
Why SPI Initiative Failed: Contextual Factors and Changing Software Devel-
opment Environment

Pasi Virtanen
Tampere University of
Technology, Finland
 pasi.virtanen@tut.fi

Samuli Pekkola
Tampere University of
Technology, Finland

samuli.pekkola@tut.fi

Tero Päivärinta
Luleå University of Technology,

Sweden
tero.paivarinta@ltu.se

Abstract
For today’s software business and its productivity,

software process improvement (SPI) plays a significant
role. Organizations that produce software face chal-
lenges with the productivity and effectiveness of their
operation. The literature lists numerous methods to
make the operation better. Critical success factors are
defined in order to make the successful improvement
procedures more certain. However, these methodolo-
gies need to be adjusted to match the organizational
context. All organizations and their environments are
different, and thus the solution that is the most suitable
for individual needs must be modified or localized to fit
the case-specific contextual demands. This paper stud-
ies the importance of these contextual demands in SPI.
In the paper, a framework is presented through which
the software improvement process can be better under-
stood and studied. The framework offers a view to un-
derstanding the change process describing eight change
paths that may be observed when software process im-
provement is regarded.

1. Introduction

Various systems and software development activi-
ties and practices take place in software organizations.
The diversity of software development and its practices
has resulted in the topic being widely discussed in the
literature [17,30,33,37]. The field is, however, still far
from being complete. For example, productivity and
quality still present problems that need to be solved [15].
Fitzgerald [11] identified factors that have an impact on
system and software development practices that range
from political and organizational to personal and con-
textual. The diversity of the field creates several prac-
tice-oriented problems that are, for instance, directly re-
lated to the implementation of the development method
[2], to the development project [19], to the understand-
ing of the user [16], and to learning from earlier mis-

takes [22]. These problems made Goldfinch [13] sug-
gest that in general a pessimistic attitude should be as-
sumed rather than overt enthusiasm and optimism.

Attempts are made to improve software develop-
ment and its practices by different means and activities
that are often referred to using the concept of software
process improvement (SPI) [37]. SPI practices are usu-
ally aimed at improving software quality, increasing
customer satisfaction through better responses to chang-
ing needs, and reducing risk by the improved visibility
and predictability of the project [14,26]. This is, how-
ever, not an easy task. Niazi et al. [26] identified 30 suc-
cess factors that each have an impact on the instantiation
of SPI practices. These factors are similar to the factors
that affect the instantiation of information systems
methods in practice (c.f. [11]).

Fundamentally, the aim of SPI is to standardize the
development practices so that it is easier to assess the
current and future state of the project [37]. Another
question in SPI is whether the benefits are put into prac-
tice on a more permanent basis, i.e. are lessons really
learned from the experiences gathered [22]. In short, SPI
means that developers (ideally) use a pre-defined prac-
tice or method in a way that is intended by the method
engineer. In our research, the case organization tried to
change their software development practice towards
componentization in order to fulfill the task of imple-
menting SPI within the organization, and thus defining
componentization as a means to implement SPI. How-
ever, the instantiation of this new practice was not suc-
cessful because developers continued their own “build-
from-scratch” approach instead of developing standard-
ized components that could be used by others. Further-
more, they did not use the components made by others.

In this paper, an attempt to change to component-
based software development was studied. The aim of the
study was to exploit two frameworks that may also be
described as theoretical lenses [27,28] to analyze how
the change took place and why the implementation of
the practice deviated from the intended results. The re-
search question considered in this study was the follow-
ing: why did the SPI initiative fail?

The following section summarizes our theoretical
background. In section three, the theoretical lenses are
introduced. Section four presents the case study descrip-
tion and the research settings, and section five presents
the results of the case study. The discussion in section
six binds the results of the study with the theory.

2 Theoretical backgrounds

The success factors for software process improve-
ment have been widely studied. One of the most cited
studies was carried out by Niazi et al. [26]. In the study,
30 critical SPI success factors were identified from the
literature and through empirical study. The most im-
portant success factors identified are top management
support, training and the allocation of resources, staff
involvement, staff experience, and well-defined SPI im-
plementation methodologies. Of lesser importance, but
still influencing the final outcome are communication,
project management, tailoring improvement initiatives,
company culture, and creating process action teams or
external agents. From these 30 success factors, they
“suggest that organizations should focus on [the 6 most]
common CSFs to successfully implement SPI programs,
because […] a factor […] have an impact on SPI imple-
mentation if it is critical in both [literature and empirical
study].” However, even though Niazi et al. [26] prag-
matically argue for a limited focus in SPI initiatives, the
other factors cannot be left totally aside as different or-
ganizations may have different issues that are caused by
their development context, content, and culture (c.f.
[8]). There are similar studies in the literature that fur-
ther confirm these findings, although they may observe
the phenomenon from a slightly different angle of or-
ganizational aspect [9] or they study more the action it-
self [29]. The actual expansion of SPI has been studied
less than the individual parts of the phenomenon [24].

