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Abstract—Millimeter-wave (mmWave) systems suffer from a
significant loss in performance when the line-of-sight (LoS) path
between the transmitter and the receiver is obstructed due to
blockage caused by humans or other obstacles. However, due
to blocker or user motion, the mmWave receiver may transition
between the LoS and non-LoS (nLoS) states. Following the recent
3GPP requirements on spatial consistency for channel modeling,
this paper aims to analyze the spatial correlation of blockage
statistics and characterize their evolution due to user mobility in
a static field of blockers in urban mmWave systems. In particular,
we derive conditional probabilities of residing in LoS or nLoS
state at a given time t1, provided that a user was in LoS/nLoS
state at a prior time t0. We demonstrate that for realistic values
of user speed, the angle of motion, height of transmitter and
receiver, as well as the density of blockers, there always is a
significant correlation between user channel states at time t0
and t1, across the time scales relevant for mmWave resource
scheduling. Hence, our model can serve as an important tool for
optimizing system performance in the presence of blockage.

I. INTRODUCTION

The need for more capacity at the air interface has led to the
standardization of next-generation wireless communications
systems (also named “5G”) operating in lower parts of the ex-
tremely high frequency (EHF) band. Having large bandwidths
at their disposal, the so-called millimeter-wave (mmWave)
technologies are expected to provide the shared rate of around
few Gbps enabling throughput-demanding applications and
services [1]–[3].

The performance of mmWave systems operating in the EHF
band is severely affected by the presence of objects in the
wireless channel. As opposed to lower frequencies, mmWaves
cannot travel around many objects, thus producing “shaded”
locations. Although reflections and diffuse scattering effects in
the channel may allow for non-line-of-sight (nLoS) communi-
cation, the system performance degrades significantly [4]. As
a result, more resources are needed to satisfy user demands
when line-of-sight (LoS) is unavailable. In realistic conditions,
where a user moves within the coverage area of a mmWave
access point, time intervals of “good” and “bad” channel
quality alternate affecting the resource allocation.

According to the latest requirements by 3GPP on a new
channel model supporting “5G” communication in the range
of up to 100 GHz, the small-scale mobility for scenarios such
as device-to-device communication should be considered. In
addition, the spatial and temporal consistency of the LoS/nLoS
states across all user positions is of particular importance for

possible massive multiple-input and multiple-output (MIMO)
implementation and beam tracking. The channel model in
question should be able to capture a smooth change in the
LoS/nLoS states as a function of time [5], [6].

The aspects of LoS blockage have been addressed in a
number of previous papers [7]–[10]. In [7], the authors studied
the problem of LoS blockage, where the buildings block
the direct propagation path. The model was introduced for
the infinitesimally-small receiver dimension and the blockers
occluding the LoS path were distributed uniformly. The said
model is similar to the distance-dependent approaches used in
3GPP’s urban outdoor micro-cellular model [8]. The compar-
ison between different LoS models for cellular systems, all
having various levels of detail, has been completed in [9].

Our previous work in [10] takes into account the key
parameters, such as the heights of the transmitter (Tx) and
receiver (Rx), the distance between them, the random width
and the height of blockers, as well as the human user density
across the landscape. These past studies, however, offer a
limited insight into blockage modeling. The dependence of
the current state of a user on the blockage probability has
not been considered and existing results only characterize the
unconditional probability for a user to be in LoS/nLoS.

The work on spatially consistent large- and small-scale
parameters was summarized in [6]. The spatially consistent
parameters such as cluster-specific random variables and
LoS/nLoS states were generated using the interpolation of in-
dependent and identically distributed (i.i.d) random variables.
However, this approach did not consider the human body
blockage in defining spatially consistent LoS/nLoS states. In
[5], such blockage was modeled with rectangular screens
dropped onto the simulation map. Further, in [11], the real
measurements corroborated an approximation of the attenua-
tion from the human body by the rectangular screen.

However, that model requires tracking of every blocker
across the simulation area, which is computationally expen-
sive. In addition, reliance on statistical data does not always
allow for setting all of the required parameters flexibly. Finally,
in [12], the authors proposed a model for the temporal correla-
tion of interference in a mobile network with a certain density
of users. It was demonstrated that correlated propagation states
among users significantly impact the temporal interference
statistics. However, such analysis did not consider the specifics
of human blockage, but only the mean number of obstacles.



In this paper, against the above background, we outline a
novel model for the mobility of Rx associated with a mmWave
access point in the static field of blockers. The proposed
model allows considering the spatial consistency of the user’s
states (LoS/nLoS) across different positions. Our analytical
framework is able to assess the current state of a user as
well as predict the future state evolution after n transmission
time intervals (TTIs). The trajectory of Rx is assumed to be a
segment of a line with the known angle of motion, velocity,
and initial position.

