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ABSTRACT
The use of 3D video is growing in several fields such as entertainment, military simulations, medical applications. However,
the process of recording, transmitting, and processing 3D video is prone to errors thus producing artifacts that may affect
the perceived quality. Nowadays a challenging task is the definition of a new metric able to predict the perceived quality
with low computational complexity in order to be used in real-time applications. The research in this field is very active
due to the complexity of the analysis of the influence of stereoscopic cues. In this paper we present a novel stereoscopic
metric based on the combination of relevant features able to predict the subjective quality rating in a more accurate way.
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1. INTRODUCTION
3D video is a growing technology that can potentially affect many fields, such as entertainment, military simulations,
movies, medical applications and 3DTV1–4 . The success of 3D imaging world relies on the ability of 3D systems to
provide an added-value compared to conventional monoscopic imaging (i.e. depth feeling or parallax motion) coupled
with high image quality contents. However, the 3D data may be affected by errors that can be originated in several steps
of the communication chain, from its generation, to processing, transmission, and rendering. Those errors lead to artifacts
that may be quite different, both for realization and impact, from the ones affecting 2D videos to which we are accustomed.
An analysis of most common 3D artifacts can be found in5 . Quality assessment tools are thus needed for ensuring reliable
quality evaluations.
Despite the advances in view modeling and synthesis, less efforts have been devoted to develop algorithms for assessing
the visual quality of a stereoscopic 3D video. One of the most challenging tasks, is the design of a metric able to predict
as close as possible the perceived quality and, at the same time, to require a low computational cost to be adopted in real-
time applications. Quality assessment can be performed by means of subjective tests; however, they are expensive, time
consuming, and the collected results may be affected by factors which can significantly infer their reliability, such as loss
of concentration of users during the test. To reduce the above-mentioned drawbacks, objective metrics able to mimic the
human judgement are being developed.

Several studies have been performed for evaluating the quality of 2D videos and images whereas for 3D videos there are
still many difficulties due to the more complex influence of the stereoscopic cues. Efforts have been devoted for evaluating
the effectiveness of 2D quality metrics when applied to stereoscopic data: in these simple approaches, a 2D metric is
applied to each channel of the stereo video and then the overall 3D video quality is obtained by averaging the separate
scores6, 7 . The collected results show that these models do not resemble the binocular mechanisms of the human visual
system resulting in low correlation with the subjective scores. To improve the metric effectiveness, typical 3D factors have
been included in novel metrics8–11 . Studies have also been carried out for creating stereoscopic video databases containing
scenes with heterogeneous content and different capture parameters as in12, 13 .

In this work the goal is to define a new metric able to accurately predict the subjective judgement when applied to
high resolution 3D stereoscopic videos. The proposed scheme is inspired by14 , where the authors proposed an effective
3D quality assessment metric for the mobile device scenario. Here, we select relevant features with the aim of tuning
the quality metric to a high-definition stereoscopic video scenario. In this work a model for assessing stereoscopic image
quality is defined by considering: the quality of the cyclopean view, the presence of binocular rivalry, and the presence
of binocular depth. Basically, the quality of the single (cyclopean) image obtained by merging the left and right views,
the influence of binocular rivalry on visual comfort, and the impact of the depth on correct perception of the 3D scene
geometry are considered. To quantify these components, features extracted from the data are analyzed and combined.
Here, we select the features whose combination better matches the subjective scores. Since existing 2D quality metrics are



based on the computation and weighting of low level features, for computing our features we exploit existing state of the
art 2D quality metrics.
The rest of the paper is organized as follows. In Section 2, the details of the proposed method, with the adopted 3D factors
considered are presented and the selected features, adopted in different 2D quality metrics, are briefly described. In Section
3 the steps performed for defining the overall metric are described and the achieved results are discussed. Finally, in Section
4 the conclusions are drawn.

2. PROPOSED METHOD
As previously mentioned, the proposed approach relies on the combination of features extracted by exploiting 2D quality
metrics in order to define a reliable 3D metric able to predict in an accurate way the MOS. In order to achieve this goal, the
quality of the cyclopean view, the binocular rivalry, and the binocular depth have been considered. In the following, the
details about the exploited vision models and the selected quality metrics are reported.

2.1 Vision models
Let us define with I

ref

and I

dis

respectively the original and distorted views; we can thus define:

• Cyclopean view (CV): it is given by the overlapping between left and right view. Since we want to evaluate its
quality, first it is computed as in14 , and then its quality is evaluated by means of three models, all based on the use
of any Quality Assessment metric (QA) able to measure the similarity among images:
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are the original and distorted cyclopean views, A and B are k⇥ k blocks extracted from the left
and right views, and N

blk

is the total number of blocks in which the images are partitioned. The B block of the right
view is selected taking into account the shift between the views using the so called block grouping procedure14 .

• Binocular rivalry (BR): it occurs when the eyes try to focus on a single point in a scene as a result of two slightly
different views. Even though occlusions are a natural source of artifacts, the major contribute to BR is given by the
distorted views only. The reference view is not taken into account for this model. It can be computed as:
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• Binocular depth (DQ): it takes into account the amount of dep th in different stereoscopic videos. The binocular
depth assessment is given by:
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where �
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are the disparity maps of the reference and distorted views.

