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Abstract. In this paper a method has been proposed for estimating the positions 
of a moving camera attached to a linear positioning system (LPS). By compar-
ing the estimated camera positions with the expected positions, which were cal-
culated based on the LPS specifications, the manufacturer specified accuracy of 
the system, can be verified. Having this data, one can more accurately model 
the light field sampling process. The overall approach is illustrated on an in-
house assembled LPS. 

1 Introduction 

In order to properly capture the light field, significant number of densely positioned 
cameras are needed, e.g. a camera array. For static scenes, such camera array can be 
replaced by a system in which a single camera is precisely positioned on the camera 
array plane. A motorized linear positioning system (LPS) which can position a camera 
on a plane with high precision (sub-pixel resolution) has been built so that it is possi-
ble to capture images from different viewpoints. Thus, the spatial resolution of the 
light field captured by moving a single camera is higher than a light field, which 
would be captured by an array of similar cameras. In the following section we will 
describe in detail the built LPS and present manufacturer provided specifications for 
it. In Section 1.2 we describe the well-known pinhole camera model together with 
modeling of the lens distortions. In Section 1.3 we explain the mathematical model of 
the light field capturing process using an LPS. In Section 2 we describe the methodol-
ogy of estimating model parameters for the LPS, which will allow us to evaluate the 
accuracy specifications provided by the manufacturer. Experimental results presented 
in Section 3 show the importance of evaluating the working accuracy of the LPS 
based on proposed methods in comparison to standard methods. 

1.1 LPS Specifications 

The in-house assembled LPS is composed of a hard alloy aluminum base, precision 
lead screw, anti-backlash nut and a stepper motor. The hard alloy aluminum base 



S. Vagharshakyan, A. Durmush, O. Suominen, R. Bregović, and A. Gotchev, “Accuracy Eval-
uation of a Linear Positioning System for Light Field Capture,” 7th Asian Conf. on Intelligent 
Information and Database Systems (ACIIDS), Bali, Indonesia, March 2015 – published in 
LNCS vol. 9012, pp. 388-397. 

provides the structural stability to the system. The precision lead screw with an anti-
backlash nut converts rotary motion of the stepper motor to precise linear movements. 
Backlash describes the loss of motion due to gaps between the mechanical parts and it 
directly influences the positioning accuracy. Therefore, anti-backlash mechanisms are 
used in precision required applications. Furthermore, stepper motors used in the LPS 
have built-in encoders that provide closed loop servo like operation and increase the 
precision of the system. 

The specifications of the LPS based on the characteristics of the mechanical and 
electrical parts are summarized in Table 1. The accuracy is measured by the deviation 
of the actual position from the desired position along the whole travel distance where-
as repeatability is the measure of a system’s consistency to achieve identical results. 
Straight-line accuracy is the measure of deviation from straight line along the motion 
axis. 
 

Accuracy ±20µm 

Precision (Repeatability) 4µm 

Straight Line Accuracy 38µm 

Maximum Linear Speed 20 mm/s 

Maximum Payload 20 kg 

X Axis Travel Distance 1524mm 

Y Axis Travel Distance 1016mm 

Table 1. Specifications provided by the manufacturer. 

1.2 Pinhole camera with lens distortions image formation model 

A view captured by a camera is formed by projecting 3D points of the scene on the 
image plane of the camera according to the transform  �� = ���|��	 � = 
��

1
 ,� = ��� 0 ��

0 �� ��
0 0 1

� ,� = ���� ��� ������ ��� ������ ��� ���� , � = �������� ,	 = ����
1
� 

where ��,�,�� is the 3D position of a scene point expressed through its homogene-
ous coordinates 	, � = ���, ��	� and � = ���, ��� are the focal lengths and principal 
point coordinates measured in pixels, respectively, ���  represents the camera rotation 
matrix and ���, ��, ��� are coordinates of the camera’s optical center. Moreover, ��, �� 
and ��, �� are respectively the intrinsic and extrinsic camera parameters. For camera 
rotation there exists a more compact representation based only on three free parame-
ters, however the matrix form will be kept for convenience. The pair ��, �� is the 2D 
coordinate of the projected point as a pixel position on the image plane. The result of 
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the perspective projection is written in homogeneous coordinates � with a scaling 
factor �. 