Our results demonstrate that (i) when the time interval
between the states of interest is large, there is no dependence
on the states of a user, (ii) at TTI timescales, there is high
dependence between the states of the user, and (iii) the
dependence between the current and future states of a user
decays almost linearly. Our proposed model allows identifying
the dependence time as well as characterize the transition
probability between LoS and nLoS conditions in a specified
amount of time.

II. SPATIAL SYSTEM MODEL

Consider the scenario illustrated in Fig. 1. The Tx and Rx
are located at heights hT and hR, respectively. The Rx is
moving along a line with the speed of V and the base of Rx
is at the distance r0 from the base of Tx at time t0. Humans,
as potential blockers, are distributed over the landscape and
modeled as cylinders [13] with the random height H and
the constant base diameter dm. We assume that the mixture
of users’ heights can be closely approximated by a Normal
distribution H ∼ N(µH , σH) [14]. The centers of cylinder
bases are assumed to follow a Poisson point process (PPP) on
a plane with the intensity of λ. The size of Rx is assumed to
be infinitesimally-small.

Further, Fig. 2 demonstrates the top-view geometric inter-
pretation of the considered scenario. At time t0, Rx is at the
distance r0 from Tx. As Rx moves at the constant speed V , it
travels the distance of d0 = (t1−t0)V during the time interval
t1−t0. The angle α denotes the direction of travel. Specifically,
α is the angle between the segment of line connecting Tx

t1 - time after n TTIs
t0- initial time instant 
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Fig. 1. The considered scenario for our analytical modeling.
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Fig. 2. The geometry of the considered scenario.

and Rx at time t0 and the segment connecting Rx at time
t0 and t1. Neither velocity nor angle α change during the
considered time interval. At the time instant t1, Rx is at the
distance r1 from Tx. The metrics of interest are the conditional
probabilities of LoS/nLoS at time t1 given that at time t0
there is LoS/nLoS between Tx and Rx. In what follows, we
first obtain the unconditional LoS/nLoS probabilities and then
proceed with deriving the conditional ones.

III. CONDITIONAL LOS/NLOS PROBABILITIES

In this section, we characterize the short-timescale behavior
of a mobile user under the assumption that all the possible
blockers are stationary. Our aim is to determine the depen-
dence between the LoS and nLoS states at time instants
t0 and t1 for the timescales relevant for mmWave resource
scheduling, as it will be shown in Section IV.

A. LoS/nLoS Probabilities
Before deriving the conditional LoS/nLoS probabilities, we

briefly remind the probability of LoS/nLoS at an arbitrary time
instant t, when Rx is at a certain distance r from Tx. The
probability of LoS is provided in [10] in the form of

PLoS = p0 +

∞∑
i=1

pi

i∏
k=1

∫ r

0

fR(x)×

× FH
(
hT r − (hT − hR)x

r

)
dx, (1)

where pi = (λdmr)
ie−λdmr/i!, i = 0, 1, . . . are the Poisson

probabilities of having i blockers in the rectangle of area dmr
illustrated in Fig. 4, fR(x) is the probability density function
(pdf) of a Uniform distribution from 0 to r, and FH(y) is
the Cumulative Distribution Function (CDF) of the blocker’s
height.

The above probability of LoS can be given in terms of void
probability for the non-homogeneous PPP:

PLoS =exp

(
λdm ×

×
∫ r

0

FH

(
hT r − (hT − hR)x

r

)
− 1 dx

)
. (2)
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Fig. 3. Top view of the blocking area.

The formulations in (1) and (2) are further employed for
the derivation of conditional LoS/nLoS probabilities.

B. Proposed Methodology

Consider Fig. 4 illustrating the top-view of the user move-
ment. At the initial time instant t0, Tx and Rx are assumed to
be located at P and O, respectively. During the time interval
[t0, t1], Rx moves from point O to point M . We are now
interested in the conditional probabilities of user being in
LoS/nLoS in the destination point M at the time instant t1
given that it was in LoS or nLoS at time t0. These probabilities
can be organized into a matrix P of the following form

P =

(
p00 p01
p10 p11

)
, (3)

where states 0 and 1 correspond to LoS and nLoS, respectively,
pij is the conditional probability of a user being in state i at
the time instant t0 and in state j at the time instant t1. The
matrix P is a function of the following variables:
• r0: distance from Rx to Tx at time t0,
• V : velocity of the user,
• t1 − t0: time interval of user movement,
• α: angle of movement,
• λ: density of blockers.
It is important to note that

p00 = 1− p01, p10 = 1− p11. (4)

Moreover, note that the following holds

PLoS,M = p00PLoS,O + p10PnLoS,O, (5)

where PLoS,M, PLoS,O, and PnLoS,O are derived using (1)
or (2) provided in Section III-A. Therefore, in order to
parametrize (3), it suffices to establish p00.