These SPI success factors are also quite similar to
Fitzgerald’s [11] framework for the information system
development (ISD) process. He argues that the use of an
ISD method is shaped by the political roles of method-
ology such as the comfort factor, the legitimacy factor,
the audit trail, the confidence factor, and the power of
individual departments/actors. This is in addition to the
intellectual roles of methodology such as project man-
agement, reduction to variety and complexity, econom-
ics, and communication facilitation, as well as the pro-
file of the development environment that comprises the
number of developers, project duration, responsible au-
tonomy, productivity/rigor trade-off, and by the devel-
opers and their personal factors such as skills, domain
knowledge, commitment, motivation, and trust.

However, none of these factors and frameworks em-
phasizes the role of individual actors in these SPI activ-

ities or in the success of new system development meth-
ods. Both Niazi et al. [26] and Fitzgerald [11] approach
the topic at an organizational level, largely omitting the
roles of individuals. Their findings do, however, provide
a basis for contextual factors that effect on individuals.
Individuals and their roles are usually seen through
management commitment [1] or motivators [3,4].
Teamwork has been studied to some extent including
various aspects such as multi-locational teams [6] and
their productivity [5]. The importance of individual
agents in these SPI endeavors or in ISD is rarely studied.
The exceptions include, for example, Myers [25] who
described briefly the difference between IS profession-
als and non-IS professionals and Choudrie & Selamat
[7] who studied individuals in continuous IS develop-
ment from the viewpoint of the organizational learning
process. They assembled a framework that may be used
to manage and monitor knowledge sharing. The latter
study contributes more to knowledge management dis-
course than IS research.

In this paper, we will analyze an attempt to standard-
ize software development methods by using component
and componentization as a means of change. Compo-
nentization, i.e. the use of ready-made components, is
often seen as a way to cut costs and as a base for mass-
customized products [21,35]. Component-based soft-
ware engineering (CBSE) and production is also seen as
a way to increase the effectiveness of software develop-
ment in several technically oriented studies (e.g. [23]).
Traditional, “built-from-scratch” software development
often contains a lot of unnecessary work [31]. As Fitz-
gerald [11] argued, the use of methods introduces disci-
pline into the production process. If an organization
moves from a “build-from-scratch” approach to a rigor-
ous method-based development approach, the develop-
ment process becomes more efficient because redundan-
cies between components and their development are re-
duced, and the working practices are standardized by
formalizing the development method. Consequently, at
least in theory, the software development process can be
improved.

Component-based software development may be
further divided into centralized and de-centralized pro-
duction [12,18]. In centralized component-based pro-
duction, component creation and component use are
separated from one another: component creators and
their users are not the same [12,18]. There is a dedicated
unit responsible for the creation and production of the
components delivered for the actual production teams to
use in their projects. In decentralized component-based
production, anyone can be a creator or user of a compo-
nent. The latter production method requires a repository
of some kind for the components as well as a method for
searching for and locating the required components. In
addition, a compromise between the two is possible

[18]. The effective use of resources and intra-organiza-
tional communication concerning the development and
use of reusable software is an important factor in ena-
bling the componentization in any chosen model [32].
In the next section, the theoretical lenses are used to ob-
serve the case and to illustrate the theoretical settings as
well as the way the findings were analyzed.

3 Analysis frameworks for understanding
change in software development practices

We used two theoretical lenses to analyze how the
target organization changed its software practice to-
wards componentization, and why the implementation
of the practice deviated from the intended results.
Firstly, we adopted the theoretical lens of eight potential
change paths that have an impact on the actual imple-
mentation of any software development practice in the
organization [20,27,28]. Secondly, we developed some
local theories that affected this implementation by using
a framework for theorizing from practice descriptions,
as suggested by Päivärinta et al. [28].