2.2 Selected quality metrics
The following quality measures have been considered in the quality metric design:

• Mean Squared Error (MSE): it is a risk function, corresponding to the expected value of the squared error loss or
quadratic loss. MSE measures the average of the squares of the errors. It can be evaluated as follows:
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• Sum of Squared Differences (SSD): it is a normalized version15 of the MSE and it penalizes local intensity variations
in textured areas:
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where grad(u) is the gradient value of input signal, and M,N represent the size of the image;

• Peak Signal-to-Noise Ratio HVS (PSNR-HVS
c1)16 : it is Peak Signal to Noise Ratio taking into account Contrast

Sensitivity Function (CSF);

• Peak Signal-to-Noise Ratio HVS with Masking function (PSNR-HVS
c2)17 : PSNR function taking into account

Contrast Sensitivity Function (CSF) and between-coefficient contrast masking of DCT basis functions;

• Feature Similarity Index (FSIM
c1): it is based on the exploitation of physiological and psychophysical studies show-

ing that visually discernible features coincide with those points where the Fourier waves at different frequencies
have congruent phases18 . That is, at points characterized by high Phase Congruency (PC), highly informative fea-
tures can be extracted. Another feature considered in FSIM is the image Gradient Magnitude (GM), computed for
encoding contrast information. PC and GM are complementary and they reflect different characteristics of the HVS
in assessing the local quality of the input image. The similarity measure for PC(I
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dis

) is defined as
follows:
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where T1 is a positive constant proportional to the dynamic range of PC values to ensure stability. The similarity
measure for GM(I
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where T2 is a positive constant proportional to the dynamic range of GM values to ensure stability. In order to get
the similarity between f1(x) and f2(x) the previous components are combined together:
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where ↵ and � are parameters used to adjust the relative importance of the two components. However, different
locations have different contributions to HVS perception of the image. For example, edge locations convey more
crucial visual information than the locations within a smooth area. Since human visual cortex is sensitive to phase
congruent structures, the PC value at a location can reflect how likely it is a perceptibly significant structure point.
Intuitively, for a given location (x, y), if any of I
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(x, y) and I

dis

(x, y) has a significant PC value, it implies that
the pixel in position (x, y) will have a high impact on HVS in evaluating the similarity between I
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where ! is the spatial domain;

• Feature Similarity Index (FSIM
c2): FSIM computed by considering the PC component only;

• Feature Similarity Index (FSIM
c3): FSIM computed by considering the GM component only;

• Structural Similarity Index (SSIM)19 : it considers image degradation as a perceived change in structural information.
Structural information relies on the hypothesis that the pixels have strong inter-dependencies especially when they
are spatially close. These dependencies carry important information about the structure of the objects in the visual
scene. In short, it provides a quality evaluation based on tree different characteristics: luminance, contrast and
structure. The first SSIM-based feature has been obtained by applying SSIM to the luminance component (Y) of the
image;

• Structural Similarity Index (SSIM
c2): SSIM applied to the Cb color component;

• Structural Similarity Index (SSIM
c3): SSIM applied to the Cr color component.
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Figure 1: Left sample frames extracted from the videos in the DB.

3. METRIC DESIGN AND RESULTS
In order to design the proposed metric, the stereoscopic HD database Nantes-Madrid-3D-Stereoscopic-V1 (NAMA3DS1)13

has been used. The database contains 10 original videos (SRC, SouRCe) that have been captured with a Panasonic AG-
3DA1E twins-lens camera, with 60 mm distance between the lens. Twins lenses are adjusted to avoid vertical and angular
rotations and brightness mismatching. All videos have Full HD 1080p resolution and frame rate of 25 fps. The stereoscopic
sequences are chosen with different motion, environments (outdoor, indoor) and depth. Sample frames from the video
sequences are in Figure 1. From each SRC, 9 PVSs (Processed Video Sequence) have been created by affecting the SRCs
with 9 different artifacts (blocking, down-sampling, edge enhancement, and combinations of these artifacts). In order
to provide a ground truth for quality metric assessment, subjective tests have been performed for collecting the Mean
Opinion Score (MOS). 28 subjects took part to the subjective experiments and each participant has been asked to evaluate
the perceived quality in a range from 1 to 5 where 1 corresponds to extremely poor quality and 5 to extremely good as
summarized in Table 1.