The pinhole camera model describes the perspective projections for a given cam-
era. For real world cameras, another important problem is to model the distortions 
produced by camera lenses. Lens radial and tangential distortions at the image plane 
can be formalized using Brown's distortion model [1] �∗ = ��1 + ���� + ���� + ���	� + 2��� + ��(�� + 2��)  ∗ =  �1 + ���� + ���� + ���	� + ��(�� + 2 �) + 2���  

where ���, ��,��, ��, ���  are radial and tangential distortion coefficients, ��,  �  are 

undistorted coordinates at image plane �� = !�� +  �	� and ��∗,  ∗� are final coordi-
nates taking into account lens distortions. Hereafter, the distortion transform is denot-
ed as	". The model can be extended by adding higher order polynomial terms of � 
and assuming also fractional terms of �. 

The image formation procedure is formalized by Eq. 1. The matrix # combines the 
extrinsic matrix	��, ��, the distortion-modelling transform and the intrinsic matrix (see 
Fig. 1). For brevity, the set of intrinsic parameters with lens distortion parameters are 
denoted as $ = ��, �, ��, ��, ��, ��, ���. %��& = #
,�,� '
� ()																																																			(1) 

 

Fig. 1. Mathematical model of image formation 

1.3 Model of the motorized LPS 

In our model of the motorized LPS, it is assumed that a single specific camera moves 
in space along a line with fixed step size * and takes photos of a stationary 3D scene. 
Using the mathematical model of the capturing function presented before, at each 
movement step, the camera projection can be described as function	#
,��,�, where pa-
rameters �, $ are fixed during the movement, while the positions �� are linearly chang-
ing, �� = + + �,*�+�, , = 1,… ,-. Here, + is vector to the start of the line over which 
the camera is moving and +� is a normalized direction vector of the line as shown in 
Fig 2. 
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Fig. 2. Parameterization of the motorized LPS. 

 

2 Estimation 

2.1 Estimation of parameters for a single camera  

Extraction of camera parameters can be broken down to estimating the 3D position, 
rotation and distortion coefficients of the camera. For that purpose, for a given camera 
setup, projections of 3D points are measured and then the inverse problem is solved to 
estimate	�, �, $ parameters. In other words, for a given set of points in space 	� =��� �(�� , � = 1,… ,. and their corresponding projections	�� = %����& , � = 1,… ,., 

argmin

,�,�

/0#
,�,��	�� −��0��

���
 

is found. When all parameters are unknown and the function # is nonlinear, the solu-
tion should be obtained through nonlinear optimization algorithms. For that purpose, 
we use camera estimation algorithms implemented in the OpenCV library [2] based 
on [3, 4]. 

2.2 Motorized LPS parameter estimation 

Estimation of the motorized LPS parameters refers here to estimating the movement 
precision over the LPS movement axis for specific fixed camera with unknown intrin-
sic parameters. Methods for unconstrained estimation of the camera locations at each 
capture step do not provide valuable results. Particularly, results obtained through 
estimation of the unconstrained locations with common intrinsic parameters and lens 
distortion coefficients [2, 3], i.e.  
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argmin
�,
�,��,
���,… ,�

//0#
�,��,��	�� −��,�0��

���

�

���
																																(2) 

or independent estimation of the locations 

argmin

�,��

/0#
�,��,�∗�	�� −��,�0��

���
, , = 1,… ,-																							(3) 

using beforehand independently estimated lens distortions and intrinsic 
ters		$∗ = ��∗, �∗, ��∗, ��∗, ��∗ , ��∗, ��∗�, are not precise enough. They give only a rough 
estimation of the camera movement through space.  