Figure 1 integrates the above-mentioned models by
forming a theoretical framework for our case analysis.
In the following, the framework is briefly explained.

It is assumed that descriptions of software develop-
ment methods and practices on a general-level actually
represent some kind of attempt to theorize [28]. Conse-
quently, any particular generalized idea of a practice that
guides software development actions (such as agile or
structured methods, particular project management prin-

ciples, etc.) will involve assumptions that concern the
development contexts in which it would be useful to
adopt the practice, the rationale behind the practice, the

actual description of the idealized set of practices in
question, and the expected effects of implementing the
practices [28].

However, as denoted by the plethora of systems de-
velopment literature, the actual practices, when imple-
mented in the development contexts of organizations,
may deviate greatly from the idealized method descrip-
tions and “best practices” [10,11,17,19,34]. The stake-
holders working in a particular development context
may study existing literature on methods and “best prac-
tices” and adopt them to their organizations. This neces-
sitates that their contextual rationale for adoption
matches “well-enough” with the “idealized” methods
and best practices. Many issues in the actual develop-
ment context may intervene in the realization of a par-
ticular practice – even if its adoption has been largely
intended. For example, Larsen et al. [20] identify the
many different pressures on a development organization
to change existing practices in their multi-case study.
The examples, which confirm the theoretical issues
identified by Fitzgerald [11], include the experiences of
developers, particular management goals and strategies
of the organization, the resources available for develop-
ment, and customer preferences, etc. However, Larsen
et al. [20] takes this one step further and argues that pres-
sures to change existing practices may cause eight
change paths when we analyze how certain practice has
evolved in the organization: initiation, implementation,
emergence, formalization, recalcitrance, abandonment,
informalization, and entropy.

For example, while an organization may have a ra-

tionale to initiate and implement a common practice for
managing software projects, other issues such as cus-
tomer preferences may first cause recalcitrance that

<- Informalization – Formalization ->

<- Abandonement – Initiation ->

<-
Em

er
ge

nc
e

–
En

tr
op

y
->

<-Recalcitrance
–

Im
plem

entation
->

Intention

Enactm
ent

Rationale Impacts

Development
Context Issues Intended vs.

Realized Practices

Learning

Theorizing:
Context issues -> (Rationale -> Set of Idealized Practices -> Expected Impacts)

Development Context

Figure	1.	A	Theoretical	lens	used	to	analyze	and	learn	from	prac-
tice	implementation	descriptions.

causes individual projects to ignore the practice, and ul-
timately the organization as a whole to abandon the ini-
tial idea. On the other hand, some practices may emerge
implicitly through the learning-by-doing of individual
developers or project managers and be formalized later
on, after a project or even by the whole organization.
Larsen et al [20] presents examples of the informaliza-
tion and entropy of practices that may take place without
managerial or developer intentions. From the viewpoint
of the analysis framework, it is thus important to note
several issues in order to understand a practice and its
change history in context:

What was the rationale to implement a particular de-
velopment practice?

What contextual issues had an impact on the ra-
tionale?

What contextual issues had an impact on the practice
implementation, and how?

Finding answers to these questions helps us to form
local theories concerning particular practices (and to
make practice descriptions of systems and software de-
velopment in organizations):

Contextual issues à Rationale for adoption/inten-
tionà Actual implementation of a practiceà Realized
impacts

Figure 2 below presents the framework with the
findings observed in the case study. Such local theoriz-

ing gives us answers to the following types of research
questions:

How do contextual issues affect rationale to adopt a
practice?

How do contextual issues affect the actual imple-
mentation of a practice?

And finally – how do contextual issues affect the im-
pact from the more or less successful implementation of
a development practice in question?

The local practice descriptions [36] become interest-
ing when they reflect the lessons learned from practice.
The lessons learned are particularly interesting when
they are brought back to the level of more general-level
theorizing of the types of practices in question.

For example, we can now discuss about the differ-
ences between the assumed contextual issues in ideal-
ized descriptions versus the actual issues in the develop-
ment context under analysis; the differences between
generic versus local method adoption rationales; the dif-
ferences between the ideal versus the instantiation of the
practices in question; and the differences between the
assumed versus realized impacts. Hence, the under-
standing of local practice descriptions becomes valuable
from the research viewpoint when those lessons learned
are analyzed in relation to more generic ideas and as-
sumed ideals, often materialized in the form of method
textbooks and “best practices” in a particular field of in-
terest. The next section presents the case organization
and features of the study.

