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Abstract

High-performance ray tracing on CPU is now largely based on
Multi Bounding Volume Hierarchy (MBVH) trees. We apply
MBVH to a fixed-function ray tracing accelerator architecture. Ac-
cording to cycle-level simulations and power analysis, MBVH re-
duces energy per frame by an average of 24% and improves per-
formance per area by 19% in scenes with incoherent rays, due to
its compact memory layout which reduces DRAM traffic. With pri-
mary rays, energy efficiency improves by 15% and performance per
area by 20%.
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1 Introduction

Ray tracing is a fundamental rendering technique which is widely
used in offline rendering to model the physical transport of light.
Rendering interactive scenes with ray tracing is a longstanding
research challenge in computer graphics. In recent years, there
has been an influx of research on specialized ray tracing hard-
ware architectures to enable such interactive rendering. Many hard-
ware architectures have been proposed in academic forums, such
as RPU [Woop et al. 2005], SGRT [Lee et al. 2013] and Ray-
Core [Nah et al. 2014]. In addition, recently a commercial mo-
bile GPU IP with ray tracing support has been launched. Many of
these works are aimed at mobile devices partly since the ray trac-
ing algorithm is well suited for smaller displays, and also because
it is likely commercially easier to incorporate a ray tracing feature
into a mobile SoC than to sell a stand-alone product. The focus
on mobile systems, and recent trends in CMOS process technol-
ogy place restrictions on ray tracing hardware architectures. Hand-
sets and tablets operate under strict power constraints since they are
battery-powered and passively cooled; it is therefore crucial to op-
timize the hardware accelerator for low-energy operation. Due to
logic scaling, the energy cost of computational logic is falling rela-
tive to long-range communication. Especially accesses to off-chip
SDRAM main memory are expensive.

The basic operation in ray tracing is ray traversal, i.e., finding the
closest point of the scene geometry which intersects a given half
line. The basis of a modern high-performance implementation is to
organize the scene geometry into an acceleration datastructure such
as a Bounding Volume Hierarchy (BVH), which reduces this into a
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Figure 1: Left side: BVH organizing 7 leafs (grey) with six 64B
nodes (each storing AABBs and pointers of its two children). Right
side: 4-wide MBVH organizing the same number of leafs with two
128B nodes ( 2

3
memory footprint).

logarithmic-time operation in the typical case. Most of the compu-
tational effort in ray tracing goes to traversing this acceleration tree
and performing intersection tests against the scene geometry in the
leaf nodes. Consequently, ray tracing hardware architectures tend
to include fixed-function hardware pipelines for these two tasks.

In this work, we investigate using Multi-Bounding Volume
Hierarchies (MBVH) [Ernst and Greiner 2008] [Wald et al.
2008] [Dammertz et al. 2008] in a ray tracing accelerator: this is a
variant of BVH with a higher branching factor, typically 4. MBVH
was originally intended to take advantage of SIMD instruction sets
such as SSE in CPUs, but the technique also has general benefits:

• MBVH has a more compact memory layout than BVH, as
noted by Dammertz et al. [Dammertz et al. 2008] and illus-
trated in Figure 1. Consequently, it improves the hit rate of
caches and reduces external memory traffic.

• MBVH ray traversal with a 4-wide MBVH (MBVH4) per-
forms roughly the same amount of computation and memory
requests as a BVH, but organized into larger consecutive units.
n
2

random accesses of 2m bytes can be served by a simpler
memory hierarchy than n accesses of.m bytes. Likewise, or-
ganizing computation into larger units, with fewer branches,
reduces the overhead of control logic in the architecture.

Recently, Guthe [2014] found MBVHs advantageous in GPU ray
tracing, demonstrating the above advantages. In this paper, we
show with simulations and power analysis that introducing MBVH4
to a ray tracing unit significantly improves area- and energy-
efficiency over a BVH baseline, especially with incoherent rays.

2 Related Work

Few works on ray tracing hardware architecture have variations on
the applied data structures; most of the recent approaches focus
on plain BVHs and k-d trees. There is recent interest in quan-
tized BVHs with, e.g., 5 bits per coordinate, most recently by
Vaidyanathan [2016]. This structure achieves a very high simu-
lated performance. However, it appears nontrivial to keep updated
when rendering dynamic scenes, whereas the present work can use
similar update and construction methods as a conventional BVH,
with minor modifications.
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Figure 2: Ray tracing accelerator architecture modeled in this
paper, based on [Lee et al. 2014]. This paper makes changes to the
bolded components: the traversal pipeline and the traversal stack.

