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Abstract—The vast increase of personal sensor information is 
driving the rise in popularity of context-aware applications. 
Users crave and very often expect tailored services that are 
based on the users’ context or personal preferences. The users 
themselves, using forms, often provide such information. An 
inference solution typically addresses this problem. In this 
paper, we present and show by way of a real-world example, 
the first step towards incorporating information of the user’s 
social networking behavior in the inference task. We define an 
initial indicator of a particular social phenomenon, called 
Homophily, and describe how the indicator measures the 
presence of homophily at certain moments, also capturing the 
degree to which it is present. Different from existing indicators, 
ours lends itself to indicating the presence of homophily in a 
way that is easier to comprehend, so that it may be easily 
integrated into and reinforce context-aware semantic 
computing. 

Keywords-Social Network Analysis; Homophily; Context-
aware Computing. 

I. INTRODUCTION 
Computing devices perform many operations 

automatically and faster than humans do. However, unlike 
computers, humans adapt more easily to new situations that 
may arise. One natural way to improve computational 
intelligence is to enable computers to understand context [1]. 
This has been broadly studied in the field of context 
awareness [2]. 

The relevance of Smartphones has increased 
tremendously in recent years. On one hand, technically they 
have advanced significantly, and nowadays they are 
considered to be small computers. On the other hand, the 
percentage of the population who owns a Smartphone has 
increased from as little as 1% in 2006 to 22% in 2013 [3]. In 
some countries, people own on average more than one 
mobile device, and use them to communicate with friends, 
family, colleagues, and even businesses and governments, in 
social networks. 

Probably the most revolutionary aspects of modern 
Smartphones are the inclusion of sensors, and the possibility 
for third-parties to easily develop a variety of applications. 
By combining both these aspects, the context-aware 
application was born, where the user is provided a service, 
depending on his or her context, i.e., any information related 
to the user, such as its location.  

The number of context-aware services has increased 
significantly, which include social networks of a diverse 
nature like Facebook and Foursquare; personal assistants 

like Google Now; and movement tracking applications like 
Moves or RunKeeper. 

These applications offer services based on location, 
called Location Based Services [4], in other words, on the 
data obtained using the sensors built into the users’ devices.  

Social Network Analysis (SNA) can provide relevant 
information about the users that, in turn, can be exploited to 
develop better context-aware applications.  

In particular, Homophily is a well-known occurring 
phenomenon in social networks. Users with similar contexts 
tend to connect at a higher rate [5,6]. For example, CICSyN 
organizers are highly connected to each other. Therefore, we 
would assume that a CICSyN organizer is more likely to be 
connected to another organizer of the conference than to an 
external person. 

Using the concept of homophily, contextual cues, called 
attributes, can be transferred within communities that form a 
highly connected group of users [7]. Then, continuing with 
the example, we could infer that one is a CICSyN organizer if 
the person has very strong relationships with many of the 
event organizers. 

In this paper, we propose a normalized homophily 
indicator that is compact and relatively easy to understand, 
that benefits context inference. We experiment with real-
world data, comparing our results to those of a similar 
indicator that exists. 

In the sequel, we delve into context management, 
mentioning relevant and proposed architectures, and describe 
how SNA plays an essential role in context management and 
context-aware computing, in general. In Section III, we 
present an indicator of homophily that captures the degree to 
which homophily occurs in the social network. We apply our 
indicator to analyze real-world data and compare it to 
another indicator in Section IV. Finally, in Section V, we 
conclude by highlighting several aspects of the future work 
needed to result in methods derived by using or 
incorporating our indicator, when we have shown to be 
easier for the application developer to understand, and at 
least as lightweight as existing indicators.  

II. BACKGROUND 

A. Context-Aware systems and architectures 
The term context-aware (computing) appeared first in the 

early 1990s, with the beginning of context-aware system 
research [8]. Context, also referred to as contextual 
information, refers to any information that can be used to 
characterize the situation of an entity, where an entity can be 
a person, place, or physical or computational object [9]. 



Since then, a significant amount of effort was invested 
into context-aware computing [8]. These systems capture 
many types of context in addition to time and position, such 
as places, things, commitments and user preferences [10]. 
The main components of a context-aware system include 
context providers and context-aware services [11]. 

Several architectures and frameworks have been used to 
manage and reason about user context, such as the well-
known Context Managing Framework, Context Broker 
Architecture or Service-Oriented Context-Aware Middleware 
[12]. In particular, we draw the readers’ attention to our 
software service, called the Context Engine (CE) [13].  