4 The case organization and the research
methods

The case organization is a business unit of a multi-
national software company with over 3200 employees
that operates in business-to-business markets.

The organization provides large and complex ICT
systems and solutions for its organizational customers.
The company has grown rapidly in recent years, mostly
through acquisitions and mergers. These acquisitions
have made the company rather dispersed. Typically, the
acquired companies have not been merged at the practi-
cal level. Instead, they have continued to work as sepa-
rate teams, even in a company-like manner, inside the
mother company. The mother company’s original oper-
ations are also based on working in teams. Conse-
quently, all the teams differ in many ways. They have
different organizational backgrounds, technologies and
tools in use, practices, products and customers, and have
very different compositions. Each team has been re-
sponsible for its own software development, production,
and sales. The teams are also geographically dispersed.

This study took place on eight sites. The geograph-
ical dispersion makes it difficult for the teams to know
what the others in the organization are doing. Even the
team leaders do not necessarily know what the other
teams are working on. Due to this, the teams are usually,
if not always, building software from their own prem-
ises, and often from scratch. This leads to situations
where the teams do overlapping programming and soft-
ware development work. Consequently, very similar
features are being produced at different sites. This over-
lap in the software development creates extra costs and
inefficiency for the company.

Among the interviewed personnel from various hi-
erarchical levels in the case organization, there was a
clear consensus that something should, and could be
done to improve the organization’s operation. There was
little to be done with the business environment, the op-
erational practices of personnel was the only thinkable

target to look into. The competitive situation would not
improve, so productivity came into focus.

Increasingly fierce competition has put the company
under pressure to search for newer and more efficient
ways of working in its software development and pro-
duction. The aim was to eradicate redundancies, in-
crease productivity, and improve innovativeness in or-
der to create better and more effective solutions for their
customers. The organization realized that they needed
better use of knowledge. Improvements in knowledge
flows and closer collaboration between the teams and
individuals throughout the organization were thus per-
ceived as essential.

The organization tried to tackle the aforementioned
problems by changing their development approach to
decentralized component-based software engineering
where the components are distributed through a central-
ized component repository. By implementing this stra-
tegic decision, the organization aimed to exploit their
knowledge base more effectively. With this, they aimed
to release more resources from the development of
standard components to the development of new, inno-
vative ideas. This meant that the teams, in addition to
doing their day-to-day tasks, had to identify potential
components, i.e. products, sub-parts or features, for the
possible use of the whole organization. After being ap-
proved as a common component, it was intended that the
component would then be entered into the component
repository to be available for the others in the organiza-
tion.

However, the situation turned out to be tricky as the
teams did not change their working practices. To study
this phenomenon, 44 people were interviewed in two
rounds of interviews. Table 1 below illustrates the inter-
viewees and their distribution both geographically (by
sites and teams) and professionally. A plus sign indi-
cates in which round of interviews the person was inter-
viewed.

Table 1. Summary of the Interviewees
Interviewees Architects Management Teamleaders Programmers Other Total
Site A 1+1 2+0 1+0 5
Site B 3+0 0+1 2+2 1+0 1+0 10
Site C 4+0 3+1 8
Site D 1+0 1+1 3
Site E 1+1 0+1 1+0 3+1 2+0 10
Site F 1+0 1+0 2
Site G 1+1 1+0 1+0 4
Site H 2+0 2
Total 8 5 17 9 5 44

The first group of interviewees comprised architects.
They were change agents responsible for making the

change from “build-from-scratch” to components hap-
pen. The architects were not software architects per se.

Their job was to monitor and manage the standardiza-
tion process and try to ensure that the harmonization
could and would happen. They were also distributed to
and operating at different sites. The second group in-
cluded the rest of the organization, as illustrated by dif-
ferent columns in Table 1. After the first round of inter-
views at the beginning of the organizational change, an-
other round was conducted two to three months later,
after the busiest change period was over. In the second
round of interviews, there were fewer participants, as
they were perceived both as a backup and as a supple-
ment.

This division was performed in order to stress the
special role of the architect team in this project. The
team leaders were experienced IS professionals who
were specialized in the business. Even though their level
of participation in the actual software development var-
ied, they were often as active as any other member of
their team.