Lee et al. [Lee et al. 2014] optimize the BVH data layout in
the SGRT system [Lee et al. 2013] for a large performance gain.
Hwang et al. [Hwang et al. 2015], optimize the number represen-
tations in their data structures to mostly fixed-point-arithmetic, but
resort to floating-point numbers in cases where they are more ef-
ficient in terms of hardware cost. Our work introduces a hardware
architecture based on the MBVH datastructure for major further im-
provements in area- and energy-efficiency compared to [Lee et al.
2014]. These gains are orthogonal to the approach of [Hwang et al.
2015] and could be combined with their hybrid representation.

3 System Architecture

As a baseline for evaluation, we consider a model architecture based
largely on [Lee et al. 2014], which in turn builds on [Lee et al.
2013], shown in Figure 2. The main components of this architec-
ture are traversal units (TRV) which handle processing for BVH
inner nodes and intersection units (IST) which perform ray-triangle
intersection tests using Wald’s [2004] method. Ray data records
enter the system from a shader processor, are assigned a free ray
slot by a scheduler hardware, and then pass between TRV and IST
units through FIFOs until traversal completes. Each ray is assigned
a traversal stack from a specific TRV unit, and all its stack opera-
tions are performed by this TRV. This organization is inefficient in
some ray states, e.g., upon finishing processing a leaf node, the ray
has to return from IST to TRV and pass through the TRV pipeline to
perform a stack pop, which may send the ray back to IST. However,
the common case of repeated TRV operations is very fast.

The main focus of this work is on the TRV unit. The baseline TRV
unit shown in Figure 3 is designed to process BVH nodes in a lay-
out that, for each node, stores the AABBs and pointers of its two
children. When a ray enters the TRV, it first attempts to fetch into
memory the target node of the ray. It then performs intersection
tests against the two child AABBs in parallel using the slabs test.
Finally, depending on the results of the tests, the unit performs stack
operations, e.g., pushing the pointers of hit children to the stack, and
determines the new state of the ray. If both children are hit, they are
traversed in a front-to-back order based on the distance values out-
put from the slabs tests.

The rest of the baseline system is configured as follows. 4 TRVs
are allocated per IST. Each TRV has storage for 32 stacks, there-
fore, up to 4 × 32 = 128 rays may be active simultaneously.
There are two 128KB caches: a node cache shared by the TRVs
and a primitive cache serving the IST. In addition, each TRV has
a small 16KB L1 node cache. All caches are set as non-blocking,

Figure 3: Top: Baseline TRV unit with two parallel ray-AABB
tests. Bottom: Proposed MBVH TRV unit with four ray-AABB tests
and sorting network. Pipeline stages are numbered on top.

4-way set-associative. The node caches use node-sized lines (64B
for BVH, 128B for MBVH2), while the primitive L1 is a two-bank
interleaved cache [Alvarez et al. 2007] with 64B lines per bank,
to accommodate fully pipelined unaligned accesses to 48B primi-
tives. The sizes of FIFOs are determined empirically so as to pre-
vent deadlocks: they are first sized at 32 elements and simulated,
and underutilized FIFOs are shrunk to the first power-of-two above
the maximum population encountered in simulation. As a latency
hiding mechanism, we use ”looping for next chance” from Ray-
Core [Nah et al. 2014]: If a memory access misses, the correspond-
ing ray continues through the pipeline, but its subsequent computa-
tions are invalidated, and the ray is rescheduled for later execution.

We also diverge from [Lee et al. 2013] by storing full stacks on-
chip instead of short stacks. As a 64-entry stack was sufficient to
render all evaluated scenes by a large margin - at worst path tracing
in Hairball used 28 entries - and only accounts for 5..10% of the
area and power of the architecture. It appears that short-stack meth-
ods are more interesting for architectures with many GPU-like slow
threads, or rendering algorithms that require large stack entries such
as [Vaidyanathan et al. 2016].

3.1 Proposed MBVH architecture

MBVHs are structured similarly to the BVH layout in [Lee et al.
2014], except there is space for more than two children per node.
In this study, we redesign the TRV unit to handle 4-wide MBVHs
as shown in Figure 3. It is straightforward to increase the number
of box test units to 4, and double the cache line and read port sizes
in the node cache hierarchy, keeping the cache capacities constant.