The CE collects and reasons about information from a 
variety of sources, including physical sensors and user 
applications. In the architecture of the CE, shown in Figure 
1, the End User uses an application that needs access to his 
or her contextual information. The application requests 
contextual information from the CE through the CE API. 
When appropriated, i.e., according to permissions granted to 
the application, privacy policies and user preferences, the CE 
will access contextual information or infer it using context 
inference tools, ultimately providing the requested 
information to the application. For further information about 
the CE, we refer to previous work, in which we explained the 
software service in greater detail [13]. 

 

 
 

Figure 1.  The Context Engine architecture simplified. 

We illustrate the idea with an example. Consider an 
application whose function is to be an umbrella reminder: 
given the weather forecast on a particular day and the 
location of the user, it notifies the user whether or not to take 
the umbrella. In order to do so, it needs to access contextual 
information. 

The inclusion of the CE in Smartphones encourages the 
development of context-aware applications, since application 
developers can delegate the context inference task to the CE, 
which in turn provides the contextual information 
automatically.  

Moreover, different inference tools can be integrated into 
the CE. Typical examples of these context inference 
functions include activity recognition [14] and place 
detection [15]. 

B. System modelling using homophily 
Social Network Analysis (SNA) focuses on the discovery 

and evolution of relations among entities (people, 
organizations, activities, etc.) [16]. SNA plays a major role 
in fields such as e-commerce [17]. Such e-commerce 

platforms analyze the social network in terms of tasks, e.g., 
purchases, searches and user similarity, with the ultimate 
objective of recommending relevant products to the user. 

In particular, homophily is a social phenomenon often 
described as the principle that a contact between similar 
people occurs at a higher rate than among dissimilar people 
[5], shown to be ubiquitous in social networks [6] and is 
well-studied in the social sciences [5-7,18-22]. For instance, 
a study of the relationships among American high school 
students showed that they exhibit homophily by race and 
gender [18]. In other words, students tend to be more in 
contact with other students of the same gender and race.  

Homophily has been used in numerous cases to model 
social networks [7,22-28]. Most of these investigations 
assume homophily to be present and create a homophily-
based model, aimed at improving inference of the network. 
However, these models only assume homophily to be present 
but do not use their indicators in the final solutions. 

Measuring the degree of homophily present in a system is 
relevant, since model-driven solutions can be built based on 
this characteristic. This allows comparisons between social 
networks. Ideally, these should be easy to understand. 

Inverse homophily, also known as heterophily, is the 
inverse mechanism, where users tend to become connected 
to dissimilar users. A network that represents romantic 
relationships between students in an American high school, 
for instance, exhibits heterophily by gender [19]. 

It naturally follows to build an indicator of homophily 
that captures the degree to which homophily occurs in the 
system. To the best of our knowledge, a few indicators of 
homophily have been described [7,24,25] but are not always 
easy to interpret and seemingly fail to capture and utilize the 
heterophilic behavior of the network, i.e., they only capture 
homophilic behavior. For example, Tang et al investigate the 
use of three popular rating similarity measures as, what they 
called, the homophily coefficient [28]. On the other hand, 
Mislove et al derive their affinity indicator to represent the 
degree of homophily in the network with respect to a 
particular attribute [7]. Affinity, although derived along a 
similar train of thought as our homophily indicator Hom, 
which we define next, affinity remains unbounded and hard 
to manage (interpret and integrate) in context-aware 
solutions. 

III. FORMAL DEFINTION OF HOMOPHILY 

A. Network Definition 
We introduce some basic graph notation such that  

G = (V, E)  denotes a finite undirected graph with nodes 
V = {v!,… , v!}, and edges E = {e!,… , e!}, where n,m ∈ ℤ 
are the number of nodes and edges in G, respectively. E 
contains the unordered pairs of nodes 

 
 e! = v!, v!   ∀  k ∈ 1,… ,m , i, j ∈ 1,… , n  

 
In short, we define #V = n, #E = m,V G = V,  and 

E G = E for convenience. 
Particularly, we are interested in graphs with nodes 

annotated with contextual attributes. To model this, we 



define C  as a function from nodes to finite vectors of 
Boolean attributes, i.e.,   C:V → B!, S ∈ ℤ , representing the 
size of B. We then reference v!’s contextual attributes as 
C(v!) = {c!,!,… , c!,!}. 