The interviews were anonymized, transcribed, and
analyzed by thematization. The themes under which the
transcribed data were classified were identified from the
success factors listed in the literature [11,26]. The
themes included phrases such as software development,
project management, and resource allocation. After hav-
ing found confirmation or falsification for the alleged
success factors, the contents of the findings were as-
sessed. Based on the assessments, interpretations of
their meaning were made. These are presented in the fol-
lowing section.

5 The results

The interviewees were in agreement with the gen-
eral-level rationale to implement the new componenti-
zation practice. They agreed on the intended benefits of
componentization as a way to increase the effectiveness
of software development. Theoretically, CBSE is meant
to decrease the amount of overlapping work as features
may be downloaded from a centralized repository. In the
case organization, all stakeholders more or less agreed
on the theoretical benefits as a rationale to change the
effective practice. However, they also saw the need for
actions to improve productivity and competitiveness, as
their competitive situation was getting more difficult.
They shared the unanimous opinion that their current
practices and operations were far from optimal, as the
amount of overlapping and redundant work in the organ-
ization had increased. This chaotic situation was
acknowledged to be partly due to merged technologies
and products and teams, as well as being partly due to
the geographical distribution to multiple locations.
Management made a strategic decision to focus their ef-
forts on the improvement of the software development

process operation through the componentization of soft-
ware. Hence, in light of the analysis framework, the or-
ganization adapted the general-level ideas of componen-
tization from the literature, taking lessons learned and
best practices from the existing body of knowledge. The
implementation phase was then launched.

The organization decided to adopt the decentralized
approach to componentization. The architect team de-
fined the components and their repository in addition to
the component library. The architect team set the guide-
lines as to what was to be regarded as a component and
how the component ought to be built while at the same
time offering advice and consultancy to the teams. This
feature was thus initiated by the architect team. As the
teams were mostly developing software, they were sup-
posed to evaluate whether various parts of their outputs
could also be used as components by other teams and
products.

However, in our case organization, this practice was
never widely adopted. A team was formed to introduce
and to help the implementation in other teams. This ar-
chitect team was also supposed to promote the new way
of doing software development, and to define both the
concept of a component and the storage facility of the
components for the organization. The first attempts to
reach beneficial impacts failed. Some issues on this
shortcoming emerged already during the implementa-
tion process, even though some remedial actions with
positive forces for definition and adoption were taken.
For example, the management declared that only one
specific programming language was to be used. The ar-
chitect team itself declared that they carried out their
part, the perhaps sometimes-unpopular task of inform-
ing the teams about the change. According to the archi-
tect team, they had arranged meetings, built a website
for the company intranet, and they had informed all the
personnel on various occasions about the new ways of
developing software. However, their customers, i.e. the
software development teams were reluctant to change.
In the words of a member of the architect team:

”Then we may talk about the communications media,
that is Confluence [Intranet application, authors note]
at this time. It withholds terms completely strange to
some people […]”

The software developers, project managers and other
stakeholders who were supposed to obey these instruc-
tions, disobeyed. There were several issues that caused
recalcitrance and non-adoption of the intended practice.
For example, it was said that the message was not clear
enough, and that the frequency of these informative
meetings and briefings was not sufficient.

“I’ve been to these meetings regarding this theme
[..] There it was discussed what it is that is meant by this
componentization.” [team member, Team T]

“There were discussions what it really means, this
componentization, as it is a concept that can be per-
ceived as one will.” [team leader, Team L]

This reluctance may have been caused by the fact
that there were insufficient resources allocated to the
change project. The teams were kept busy maintaining
their level of production with ongoing customer pro-
jects. They had to concentrate on multiple things simul-
taneously.

”Naturally everybody has had other things as well,
apparently I’ve been the one who could disengage from
other duties [..] [team leader, Team T]

“Well, I suppose that they’ve been able to allocate
much less time than intended [..]” [team member, Team
L]

The least successful action was the attempt to stand-
ardize the programming language. The teams that were
already using that language in their software develop-
ment were logically more satisfied with this decision.
Unsurprisingly, the teams unfamiliar with the new pro-
gramming language did not welcome this decision at all.
They were, however, promised support in the form of
training and manpower. Some teams acknowledged the
possible need for change and modernization, but still the
actual change was too much for them. In addition, the
training needed and promised was found to be too labo-
rious to schedule as there were no extra resources allo-
cated to the teams and the teams still had to keep up with
their preordered software development work. Therefore,
these contextual factors hindered the successful imple-
mentation of the componentization practice despite
there being a match between the general rationale and
between theory and the context.