Figure 4: Left side: Magnification of the sorting network shown in
Figure 3 with 5 comparators. Right side: Example sort.



The main new complication introduced with MBVH is that multi-
ple child nodes may be intersected and pushed to the stack per visit:
for a 4-wide MBVH, four children may be hit per TRV processing.
As the cache top is kept in the ready state record, up to 3 entries
may be inserted into the stack memory. This may be implemented
by means of a multi-bank memory, as consecutive entries are guar-
anteed to be on separate banks. Moreover, it is desirable to traverse
BVH nodes in a closest-first order, i.e., the references inserted to the
stack should be sorted according to their distance from the camera.
In BVH, this is accomplished with a simple compare-swap of the
two children, but for high branching factors a sorting operation is
necessary. Small sets of numbers can be easily sorted in hardware
by means of sorting networks, where the array is passed through a
series of comparators as shown in Figure 4. Knuth [Knuth 1999]
gives depth-optimal networks for up to 16 inputs. For the case
of four inputs, an optimal network consists of five comparators,
with a depth of 3, i.e., the data passes through at most 3 sequen-
tial compare-swaps. We pessimistically allocate one pipeline stage
per sorting network layer as shown in Figure 3, resulting in 2 ex-
tra cycles of latency compared to a BVH TRV. For occlusion rays
this step might be bypassed, reducing the TRV latency. A sorting
network structure has been used in software by, e.g., Guthe [Guthe
2014] to avoid branches.

Ernst and Greiner [Ernst and Greiner 2008] recommend storing the
distance value of each intersected node in the stack, so that after
finding a triangle intersection closer than the stored nodes, they can
be rejected without testing their children. In initial testing, this tech-
nique showed significant performance gains of ca. 10% for MBVH,
but only 3% for BVH. The effect is mainly due to triangle intersec-
tions avoided by the distance test. As shown in Figure 2, we equip
the MBVH TRV with a distance stack, in effect doubling the stack
size, while keeping the BVH in the original configuration. MBVH
is typically implemented with a power-of-two branching factor to
take advantage of SIMD instructions. In custom hardware, it is in-
teresting to use other factors such as 3 or 5. The main complication
of odd branching factors is memory hierarchy design: the cache
hierarchy should be able to supply one node per cycle to the TRV
unit, though they are unaligned in memory. Two approaches are ap-
parent. Firsly, the node L1 may be implemented as a two-bank in-
terleaved cache, as we do with the primitive L1. Secondly, the node
cache hierarchy might be addressed with array indices rather than
byte addresses, and use a node-sized data word. We experimented
with MBVH3, MBVH5 and MBVH6 using both techniques, but
these were sightly less efficient than MBVH4.

3.2 Evaluation

In order to evaluate the performance impact of MBVH, we imple-
mented a cycle-level simulator for the baseline and proposed ar-
chitectures. Though this paper focuses on the TRV pipeline com-
ponent, the full system including the cache hierarchy and memory
needs to be simulated to determine the performance effects. The
simulator is split into two parts:A software ray tracer draws scenes
and generates, for each ray, logs of node visits and stack operations
in a compact binary format, which are then fed to an architecture
simulator. The simulator models the cycle-level behavior of the
components in Figure 2, including the cache hierarchy, traversal
and intersection units, and the interconnection FIFOs and arbiters.
The assumed clock rate is 500MHz. The main memory is modeled
with Ramulator [Kim et al. 2016]. We assume a LPDDR3-1600
memory with two 32-bit channels, for a peak theoretical data rate
of 12.8GB/s.

The area of each architecture is coarsely estimated by counting
the number of floating-point units and memory blocks, including
caches, stacks and FIFOs: we assume that e.g. control logic, clock

Figure 5: Test scenes used in simulation: Fairy (179K tri.), Crytek
Sponza (262K tri.), Hairball (2.9M tri.) and Rungholt (6.7M tri).

trees and pipeline registers add a similar margin to both configura-
tions. The simulator keeps track of activity rates for each compo-
nents: when idle, they are assumed to be clock gated and contribute
only static power. Dynamic and static power figures for SRAMs are
obtained from CACTI 6.5 [Muralimanohar et al. 2009], at 45nm.
Note that sequential caches are used, which first access the tag array
before reading data. In the normal configuration, the cache reads all
words in the target set simultaneously with the tag, but due to the
wide read ports in this work, this produces very large caches. For
FPUs we use the energy and area per FLOP figures of Galal and
Horowitz [2011]. The IST division is implemented with 11 FLOPs
as in the algorithm by Markstein [Markstein 2004]. DRAM power
figures are produced with DRAMPower [Chandrasekar et al. 2012].