To illustrate the proposed methodology, consider two rect-
angles related to the area affecting the LoS path, when Rx is
at the point O at time t0 and at the point M at time t1 as
illustrated in Fig. 4. The width of these rectangles equals the
diameter of a blocker dm and their lengths are the distances
r0 and r1 between the bases of Tx and Rx at time t0 and t1,
respectively. Observe that the intersection of two rectangles
graphically illustrates the dependence between the states at
time t0 and t1. As one may further notice in Fig. 4, the
intersection of these areas is larger or smaller depending on t1,
α, and V . The proposed approach is based on the extension

of the method described in Section III-A for a point stationary
Rx. To capture the dependence between the state of the user
at t0 and t1, we have to account for the common zone, where
possible blockers may impact the states at both Rx locations.

Our scenario in question can be decomposed into several
zones having different shapes. We partition it into four major
zones having various impacts on the conditional probabilities
of interest, as shown in Fig. 4. These are:
• Zone 1, NN ′LR, includes the square area around the

Tx. Since the height of Tx, hT , is assumed to exceed the
maximum height of humans, the impact of this zone is
negligible.

• Zone 2, ANSKD, corresponds to the initial LoS path
and will affect the conditional probability only when Rx
is in the nLoS state at the time instant t0.

• Zone 3, IKEH , only affects the LoS path to the destina-
tion and is the major factor contributing to the conditional
probabilities of interest for longer movement distances.

• Zone 4, SRK, is the intersection of the two areas
affecting both LoS paths simultaneously. This zone is a
major contributor to the dependence between the states
of the user at time instants t0 and t1.

We further split zone 4 into two smaller zones, 4a and
4b, along the line of intersection between the two planes
corresponding to the two LoS paths, as shown in Fig. 5. Zone
4a is a part of zone 4, where the LoS path to the destination
is lower than the LoS path to the origin, i.e., a single blocker
can be high enough to block the LoS at t1, while it might be
too low to block it at t0. In zone 4b, the situation is reverse,
i.e., the LoS path at t1 is higher than the LoS path at t0.
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Fig. 4. 2D view of the user movement.
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Fig. 5. 3D view of the user movement.

Even though our above decomposition is general and holds
for any choice of input parameters, for some particular cases
certain zones may become irrelevant. The latter, however,
does not affect the generality of our derived results, as it
is shown further, since the corresponding probabilities can
be substituted by 1 or 0 wherever appropriate. All these
more detailed cases are covered at length in our technical
report [15]. Once the appropriate zones are identified, we
derive the conditional probabilities of LoS/nLoS by following
the approach developed in Section III-A.

C. Probabilities p00 and p01

The conditional probability p00 can be written as

p00 = P [LoS at M|LoS at O] =

=
P [LoS at M ∩ LoS at O]

P [LoS at O]
. (6)

According to the methodology described earlier, we now
subdivide the events associated with this conditional probabil-
ity into smaller events. Let L̃z and Lz be the events when LoS
is not blocked in zone z for points O and M , respectively.
This may happen when there are no blockers in this zone
and/or when all of the blockers are lower than the LoS path.
Observe that the event [LoS at M] is equivalent to the event
L3∩L4a∩L4b, while the event [LoS at O] is equivalent to the
event L̃2 ∩ L̃4a ∩ L̃4b. Here, L̃4a ∩L4a = L4a, which directly
follows from the geometry of the considered scenario. Note
that the zone 4a belongs to both planes, one of them being
higher than another. When a blocker does not intersect the
lower plane of the zone 4a, the plane (FGH) in Fig. 5, it
does not intersect the upper plane either. The same applies to
L̃4b ∩L4b = L̃4b. Note also that L̃z is only dependent on Lz .
Hence, (6) can be written as

p00 =
P
[
L3 ∩ L4a ∩ L4b ∩ L̃2 ∩ L̃4a ∩ L̃4b

]
P
[
L̃2 ∩ L̃4a ∩ L̃4b

] . (7)

Simplifying, we obtain

p00 =
P [L3 ∩ L4a]

P
[
L̃4a

] . (8)

The conditional probability p00 is thus given by

p00 =
Pnb3Pnb4a
P̃nb4a

, (9)

where nb stands for “no blockers” and Pnb z is the probability
of the event Lz .