3.1 Features computation
The selected QAs have been used in the vision models above mentioned and tested on the SRCs and PVCs to obtain the
features named according to the scheme in Table 2 . The fitting of each feature f

j

with the MOS is evaluated by computing



MOS Quality Impairment
5 Excellent Imperceptible
4 Good Perceptible but not annoying
3 Fair Slightly annoying
2 Poor Annoying
1 Bad Very annoying

Table 1: MOS scale example

CV1 CV2 CV3 BR DQ
MSE f1 f11 f21 f31 f41

SSD f2 f12 f22 f32 f42

PSNR-HVS
c1 f3 f13 f23 f33 f43

PSNR-HVS
c2 f4 f14 f24 f34 f44

FSIM
c1 f5 f15 f25 f35 f45

FSIM
c2 f6 f16 f26 f36 f46

FSIM
c3 f7 f17 f27 f37 f47

SSIM
c1 f8 f18 f28 f38 f48

SSIM
c2 f9 f19 f29 f39 f49

SSIM
c3 f10 f20 f30 f40 f50

Table 2: Features denomination.

the Spearman correlation, as reported in Table 3.

As can be noticed, the best result is achieved for f25 for which the correlation value with the MOS is 0.81. In the last
row of Table 3 the value of SROCC1 corresponds to the correlation between the MOS and the combination of all features
for each vision model. In this case it can be noticed that CV shows the best behavior with a maximum correlation value of
0.91. Since our aim is to exploit the characteristics of all models in order to have a more general approach, we decided to
move forward towards the combination of the considered features.

3.2 Feature combination
The features combination is obtained through a linear regression between the selected features and the reference vector
(the MOS). The goal is to find the parameters that are able to minimize the error between our selected features and the
MOS. To the aim of selecting the minimum number of features needed to design our new metric, the sequential feature
correlation14 , has been applied. It can be summarized as follows:

CV1 CV2 CV3 BR DQ
MSE -0.33 -0.47 -0.50 0.10 -0.54
SSD -0.47 -0.70 -0.72 -0.08 -0.57

PSNR-HVS
c1 0.38 0.14 0.16 -0.20 0.56

PSNR-HVS
c2 0.42 0.14 0.16 -0.20 0.57

FSIM
c1 0.54 0.78 0.82 -0.22 0.66

FSIM
c2 0.59 0.76 0.75 -0.16 0.65

FSIM
c3 0.43 0.57 0.56 -0.19 0.66

SSIM
c1 0.42 0.79 0.77 -0.11 0.66

SSIM
c2 0.47 0.50 0.50 0.11 0.65

SSIM
c2 0.42 0.79 0.77 -0.10 0.52

SROCC1 0.87 0.92 0.91 -0.85 0.83

Table 3: Correlation values between MOS and the selected features.



1. The feature that exhibits the highest individual correlation is chosen;

2. a second feature is added;

3. the correlation between the first feature and all the others is computed;

4. the feature that shows the highest correlation is added to the set;

5. a third feature is added;

6. with an iteration, the third feature providing the highest correlation is found;

7. the procedure is iterated until no further improvement is obtained.

The outputs of the linear regression are reported in Figure 2. It can be noticed that 5 features are needed to reach
a correlation value of 0.9. Based on the analysis of those results, 5 features have been chosen based on the following
requirements: correlation larger than 0.9, features matching all the three models (CV, BR, and DQ), coefficients in the
same range, and low computational complexity.

Figure 2: Sequential features selection.

Among the possible combinations, the one presenting at least one coefficient with high magnitude for each model has
been chosen following the above mentioned approach, as shown in Table ??.

Spearman correlation Features Execution time [s]
0.92 f21 f22 f25 f30 f32 211
0.92 f11 f12 f20 f25 f32 211
0.92 f11 f12 f25 f31 f35 225
0.91 f3 f4 f15 f32 f36 256
0.91 f11 f20 f22 f25 f32 211
0.91 f11 f20 f22 f25 f32 211
0.91 f11 f12 f25 f26 f27 408
0.91 f15 f17 f31 f36 f49 321
0.91 f11 f22 f30 f33 f34 196
0.91 f25 f32 f35 f43 f48 238
0.91 f3 f4 f15 f32 f50 235
0.91 f15 f21 f22 f32 f35 227
0.91 f3 f4 f15 f35 f36 276
0.91 f15 f32 f35 f43 f49 238

... ... ...

Table 4: Sample of 5 features combination.



After the combination of features has been selected, the quality metric is built on those features. In our case the selected
ones are [f15 f32 f35 f43 f49]. This metric incorporates all the models: CV (represented by feature f15), BR (represented
by features f32 and f35), and DQ (represented by features f43 and f49). In Figure 3 the overall performances of the
proposed algorithm is presented. The fitting of the MOS with the proposed metric shows a good correlation with a value
of 0.91.

Figure 3: Logistic fitting of the data gathered with the proposed metric.

4. CONCLUSIONS
In this paper a novel stereoscopic metric based on the combination of relevant HVS features has been presented. The
quality model has been designed by considering the quality of the cyclopean view, the presence of binocular rivalry, and
the presence of binocular depth. Basically, the quality of the single (cyclopean) image obtained by merging the left and
right views, the influence of binocular rivalry on visual comfort, and the impact of the depth on correct perception of the 3D
scene geometry are considered. To quantify these components, features extracted from the data are analyzed and combined.
Here, we select the features whose combination better matches the subjective scores. The collected results show that the
proposed metric is able to predict the subjective quality rating in an accurate way while keeping a low computational
complexity.
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