Four test scenes (Figure 5) were rendered at a 1280x720 resolution
with primary rays, as well as diffuse path tracing limited to four
bounces and one sample per pixel. Secondary rays are fed to the
processor when the preceding ray is complete. BVH trees are con-
structed with a binned SAH sweep, and MBVHs with Wald’s top-
down recursive splitting algorithm [Wald et al. 2008]. The latter is
chosen since it appears straightforward to implement in hardware
by adding extra bookkeeping to the builder unit by Doyle [2013].
Simulation results are shown in Table 2. Since a speedup is ex-
pected due to the added hardware resources in MBVH, we use size-
independent figures of merit: memory traffic, energy per frame, and
performance per area. Area and power breakdown for the Fairy
scene are shown in Table 1. MBVH4 gives significant improve-
ments in energy and area efficiency across different scenes and ray
types. With diffuse rays, the improvement is driven by more effi-
cient use of external memory. DRAM accounts for an average of
70% of energy. In addition to reducing memory traffic, the larger
refill increment in MBVH utilizes DRAM better than the base-
line. With primary rays, DRAM is insignificant. The efficiency
gains from MBVH are smaller and more inconsistent, depending
on the ratio of AABB to triangle tests: MBVH performs well in
Rungholt and poorly in Hairball, extreme examples of box-heavy
and triangle-heavy scenes, respectively.

3.3 Conclusion

This paper proposed to use MBVH in fixed-function ray trac-
ing accelerators and discussed implementation techniques. 4-wide
MBVH improved energy per frame by an average of 24% and per-
formance per area by 19% with incoherent rays: therefore, it ap-
pears to be a significant low-hanging fruit in ray tracing hardware
design. As future work, we are interested in whether the improve-
ments from MBVH are cumulative with other memory-conserving
techniques such as quantized trees and treelet scheduling.



Scene Ray type
BVH MBVH4

Perf. Energy Perf. / A DRAM Perf. Energy Perf. / A DRAM
(MRPS) (mJ/frame) (MRPS/mm2) traffic (MB) (MRPS) (mJ/frame) (MRPS/mm2) traffic (MB)

Fairy primary 47 9.3 12.2 8 76 (+61%) 8.4 (-10%) 13.8 (+13%) 6 (-19%)
diffuse 36 84 9.3 644 60 (+67%) 67 (-20%) 11.0 (+17%) 497 (-23%)

Crytek primary 25 18 6.5 5 47 (+87%) 15 (-15%) 8.5 (+31%) 3 (-42%)
diffuse 11 417 2.8 3332 19 (+78%) 307 (-26%) 3.5 (+25%) 2345(-30%)

Hairball primary 14 29 3.7 80 19 (+33%) 24 (-17%) 3.4 (-6%) 36 (-55%)
diffuse 6 490 1.5 4370 10 (+67%) 341 (-31%) 1.8 (+17%)) 2933 (-33%)

Rungholt primary 43 9.1 11.4 3 88 (+100%) 7.5 (-18%) 16.1 (+41%) 3 (-18%)
diffuse 29 92 7.6 703 48 (+66%) 76 (-17%) 8.8 (+16%) 582 (-17%)

Mean primary - - - - +70% -15% +20% -33%
diffuse - - - - +69% -24% +19% -26%

Table 2: Comparison of BVH and MBVH4 accelerators. MBVH4 is consistently more efficient except for primary rays in Hairball, where
IST is a bottleneck. With incoherent rays, DRAM dominates energy consumption.

Unit TRV IST stack cache fifo dram
∑

BVH
Area (mm2) 0.25 0.20 0.25 1.57 1.25 - 3.51
P. power (mW) 237 74 13 90 23 37 475
D. power (mW) 157 60 10 130 25 608 990

MBVH4
Area (mm2) 0.41 0.20 0.51 2.35 1.25 - 5.47
P. power (mW) 413 88 22 101 22 42 689
D. power (mW) 285 71 18 153 24 767 1319

Table 1: Area estimate for baseline (BVH) and proposed (MBVH),
and power breakdown on Fairy, primary and diffuse rays. Caches
have the same capacity in MBVH but take up more area and power
due to the wider read port. The DRAM is a clear bottleneck for
incoherent rays.
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