In our proposed approach we suggest considering a linear dependence between the 
camera positions. In this case the problem can be formulated as  

argmin

,��,��

//0#
,�������,�∗�	�� −��,�0��

���

�

���
																																	(4) 

where the rotation denoted by � is common for all positions, +, +� define a line in the 
space, 1*�2���,…,�  is the distribution of positions over that line, and $∗  denotes the 
intrinsic parameters and lens distortions coefficients which are estimated beforehand 
using (2). The minimization problem is solved by using the Levenberg–Marquardt 
algorithm [5]. It is a non-linear minimization algorithm and therefore providing good 
initial estimates for �, +, +� improves the estimation performance. In particular, initial 
estimates for the minimization algorithm (4) can be obtained by using independently 
estimated 3D position �� , , = 1,… ,- and rotation ��, , = 1,… ,- of each camera posi-
tion by minimizing (3). The initial common rotation estimation � is the mean of all 
rotations �� , , = 1,… ,- and +, +� are the least square solution of ���⋮��� = �+	+�� %1	*…	… 1	-*&																																																						�5� 
where * is a predefined uniform step size. Alternatively, +, +� can be found based on 
principle component analysis for fitting a line to points ��, � = 1,… ,. [6].  

After finding solution for (4), *� , , = 1,… ,- are estimated such that  

argmin
��

/0#
,������� ,�∗�	�� −��,�0��

���
, , = 1,… ,-.																				(6) 

In fact, the interesting values are *� , , = 1,… ,-, which allow estimating or verifying 
the precision of the movement over the LPS compared to the intended uniform step 
size	*. The proposed hybrid algorithm can be summarized as follows: 

Input: - number of views, . number of observed fixed points of the scene and 	�, � = 1,… ,.  their 3D coordinates in the space, ��,� , � = 1,… ,., , = 1,… ,. 
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corresponding projection image coordinates in pixels of ,-th point in �-th view, * 
motorized LPS movement step size, and $∗ = �∗, �∗, ��∗, ��∗, ��∗, ��∗, ��∗ previously esti-
mated intrinsic parameters and lens distortion coefficients. 

1. Find �� rotation matrix and �� position (, = 1,… ,-) of the camera for each view 
by solving (3). 

2. Calculate mean rotation matrix �  based on rotation matrices �� . Calculate least 
square solution of (5) for +, +� (normalize	+�, if it is necessary). 

3. Using already found �, +, +� as initial values, update them by solving (4) 
4. Solve (6) to find *� , using grid search method for each , = 1,… ,. independently. 

5. Repeat step 3, 4 until	3��=∑ ∑ 0#��	�	�� −��,�	0��������� < 5 , where 5  is the 
predefined convergence tolerance. 

3 Experimental results 

3.1 Experiment with synthetic data  

To evaluate the proposed algorithm, we generate a synthetic dataset based on the 
mathematical model presented in sections 1.2 and 1.3. The dataset is generated by 
projecting synthetic chessboard corners (Fig. 4(a)) to virtual cameras located along 
the line and adding noise to projected coordinates to model inaccuracy of the feature 
detection algorithms. The inaccuracy is assumed to be less than 1px in absolute value 
along each axis. A realistic set of LPS parameters is used in projection calculation, 
but lens distortions are not considered. For camera motion we consider a scenario 
where consecutive step size varies as a sine wave Fig. 3 (ground truth). As seen in the 
figure, estimated consecutive distances are close to the ground truth even in the pres-
ence of noise, which shows that the proposed algorithm is robust to inaccuracy in 
feature point detection. This makes our approach suitable for LPS accuracy evaluation 
in a real world setting.  

 

Fig. 3. Comparison of the estimated locations against the ground truth for synthetic dataset.  
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3.2 Experiment with real data 

To form a set of 3D points, we use a chessboard texture on a plane such that each 
inner corner of the chessboard defines a point in 3D space as shown in Fig 4(a). Cor-
ner detection algorithm presented in OpenCV allows detecting corners with sub pixel 
precision in image coordinates, see Fig 4(b). For the given LPS, a nominal step size of 
1 mm is used for camera motion and a chessboard is captured by the camera at each 
step for later processing and movement precision estimation, see Fig. 5. 

 
(a)     (b) 

Fig. 4. (a) Origin of the 3D space positioned at the edge corner of a chessboard and all inner 
points shown as red dots related to selected axis. (b) Detected image coordinates of inner points 

of a chessboard (18x30 inner points). 