6 Discussion

In the literature, the numerous factors that affect the
success of SPI projects and processes have been identi-
fied. It is acknowledged that the support of top manage-
ment is essential [9,26,29]. This was also found in the
case organization. The announcement by company man-
agement was seen as a kick-off for the change project.
A number of interviewees acknowledged that the CEO
was behind this endeavor. Similarly, the architect team
felt that they carried a mandate from top management,
and thus they were empowered to do their job.

Training is another often mentioned feature of the
success factors [26,29]. In the case organization, it was
planned that training would be provided when needed.
Since the first objective was to standardize the program-
ming language, training was seen as important. How-
ever, the provision of training turned out to be poorly
executed. This was because practically no one had the
extra time to request, plan, arrange, or participate in the
training sessions.

This final problem illustrates the importance of ade-
quate resource allocation. Niazi et al. [26], Rainer &
Hall [29] and Munk-Madsen & Nielsen [24] all list the
adequate allocation of resources as a major factor in
making SPI successful. The teams had to meet their eve-
ryday goals as well as to search for components with the
manpower they had. There were simply no extra re-
sources; neither manpower nor time. The deadlines of
the customer projects were tight and a first priority. The
teams in the case organization were promised the sup-
port they needed. However, this promise remained on an
abstract level, as it was not clearly stated what this
meant. It may be concluded that clear communication is
also of the upmost importance as well as a real will to
invest in the effort.

Moreover, the experience of personnel is a critical
success factor in SPI projects [26,29]. Both architects
and production team leaders were experienced profes-
sionals with track records. They continuously balanced
the needs of their teams and the demands of both the
project management and general management. The team
leaders managed to start the production of components
while simultaneously delivering their customer projects.
This was not a small achievement. This, however, re-
sulted in modifications to the initial process as prede-
fined SPI practices had to fit in with the individual needs
and context. This was contrary to the literature where
the implementation of the predefined SPI methodology,
and sticking with it, has been listed as one prerequisite
for a successful SPI project [26,29]. The failure to fol-
low this recommendation is one example of the “local-
ized” implementation of the set guidelines and “ideal-
ized practices” as depicted in the theoretical framework
earlier. In general, the know-how of the personnel in-
volved is almost as critical as their commitment to the
cause itself. For the management of the project, it is ad-
visable to leave some room for contextual alterations
with regard to the guidelines.

Another CSF for SPI implementation is staff in-
volvement [26,29]. On this matter, there were diverging
opinions among the architect team and the production
team leaders and the team members. The architect team
felt that they had carried out their tasks by informing
those who were affected by the organizational change.
The personnel saw their role, involvement, and commit-

ment rather differently. It became evident that those em-
ployees who had closer contacts with the architect team
were better informed about the project than those with-
out such contacts.

In general, there are a number of ways to improve
and enhance the SPI process. Methodologies and meth-
ods can be found in abundance. However, special atten-
tion should be paid to selecting the appropriate measures
to be put into practice, as not all measures are suitable
for all situations. The same also applies to the presenta-
tion and implementation of these measures. As has been
shown in this case study, there are a number of different
factors that influence the implementation of SPI prac-
tices. This paper, therefore, has presented an analytical
framework that also helps to form a picture of how the
SPI process really proceeds. The framework helps to
clarify lessons learned and to compare them to the the-
ory and previous practices. The framework also gives an
opportunity to assess organizational learning and the ob-
stacles to its successful outcome.

In addition to social factors, the characteristics and
psychological factors of individuals have a great impact
on SPI. In the case organization, for example, the teams
were not pleased when they were told that they would
have to give up their learned practices. Doubts were also
raised about the decisions taken to shift to the unifica-
tion of the programming language – even though the
benefits of such a shift were acknowledged in the inter-
views. The resistance to change may be more than just
a negative phenomenon. It may initiate discussion and
point out flaws in the plan.

As is often the case, no matter how active the com-
munication about the change process is, the recipients
still feel they would have preferred more and clearer in-
formation. The alleged shortcomings in intraorganiza-
tional communication effected the success of the reform
significantly, i. e. the varying opinions of how much and
what kind of information was communicated and how.
A reluctance to change the ways of working was empha-
sized by the fact that employees felt they had been given
too little information on the whys and the hows of the
change. Eventually, management realized there was a
problem and they revoked the decision regarding the
programming language, as long as the interfaces ena-
bled black-box thinking and the basic idea of the use of
components remained. This satisfied the team members
to some extent and the successful prototypes of the com-
ponents and their use catered for the rest. This clearly
shows that management should be aware of the general
attitudes and happenings among their subordinates. In
the case of concessions, the main principles must remain
clear.