B. Quantifying homophily 
Based on the graph definitions, next we characterize and 

measure the phenomenon of homophily. We derive our 
initial indicator Hom to quantify the potential degree to 
which homophily may be present at a single observation 
point in network G.  

Since homophily emerges from the context, attribute c! is 
used in the formulation of its definition:  

Define two types of nodes in G, according to the binary 
value of c!, namely types p and q, where V!(G) and V! G  
are the sets of each type of node. The number of elements in 
each set is given by n! and n!. 

We consequently also define two types of edges, where 
edges between nodes of the same type are called 
homogeneous edges E!(G)  and edges between nodes of 
different types are called heterogeneous edges E!(G). 

Considering complete graph K, spanned from G, basic 
graph theory gives 

 

|E!(K)| = n!   
n! − 1
2

  +   n!   
n! − 1
2

|E!(K)| =   n!n!
 

   
Next, we define r!! , r!! ∈ ℝ!  as the ratios of 

homogeneous and heterogeneous edges present in 
𝐺, respectively, with respect to the homogeneous and 
heterogeneous edges in K. We have 

 

r!! =
|E!(G)|
|E!(K)|

r!! =
|E!(G)|
|E!(K)|

 

 
Assuming at least one edge is present in G, we define our 

homophily indicator 𝐻𝑜𝑚 for graph  G as 
 

Hom G =   
r!! − r!!

r!! + r!!
   

 
The homophily indicator lies in the range [-1,1]. Positive 

values of Hom indicate that the networks exhibits a high 
potential of homophily, while negative values of Hom 
indicate that the network exhibits potential of heterophily, 
i.e., users are connected with dissimilar people. When the 
homophily value is close to 0, between -ε and ε, the system 
does not exhibit homophily. ε  is thus the homophily 
threshold and it varies in different networks, depending on 
the size of the graph and the density of edges. The threshold 
is the way in which one deals with translating the theoretical 
definition of homophily into a practical working definition, 
i.e., 

 

Hom
  < −𝜀,                                                ℎ𝑜𝑚𝑜𝑝ℎ𝑖𝑙𝑦

−ε ≤ Hom ≤   ε, no  homophily
      > 𝜀,                                                    ℎ𝑒𝑡𝑒𝑟𝑜𝑝ℎ𝑖𝑙𝑦

 

 
as mentioned by Easley and Kleinberg [22]. 

IV. REAL-WORLD EXAMPLE 

A. Nodobo dataset 
We use the nodobo dataset for our real-world example. 

The dataset is publicly available and contains social 
interaction data of twenty-seven senior students in a Scottish 
high school. The data was collected using a software suite by 
the same name, developed by researchers at the University of 
Strathclyde, Scotland. They collected both device usage 
patterns and social interactions from Google Nexus One 
Smartphones [29].  

 They collected data over an interrupted period of 
roughly five months, namely from September 2010 to 
February of the following year. The data consisted of cellular 
tower transitions, Bluetooth proximity logs, and 
communication events, including calls and text messages. 
We build our social network graph from this data, as 
described next. 

B. Experiment settings 
We constructed social graphs from the dataset using only 

the data until the end of 2010, because four users 
matriculated and left school at that time. We built our graph 
G=(V,E) based on the Bluetooth proximity logs. We did not 
consider days when data were not collected. Hence, we 
considered a total of D=105 days.  

In order to study the behavior of the homophily in the 
system over time, and therefore the behavior of our indicator, 
we discretize time into L periods (or steps) of duration W 
days each. 

Therefore, we have a sequence of L graphs, G1, G2, GL, 
each representing the social interactions during the period l, 
whose state is observable at the end of that period. 

Each participant in the experiments is represented as a 
vertex in G. A connection exists in Gl if and only if two 
students (vertices) have been in proximity to each other for 
an average of 60 minutes a day. We consider an edge from 
vertex A to vertex B to be homogeneous when the number of 
common friends of A and B is greater than integer f common 
friends, and heterogeneous otherwise. We thus have two 
control variables, namely f and W, that are varied to obtain 
different experiment settings. 

We conducted two experiments, each calculating Hom and 
Affinity (Aff) [7] for the constructed graphs Gl. Intuitively, 
we expect to observe homophily in the graph because it 
represents social interactions. 

The parameter setting for each of Experiment A and 
Experiment B are  

• Experiment A:  W=15, f =2 
• Experiment B:  W=5, f =3 
The selection of these variables was at our discretion but 

we made sure to select values that explore two 



configurations that result in two graph sets GL that are 
different yet reasonable to experiment with. 

