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ABSTRACT

We study the complexity of network dynamics in a couple
of very different model classes: The traditional random
Boolean networks (RBN) and Frisch-Hasslacher-Pomeau
lattice gas automata (FHP). For this we formulate the FHP
dynamics as a probabilistic Boolean network (PBN). We
use the set complexity of successive network states to as-
sess the complexity of the dynamics. We find that the
complexity is maximised near a transition state in both
types of dynamical systems.

1. INTRODUCTION

Boolean networks are one of the simplest existing dynam-
ical systems, yet they can produce an extremely wide range
of different observable types of behavior. This makes them
a suitable target for complexity research: a broad diversity
of dynamics that is reducible to simple building blocks.
Boolean network models have been used to establish and
study several fundamental properties of dynamical sys-
tems. These include, among others, characterization of
attractor structure, information processing properties, dy-
namical regimes, and ability to store information [1]. Re-
markably, many of these properties are present in multi-
ple other classes of dynamical systems, and some of these
properties have been found in real systems, such as living
cells.

While Boolean networks are a highly useful model
class, there are multiple limitations. Some of these be-
come apparent when one wants to understand the com-
plexity of processes that pertain to physical quantities such
as work or energy. Additionally, standard random Bool-

ean model does not capture spatial positioning of the nodes.

To extend the analysis beyond random Boolean networks,
we utilize a model class that captures spatial positioning
and pertains to the quantities such as work and energy: a
lattice gas model. We use both of these model classes to
show that our observations about the dynamical behavior
holds also for both of these systems. Finally, we will es-
tablish a connection between lattice gas model and prob-
abilistic Boolean networks. This connection allows com-
parison and generalization of results between these sys-
tems.

In this work we will study complex behavior of dy-
namical systems during the transition towards a steady
state. Specifically, we address the complexity of the tra-
jectories during this transition. Using an information the-
oretical measure, set complexity, we show that the maxi-
mally complex dynamical behavior is observed during the
transition period. Additionally, we show that this prop-
erty is shared between Boolean networks and lattice gas
model.

2. METHODS
2.1. Random Boolean networks

A Boolean network is defined as a collection of nodes
{V1,...,Vn} where at each time step ¢ each node is as-
signed a Boolean value x;(t), i.e.

Vee NVie{l,...,N}:x;(t) € {0,1}.

Each node receives input from 0 to N nodes and the state
of the node at time instant ¢ + 1 is a Boolean function of
the states of its neighbors at time instant ¢:

zi(t+1) = fi(wr, (1), ... 21, (1),

where I;; (j € {1,...,n;}) are the indices of the input
nodes of node ¢, n; € {0, ..., N} denoting the number of
them.

By Random Boolean Networks (RBN) we mean such
Boolean networks where the inputting nodes as well as
the Boolean functions are picked by random. We denote
the probability of the output of a Boolean function in the
network being 1 by p. For simplicity, we keep the number
of inputting nodes a network-wide constant: Vi : n; = K.
The parameters p and K together determine the dynamics
of the network through a sensitivity parameter s = 2Kp -
(1 — p). Networks with s = 1 are critical networks, as
networks with s > 1 are chaotic and s < 1 stable [2].

RBNss should not be confused with probabilistic Bool-
ean networks (PBN) that are such Boolean networks where
each node may have a number of functions. The choice of
which function to use to update the state of the node de-
pends on a random process. In the present paper we will
use PBNs but skip the formal definitions of the underlying
probability spaces.



2.2. Lattice gas

Movement of gaseous particles in a 2-dimensional box can
be studied using a Frisch-Hasslacher-Pomeau (FHP) lat-
tice gas model [3]. This is a model where the spatial do-
main is divided into a hexagonal grid, and each hexagonal
box in the grid can contain up to six particles. The par-
ticles always move into one of the six directions and can
only move with velocity of one hexagon/time step. Given
that two or more particles are in the same hexagon, they
must have different momenta, that is, different directions
of momentum.