 

Fig. 5. Example of views taken with 11mm distance using LPS. Original data contain 400 
views of size 1980x1080px taken with 1mm distance. 

 
(a)    (b) 

Fig. 6. 3D coordinates of estimated positions (a) in meters and rotations (b) in radians obtained 
by solving Eq. 2 of the camera at 400 locations over the LPS movement axis with 1mm step 

size. 
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Solving Eq. 2 is not trivial because of the large number of unknowns. For example, in 
the case of . = 32 (chessboard with 4x8 inner corners) and -	 = 400 (- is the num-
ber of images), it is necessary to estimate 9 intrinsic parameters and 9-  extrinsic 
parameters based on .- measurements, in other words, to solve a nonlinear optimiza-
tion problem with 3609 unknowns based on 12800 measurements. Due to the large 
number of unknowns, the method is too slow in practice – for 30 iterations of minimi-
zation it takes about three hours of computation. Estimated location results are pre-
sented in Fig. 6, and the estimated intrinsic parameters are: 	�	 = 	9�, �� = 962.68��, �� = 539.13��, �� = −0.233, �� = 0.247, �� 		=	−0.173, �� = 0.0028, �� = −0.0035.  

Beforehand estimation of the lens distortion coefficients independent from LPS can 
be done by using only e.g. 6 arbitrary positioned images of the chessboard, similar to 
the one shown in Fig. 4(b). For a better estimation, it is necessary to have images 
where a large part of the field of view is occupied by a chessboard with a large num-
ber of inner corners. In that case, in Eq. 2 one will have a large number of measure-
ments (3240) with relatively small number of unknowns (69). Then one can effective-
ly solve Eq. 2 using the Levenberg–Marquardt algorithm. The obtained results are: 	�	 = 	8.18�, �� = 951.59��, �� = 551.08��,�� = −0.169, �� = 0.111, �� 		=	−0.02, �� = −0.0007,�� = −0.00002.  

After determining the lens distortion coefficients and camera intrinsic parameters, 
the camera positions and rotations are calculated by solving Eq. 3 and the results are 
shown in Fig. 7. They are quite similar to the results shown in Fig. 6, however, their 
calculation takes only a few seconds. Unfortunately, the estimation quality is not high 
enough to allow making conclusions about the LPS working accuracy.  

 
(a)    (b) 

Fig. 7. 3D coordinates of estimated positions (a) and rotations (b) of the camera obtained by 
solving Eq. 3, at 400 locations over the LPS movement axis with 1mm step size. 

The proposed constraint in Eq. 4 together with Eq. 6 facilitates getting meaningful 
results about the accuracy of the LPS movement as shown in Fig. 8. For the given 
LPS, maximum estimated positioning misalignment of the LPS has an absolute value 
less than 0.04mm. Together with joint camera rotation estimation for all positions, 
results provide LPS model parameters for further processing and properly interpreting 
sampled light field data. We also noticed that the precision of the lens distortion coef-
ficient estimation highly affects the camera location estimation. However, the results 
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clearly show that the proposed method is able to detect incorrect and unexpected 
camera movement by the LPS. This is illustrated in Fig. 9 by adding outliers in the 
original dataset.  

 

Fig. 8. Distances between estimated consecutive locations (�� − ����) of the camera over the 
line in space. They are calculated based on the proposed method from a data set containing 

images with 1 mm step size along the LPS movement axis. 

 

Fig. 9. Similar results as in Fig. 7 for same dataset, but with several outliers added artificially 
by replacing images in dataset, which are clearly visible from the results. 

4 Conclusion 

A motorized LPS allowing very fine light field sampling has been constructed and a 
method for its precision verification has been developed. Proposed calibration algo-
rithm also provides estimates of the camera lens distortions and camera rotation dur-
ing capture. Having this data, one can model the light field sampling process with a 
higher accuracy. As a future work we plan to extend capturing process from linear 
capturing system to a planar capturing system and attempt to provide a more ad-
vanced estimation procedure for evaluating the accuracy of a 2D positioning system.  
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