C. Results 
Values for both homophily indicators Hom and Aff are 

reported in Figures 2 and 3, for Experiments A and B, 
respectively. In Figure 3, Steps 7 and 21 have undefined 
values for both indicators and consequently, no value is 
shown. Since edges are not only introduced into the network 
but also removed, it is possible to have steps where there are 
no edges at all. Hence, as confirmed by both indicators 
reporting an undefined value, this is expected and verified. 

Moreover, we expect to see homophilic system states to 
be reported by both indicators: almost all Hom values are 
greater than 0.9, where Hom=1 implies complete homophily, 
whereas Aff values are all greater than 1, indicating 
homophily as well, and seems to increase over time. 

Aff values vary to a greater extent than Hom values in 
both experiments. If an Aff value of around 3.5 is reported, as 
is shown in Figure 1 (see Step 7), it is relatively more 
challenging to understand what the relative difference means 
with respect to say about 1.5, reported for Step 2 of the same 
figure. The fact that there is no fixed and clear upper bound 
that allows for insight into the absolute values of the 
indicator and its difference is a big disadvantage of this 
indicator. 

On the other hand, Hom values appear to be steadier, i.e., 
they do not vary as much. This is perhaps due to the 
normalization of our indicator, built into its definition. It sets 
upper and lower limits (-1 and 1) for the indicator and can be 
interpreted more easily and independently of other factors, 
such as the size of the network and the absolute number of 
edges present. 

Furthermore, for each experiment, and each indicator, we 
show the mean of the values reported, as shown in the 
figures. The mean value for Aff differs by around 0.5 for 
each of the experiment settings. This can probably be 
interpreted by an expert of the indicator itself and SNA but 
even so, it might prove rather challenging. 

However, attesting to the advantage of Hom, the mean 
value in both experiments was 0.93, with a small trailing 
difference. This accurately identifies that both experiments 
are of the similar systems, which was not suggested at all by 
Aff. The slight insignificant difference in mean values of 
Hom is most likely due to the discretization parameters we 
selected when configuring the experiments.  

V. CONCLUSION AND FUTURE WORK 
By considering Social Network Analysis, one can 

reinforce context-aware computing, resulting in a better 
understanding of system behavior that needs to be predicted. 
We focused specifically on a phenomenon called homophily, 
and proposed an indicator Hom to report the potential of a 
system’s state of homophily (or heterophily, for that matter).  
Our indicator can be used for descriptive purposes, i.e., for 
understanding the nature of the network. We also compared 
it to another indicator from the literature, called affinity.  

The nature of each homophily indicator differs: affinity is 
unbounded on one end, having the range [0,∞), where a 
value of less than 1 indicates a state of heterophily. With this 
indicator, it is not easy to understand the degree of 
homophily in the network in terms of the absolute value 
reported, nor is it simple to compare to other systems without 
significant effort and knowledge about both systems and the 
indicator itself. When the system exhibits heterophily, the 
range would be much smaller, making the matter even more 
challenging.  

To simplify and reduce the efforts needed by the average 
application developer, i.e., the non-expert, we make available 
Hom, bounded by the range [-1,1]. Positive values of Hom 
correspond to a state of homophily, while negative values 
correspond to a state of heterophily. This is easier to 
understand and interpret, especially since the homophily and 
heterophily values are symmetric. 

These indicators are intended to be used as part of an 
inference solution, above and beyond simply modeling 
behavior. They need to be light-weight and simple, both of 
which features Hom embodies. 

 
Figure 2. Aff and Hom indicator values reported for Experiment A. 

 
Figure 3. Aff and Hom indicator values reported for Experiment B. 

2.08 

0.93 

2.54 

0.93 



To  extend our indicator and utilize it to predict context-
related behavior in the stochastic system, more work needs to 
be done in terms of extending the network definition to 
account for time periods extending beyond a single time step.  

Other noise features need to be filtered, accounting for 
behavior that opposes the natural phenomenon of homophily. 
A model-driven solution for context inference will benefit 
significantly if the factors of social network activity can be 
isolated and better understood. 

Finally, the Context Engine requires tools and techniques 
that are not only accessible, accurate and effective for the 
non-expert, but also light-weight yet powerful. We are 
convinced that this initial homophily indicator is a step in the 
right direction towards reinforcing context-aware semantic 
computing. 
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