The momentum of a particle can only change with 1) a
collision with the wall and 2) a collision with another par-
ticle. A collision with a wall occurs whenever a particle
enters a hexagon occupied by a wall, and a collision be-
tween particles takes place if a) exactly two particles with
opposite momenta come to the same hexagon or b) ex-
actly three particles with momenta that add up to O come
to the same hexagon. In collisions 1 and 2b the momenta
of the particles is changed in a deterministic way whereas
in 2a the momenta of the particles are chosen by random
between the two possibilities (see Figure 1).
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Figure 1. The collisions in FHP model.
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The lattice gas automaton described above can be pre-
sented as a PBN. Each hexagon in the spatial grid contains
six nodes, each of which can contain a particle moving
into one of the six directions, i.e. the state of the node is
"1’ when there is a particle in the hexagon moving into the
specified direction and *0’ when there is not. The state of
the node at time instant ¢ 4 1 is determined by the state of
its surrounding nodes at time instant ¢. The update rule is
deterministic in all cases but collision 2a — in that case
the outcomes of the four nodes of the possible scattering
directions are random but correlate and anti-correlate with
each other. The Boolean functions of a node V;, whose
parent hexagon does not contain a wall are listed in Fig-
ure 2. If in contrast the parent hexagon contains a wall,
then the only input node is in the opposite direction of the
node (i.e. V;, would be input for V;, in Figure 2), and the
Boolean function is identity.
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f : 000000: 0 010000:0 100000: 1 110000: 1
000001: 0 010001:0 100001:1 110001:1
000010: 0 010010: 0/1 100010:1 110010:1
000011: 0 010011:0 100011:1 110011:1
000100: 0 010100:0 100100:0 110100:1
000101: 0 010101:1 100101:1 110101:1
000110: 0 010110:0 100110:1 110110:1
000111: 0 010111:0 100111:1 110111:1
001000: 0 011000:0 101000:1 111000:1
001001: 0/1 011001: 0 101001:1 111001:1
001010: 0 011010:0 101010:0 111010:1
001011: 0 011011:0 101011:1 111011:1
001100: 0 011100:0 101100:1 111100:1
001101: 0 011101:0 101101:1 111101:1
001110: 0 011110:0 101110:1 111110:1
001111: 0 011111:0 1011112:1 111111:1

Figure 2. The input nodes of a node moving right in the
Boolean network representation of the FHP model. Here,
the state of the node x;, is determined as x;, (t + 1) =
f@iy (8), 24y (), iy (8), @i, (), T4 (t), 44 (t)). The values
of function f are listed on the right for each input. In
the type 2a collisions both values 0’ and ’1° are possi-
ble: in these cases the scattering direction of the collision
is picked by random and the outcome of the node ¢, to-
gether with the other nodes in the hexagon, depends on
this scattering direction.

2.3. Set complexity

Complexity of Boolean network dynamics can be studied
by the means of the context-dependent information it car-
ries. The dynamics of a Boolean network is represented
by a set of its successive states that are read into strings.
To the obtained set of strings one can apply a recently pro-
posed all-purpose measure, set complexity [4], defined as:

S({Z‘l, ,.TN}) = Z C(l‘])m Z djk(l_djk)

J#k

where C(x;) is the Kolmogorov complexity — or its ap-
proximation — of string ;. The variable d;;, stands for
the normalized compression distance (NCD) of strings x;



and x, defined as

C(mjxk) - min(C(l'j), C(xk))
max(C(z;), C(zk)) 7

djk = NCD(.’L']7$]€) =

where x;x, is the concatenation of strings x; and zj. In
the present study we use the length of the LZMA encoded
string as an approximation for the Kolmogorov complex-
ity of the string.

3. RESULTS
3.1. Information content of dynamics of RBN

We consider RBNs of size N = 1000 with variable num-
ber of neighbors (K = 1,2, 3). The state of the network
is read into a string of length IV, and the complexity of the
dynamics is approximated by the set complexity of suc-
cessive states. Figure 3 shows the set complexity of the
states using a sliding window of four successive states. At
the transition to a short-cycle steady state the set complex-
ity is maximised, as seen for networks with sensitivities
s = 0.5 and s = 1. In the case of K = 3,s = 1.5 the dy-
namics of the network is too chaotic for the set complexity
of four states to find any pattern in — in our simulations a
network of this type never returned to one of its previous
states during the 7" = 224 time steps, indicating a lengthy
path to a steady state, a long steady state cycle, or both.
For comparison, the median steady state cycle lengths are
1 for all networks with s = 0.5, 16 for networks with
K = 2,5 =1, and 10 for networks with K = 3,5 = 1.

Set complexity of four successive states of different RBNs
120

K=1, s=0.5
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Figure 3. Set complexity of RBN dynamics. Different
numbers of neighbors (K) and different sensitivities s are
used. The thin curves represent samples of set complex-
ity trajectories, as the thick curves are medians of 1000
trajectories.

Next we study the maximum values of this kind of set
complexity trajectories in more detail. We consider RBNs
with the same fixed numbers of neighbors (K = 1,2,3)

max SC

Figure 4. Set complexity maximum values of different
RBNs. The curves represent medians with the area be-
tween 10% and 90% quantiles shaded. Number of sam-
ples is 130. The values of p that induce a critical BN are
marked, p = 0.5 for K = 2 and p = %:l: % for K =3
networks.

but with variable p; hence, with variable sensitivity s. Fig-
ure 4 shows the distribution (the quantiles) of the max-
imum set complexity value as a function of p. For net-
works with K = 2 the critical network produces the dy-
namics that has the greatest maximum set complexity, as
for K = 3 that holds for slightly chaotical (s ~ 1.1) net-
works. Notice the symmetricity: the dynamical character-
istics of networks with p = g and p = 1 — ¢ are identical
with only the role of 0’s and 1’s interchanged.