Recalling the methodology for deriving the LoS probability
in Section III-A, we apply similar principles to obtain Pnb z,
where z is the number of the considered zone. We thus have

Pnb z = fP (0, λ Sz) +

∞∑
i=1

fP (i, λ Sz)×

×
i∏

k=1

1

Sz

(∫ x2

x1

∫ y2

y1

FH

(
gy − fx− e

h

)
dy dx+ · · ·

+

∫ xj+1

xj

∫ yj+1

yj

FH

(
gy − fx− e

h

)
dy dx

)
, (10)

where all the auxiliary parameters are defined in [15], fP (i, λ)
is the probability of having exactly i blockers in the area
of interest for a given density of blockers λ, Sz is the area
under the required zone needed to specify the pdf for a point
distributed uniformly in the zone, and FH

(
gy−fx−e

h

)
is the

probability that a blocker located at the coordinates x, y is
lower than the LoS. Variables xj , xj+1, yj , yj+1 represent the
boundaries x and y of the considered area.

As the sum of integrals in (10) is independent of k, we
can substitute it by an auxiliary variable I . Additionally,
substituting the Poisson probabilities into (10), we establish

Pnb z = e−λSz +

∞∑
i=1

(λSz)
ie−λSz

i!

(
I

Sz

)i
. (11)

As one may observe, the first two summands in (11) are
the Maclaurin series expansion of an exponential function, and
thus (11) is simplified to

Pnb z = eλ(I−Sz). (12)

Expanding the auxiliary variable I , we produce

Pnb z = exp
(
λ×

×
∫ x2

x1

∫ y2

y1

(
FH

(
gy − fx− e

h

)
− 1

)
dy dx

)
× · · ·

× exp
(
λ×

×
∫ xj+1

xj

∫ yj+1

yj

(
FH

(
gy − fx− e

h

)
− 1

)
dy dx

)
. (13)

Probabilities Pnb z are calculated using (10), while all the
necessary integration limits are provided in [15]. Observe that
P̃nb z denote the probabilities of having no blockers affecting



the LoS in the corresponding zones for point O. That is, the
individual blockers must be lower than the plane (ABC) in
Fig. 5. Hence, the probabilities P̃nb z are obtained similarly to
Pnb z and have the following form

P̃nb z = exp
(
λ×

×
∫ x2

x1

∫ y2

y1

(
FH

(
by − ax− d

c

)
− 1

)
dy dx

)
× · · ·

× exp
(
λ×

×
∫ xj+1

xj

∫ yj+1

yj

(
FH

(
by − ax− d

c

)
− 1

)
dy dx

)
. (14)

D. Probabilities p10 and p11
The probability p10 could be expressed from (5) as

p10 =
PLoS,M − p00PLoS,O

PnLoS,O
=

PLoS,M − p00PLoS,O

1− PLoS,O
, (15)

where PLoS,M and PLoS,O are derived from (2) in Section III-A
as

PLoS,M = exp

(
λdm×

×
∫ r1

0

(
FH

(
hT r1 − (hT − hR)x

r1

)
− 1

)
dx

)

PLoS,O = exp

(
λdm×

×
∫ r0

0

(
FH

(
hT r0 − (hT − hR)x

r0

)
− 1

)
dx

)
.

(16)

Finally, the matrix P containing the conditional probabilities
could be parametrized by (4), (9), and (15).

IV. NUMERICAL RESULTS

To assess the accuracy of the proposed model, we first
compare our results against those obtained with system-level
simulations. The main difference between the simulation and
the analysis is in the presence of position estimation error
within the simulated data. According to [16], we model the
position estimation error as a constant offset in the initial Rx
location. For simplicity, we do not account for velocity and
direction errors assuming that their effects may be reduced
significantly by using accelerometers and other sensors at
Rx. However, location and trajectory prediction could still
be problematic, since the estimation error may be up to
several meters depending on the type of device and navigation
system [16]. In this paper, we consider two options: 1 m and
3 m error, which correspond to the minimum and the average
error for the Assisted GPS device.

As we observe in Fig. 6, even when the position estima-
tion error is accounted for, there is an acceptable agreement
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Fig. 6. Comparison of analysis and simulation results.

between the analysis and simulation data. Hence, in what
follows we assess the effects of user mobility by relying
on our proposed analytical model. Further, Fig. 6 illustrates
the conditional and unconditional LoS probabilities for the
baseline parameters listed in Table I as a function of t1.
Analyzing the underlying structure of the studied variables,
one may observe a clear dependence between the states of
a user over the time scales of interest. Recalling that the
TTI interval in mmWave systems is around 100 µs [3], the
scheduling decisions should be heavily affected by the user
movement. As the time interval of interest extends, this de-
pendence vanishes and the conditional probabilities converge
to their unconditional counterparts.

