 to r > 0 is as high

as 47 %. Thus, for some supervised learning tasks, it may be
reasonable to further dichotomize (4) according to a threshold.

III. DISCUSSION

The remainder of this paper briefly summarizes the key
empirical results, points out five limitations, and enumerates
a few further directions for empirical malware research.

A. Findings

This short empirical paper operated with two theoretical
concepts. The first was popularity, which was operationalized
as the degree of labeled vertices representing malware in a file-
based graph representation. The degree was observed to follow
a typical long-tailed probability distribution; the well-defined
GPD provides a decent reference point for the popularity of
malware files. The other concept was distribution of malware
files, which was defined as the rate of malware files to all files
distributed from a given aggregated domain. This rate can be
hypothesized to follow a bimodal probability distribution at
the population level of the contemporary web-facing Internet.

That is, on one hand, the majority of domains distribute
only clean files, but, on the other hand, there is supposedly
a subpopulation that only distribute “near 100 % malware”
files. In-between these two polar opposites seems to be a
relatively small mixture compromised of domains to which
malware is dropped to accompany other files distributed from
the domains. The domain dropbox.com is a good example
both empirically (with r ' 2 %) and metaphorically. Although
it was beyond the scope of the paper to evaluate how many
of the observed malware files refer to software designed to
compromise web browsers, it thus seems reasonable to con-
clude that web surfing is not safe even in common and popular
2-LD/1-LDs. But this conclusion may also sound like a truism.
Therefore – and since both operationalizations are also good
at picking for statistical outliers, it can be also concluded that
no web surfer should end up to some of the domains that
represent the “near 100 % malicious” subpopulation within the
hypothesized population level probability distribution mixture.

Thus, in terms of conventional blacklist-style solutions, the
results reveal the enduring ground truth problem. On one hand,
the results exemplify why there continues to be a demand for
different blocking solutions. On the other hand, it continues to
be difficult to classify domains, addresses, and files – not least
because even Google may not always classify to the benign
category. While different popularity lists (such as the one
provided by Alexa) are frequently used to proxy the benign
category [10], the results thus reinforce the argument about
bad ground truths that these lists may induce [11]. Against this
backdrop, it may be that further advances are more likely in
the security intelligence domain, including security analytics,
outlier detection, and related areas of research and practice.

B. Limitations

Five notable limitations can be enumerated, but these should
be also balanced against the specified goal of hypothesizing
about the population level characteristics. It can be started by



acknowledging (i) the limitations imposed by a post-mortem
analysis; nothing can be concluded regarding dynamics.

This paper analyzed over two million files distributed from
nearly three thousand aggregated domains. While the amounts
are large, (ii) care should be always used when attempting
generalizations to the whole web-facing Internet. A more
direct concern relates to the (iii) aggregation to 2-LD/1-LDs,
which affects particularly the computed distribution rates. This
limitation goes hand in hand with the crawling according to
WWW hyperlinks: for instance, the denominator in (4) should
make the rates negligible for domains such as google.com
and github.com, which was not observed to be the case
in the dataset. Moreover, (iv) the sample distribution for the
observed r is directly affected by the scalar τ in (2). It may
be that the utilized maximum alarm rate – the agreement
of all of the D1, . . . ,Dd detectors – is not optimal due to
the poor detection rate (i.e., false positives) of some of the
engines aggregated by VirusTotal [8]. Finally, (v) malware is
“always the same, never the same” [12], and, thus, it should
be acknowledged that any modification to a malware file will
change the associated MD5 hash, which will consequently
disturb the simple popularity concept elaborated in this paper.

C. Future Research

The limitations of this paper also open plausible questions
for further empirical research. For instance, to assess the
severity of the limitation (ii), evaluation of the IP address
space coverage would offer a good basic check [13]. Empirical
evaluation of the limitations (iii) and (iv) would be also rela-
tively straightforward to carry out. While conventional mixture
modeling [14] could be adopted for pursuing the discussed
points further, an evaluation of these intervening quantities
would be generally beneficial for making advances with formal
Bayesian models based on informative prior distributions.

It also seems reasonable to further continue the initiated
work [4] for extending the scope from the conventional
domain-based malware graphs. In this respect, the paper
continues the work (here see [15]) for moving forward with
different relational file-to-file representations [16]. To address
the limitation (v), in turn, a theoretically motivated taxonomic
approach to graph clustering could be adopted for examining
the relational characteristics of malware species rather than
individual malicious files. By considering how the so-called
drive-by-download and related techniques work [2], [5], it
seems reasonable to further hypothesize that average-to-high
range distribution rates would be associated with a particular
kind of malware species, for instance. This hypothesis also
exemplifies the need for both active and passive harvesting
techniques; the command and control channels are typically
different from the channels that are used to download malware
to compromised hosts [17]. Finally, it may well be that the so-
called dark (deep) web would offer a more fertile ground for
harvesting malware files – and the crawling of this Internet
subpopulation is a non-trivial technical challenge in itself.
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