3.2. Information content of dynamics of the lattice gas

The lattice gases considered are set up in a M x M grid
of hexagonal boxes, surrounded by impenetrable walls. In
the beginning all particles are situated in three overlap-
ping rectangle-shaped regions on the left side of the box.
The first rectangle lies in the upper-left corner of the box
and consists of particles that are moving lower-right, the
second one occupies the whole height of the box and con-
sists of particles moving right, and the third one lies in the
lower-left corner and moves upper-right. The rectangle
sizes are chosen such that it takes an exact number of time
steps (16 in our simulations) before the first particles hit
a wall on the opposite side of the box. The rectangles are
densely packed: in each slot of the rectangle a particle ex-
ists with probability p = 0.95. This particular setup was
chosen as a reference to a classical example in thermody-
namics in which particles spread from a densely packed
cluster to the whole spatial domain to obtain a maximal
entropy.

In the beginning of the simulation there is a short pe-
riod of time during which the particles do not collide but
move in the most ordered fashion, each of the six M x M
planes only being shifted in their direction of movement.
In contrast, toward the end of the simulation the particles
move chaotically, colliding frequently with each other as
well as with the surrounding walls. Between these phases
lies a period of transition from the orderly motion into the
chaotical one. Figure 5 shows that the set complexity of
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Figure 5. Simulation of a spreading lattice gas. Up-
per axes: The set complexity of twelve successive states
of the lattice gas versus time. A number of realizations
(N=100) plotted in gray, median plotted in black. Lower
axes: Both entropy (dashed), Kolmogorov complexity es-
timate (solid) and number of collisions (solid + x) plot-
ted versus time. The entropy is calculated using the tra-
ditional thermodynamical definition. The state space is
divided into 5-by-5 (10-by-10) boxes, and the number of
particles in all of these microboxes is calculated. The en-
tropy is proportional to the logarithm of the number of
all possible configurations with the said number of parti-
cles in the microboxes. For simplicity, only the interior
of the spatial domain is considered when calculating the
entropy, i.e. the number of particles colliding with the
walls do not contribute to the entropy. Bottom figures:
Lattice gas states visualized at the beginning of the simu-
lation (¢t = 0), during the transition period (¢ = 56) and in
the end (¢t = 4096).

12 successive states of the lattice gas is maximised during
this transition period. In contrast, the Kolmogorov com-
plexity of the state as well as the traditional entropy shows
a mere rising trend in its trajectory. For the compression
the state of the lattice gas is read into a string first column
by column, last plane by plane — i.e. the distance of two
nodes in the same hexagon is always a multiple of M2 in
the string.

4. CONCLUSION AND DISCUSSION

In this article, we have considered set complexity as a
measure of dynamical complexity of state transitions us-
ing two models, RBNs and FHP lattice gases as case stud-
ies. Using these models, we have found that there is a
point of maximal complexity in time, occurring before the
system settles down to its long-term behavior. Although
the generality of the phenomenon is yet to be assessed in
full, it can be suggested that such maximal complexity can
be found in a range of other models of dynamical systems

as well.

A random Boolean network can be thought of as per-
forming a type of a classification task, taking the initial
state of the system and finding out, by computing its char-
acteristic state transitions, to which attractor basin the in-
put vector belongs. Such a parallel calculation can per-
form a huge variety of functions, and what we see in the
set complexity measure can be taken to quantify this ob-
served complexity. In accordance with this idea, critical
or near-to-critical networks show the highest peaks of set
complexity due to the complex dynamics emerging at the
phase transition from ordered to chaotic networks. For the
FHP lattice gas model, the state of the particles changes
through a transient towards a steady state equilibrium. In
this case, the characteristics of the steady state are not de-
pendent on the structured initial state we have selected and
statistically speaking, the end result is always the same.
However, the complexity of the trajectory still reaches its
maximum before equilibrium, showing the generality of
our set complexity approach.

Previously, set complexity has been quantified on the
attractor cycle, with critical networks showing the high-
est complexity in that case as well [4]. Our results agree
with these previous observations, but move the focus to
the transitional states before the attractors are reached. In
the case of biological systems, it can be argued that such
states are more significant in determining the response of
the system to external inputs and variations in the state due
to noise. In future work, such response should be studied
explicitly, using suitable Boolean network models. The
effects of different network characteristics on the com-
plexity of calculation in the transients can then be stud-
ied together with traditional measures of criticality, to see
how the network response is shaped.
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