To gain insights into the qualitative behavior of the studied
variables, the conditional LoS probabilities as functions of t1,
r0, V , hR, hT , λ, and α are shown in Fig. 7. The variations
in distance r0 affect the conditional probabilities. At the same
time, user velocity does not alter the probability of LoS, but
produces a strong impact on the correlation time. Indeed, for
a user moving at 5 km/h this time is almost twice shorter
compared to that for a user moving at 3 km/h. The effect of Rx
height is more curious since hR affects not only unconditional,
but also conditional LoS probabilities. However, due to a
limited realistic range of hR, this parameter does not produce
a significant impact in practice.

The effect of hT is similar to that of hR. The major
difference though is in that the feasible range of hT is
expected to be much broader compared to that of hR. It is also
important to note that this parameter impacts the behavior of

TABLE I
BASELINE SYSTEM PARAMETERS

Parameter Value
Height of Tx, hT 4 m
Height of Rx, hR 1.5 m
Initial distance between the bases of Tx and Rx, r0 50 m
Height of a blocker, N(µH , σH) N(1.7 m, 0.1 m)
Diameter of a blocker, dm 0.5 m
Intensity of blockers, λ 0.1 blockers/m2

Speed of Rx, V 3 km/h
Angle of motion, α π/2
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Fig. 7. Conditional and unconditional LoS probabilities as functions of input parameters.

our result qualitatively, that is, changes its structure. Indeed,
for small values of hT there is an exponentially decaying
loss of memory between the states. As hT increases, the
behavior becomes close to linear. By varying the intensity of
blockers, λ, one may notice that higher intensity leads to a
higher probability of blockage, as well as brings changes to
the temporal behavior of the conditional probabilities. Finally,
different angles of motion α have a profound effect on the
values of LoS probability. As the angle α decreases, the
correlation between the states grows, thus leading to a longer
fraction of time when the state t1 depends on the state t0.

Let us now study the behavior of the correlation time
between the states of a user, which we define as a time in-
terval until the conditional and the unconditional probabilities
converge. To this end, Fig. 8 reports this variable as a function
of the input parameters and we learn that the initial position
does not affect the correlation time significantly. As it could be
noticed in Fig. 8(b), the actual velocity impacts the correlation
time strongly: as the former increases the latter decreases.

For hR and hT , the correlation time has a lower bound
on this value. While there is no impact on the height of
Rx, deploying the mmWave access points higher than at 4 m
not only decreases the unconditional blocking probability but
also ensures much shorter correlation time, thus giving more
flexibility for the potential resource scheduling algorithm.
Moreover, the correlation time does not change significantly
as the height of Tx becomes greater than 4 m.

The effects of the density of blockers on the correlation

time are of particular importance. Indeed, if there would
be a significant dependence of this value not only on the
access point and user related parameters, but also on the
environment of interest, then for efficient resource allocation
a mmWave access point would need to know the density of
users. However, the correlation time does not appear to be
considerably dependent on the density of users, as indicated
in Fig. 8(e).

The dependence on the moving angle α is more intricate.
When a user moves along a line that is close to 0 or π,
the correlation time is extremely long. The reason is that
the probability of leaving the previous state is very low. For
values in between 0.5 rad and 2.5 rad, the correlation time is
almost constant. Note also that changing the Tx height does
not impact the correlation time substantially for a given motion
angle.

V. CONCLUSIONS

Motivated by the 3GPP requirements regarding the spatially
consistent channel model for the next-generation wireless
communications systems, we analyzed the conditional prob-
abilities of LoS blockage as functions of various system
parameters, including the speed of a user, its motion angle,
the heights of transmitter and receiver, as well as the density
of blockers. Our main conclusion is that for realistic sys-
tem parameters and timescales typical for mmWave resource
scheduling, there always is a considerable dependence between
the previous state of the user and its current state.
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Fig. 8. Dependence time as a function of input parameters.

Our proposed model allows to accurately account for said
dependence. In addition to the conditional LoS/nLoS probabil-
ities, we also introduced and analyzed in detail the correlation
time between the states of a user. An important outcome here
is that the position of Rx at time instants t0 and t1 affects the
correlation time between the states of a user. The latter implies
that for efficient resource allocation at the air interface, the
mmWave access points need to consider the current state of
Rx.
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