Retrospectively, in the case organization, some of
the centric SPI requirements were met and some were
not. When the case organization and the realization of

the componentization are considered, it seems that some
of the prerequisites, mentioned for example by Niazi
[26], for a successful SPI project are case-specifically
more important than others and few of them are entirely
meaningless. This means that it is advisable to find the
main features and ensure that they are properly ad-
dressed. This does not, however, justify the neglect of
the others. Furthermore, based on the case organization,
it appears that the contextual factors have a very signif-
icant role in implementing SPI. This would require more
and deeper study. Also, from the analytical framework’s
point of view, it is evident that idealistic methods and
practices are, and are required to be, altered when they
are instantiated. The case study shows evidence that, as
Larsen et al. [20] and Päivärinta et al. [28] theoretically
argue, realized practices turn out to be quite different
from those intended. Some intended practices and prin-
ciples may even be abandoned because of recalcitrance,
entropy, unproductiveness, or simply because no one
has the resources to consider or implement them. Our
case study showed this as management realized the
problem and altered their approach. They still main-
tained the idea of a component-based operation that
would improve productivity and the effectiveness of the
software development process. Yet, it remains to be
seen whether this intention lives long enough to become
institutionalized practice.

7 Conclusions

Why did the SPI initiative fail? To put it bluntly, the
initiative failed because top management prioritized on-
going projects over process improvement. This meant
that resources such as time and money were not ade-
quately allocated to teams to improve their development
practices. The teams were left with little chance to suc-
ceed with the renewal of their modus-operandi as mun-
dane project-related details overruled the contextual fac-
tors and larger-scale development needs and require-
ments.

This paper has contributed to research in multiple
ways. Firstly, we have illustrated how and why realized
development practices deviate from what was intended.
Although these are not novel issues, their illustration
and conceptualization in relation to the literation helps
one to understand and ground the findings to contextual
issues and the literature. Secondly, we have provided
more evidence for the Larsen et al. [20] framework in
how the methods evolve in organizations. Thirdly, we
showed that the SPI factor prioritization by Niazi et al.
[26] is highly contextual and focusing only on some suc-
cess factors may not guarantee ultimate success. Instead
of focusing on a subset of factors, one should take a
much broader view and analyze the whole context. The
Larsen et al. [20] framework may make this challenging

task easier. A practical contribution is the notion that
contextual factors are far more important than were pre-
viously realized. There are managerial issues that may
seem to belong more to the human resources department
than to SPI. The latter stresses the need for management
to conceive the whole picture rather than the separate
and individual details. It becomes vital that management
realizes that the adequate allocation of resources must
be assured in order to achieve the expected results.
These resources entail both temporal and financial lee-
way where customer projects are concerned.

The conclusions may be summarized on a practical
and theoretical level. On the practical level, prior frame-
works may provide a model to follow up on and that
there are methodologies worth applying if implemented
correctly: suitable under the circumstances and fitting to
the context. There are so many methodologies that it im-
plies that perhaps some are modifications to various
contexts. There is no reason why things could not be
done again in a similar way in another company. That is
to say that the use of a methodology has generally no
value as such, only as a means to an end. If there is a
methodology found in the literature that suits the case,
according to the experiments observed in this company,
it may be implemented. Sometimes it is necessary to
concede an unsuitable solution for a certain purpose. If
need be, the methodology may be modified to fit the
needs and the outcome can still be functional.

This paper is based on a qualitative study. The study
aimed to increase understanding of the change process
in software production and the factors that influence
change adaptation. The authors acknowledge that the
data consists of single case study organization and the
opinions of certain personnel therein. This calls for con-
sideration when making generalizations based on the
data. Due to the uniqueness of each case study, more re-
search in definitely needed.

References
[1] Abrahamsson, P. Commitment nets in software process
improvement. Annals of Software engineering 14, 1 (2002),
407–438.

[2] Agerfalk, P.J., Fitzgerald, B., and Slaughter, S.A. Flexible
and distributed information systems development: State of
the art and research challenges. Information Systems Re-
search, (2009).

[3] Baddoo, N. and Hall, T. Practitioner roles in software
process improvement: an analysis using grid technique. Soft-
ware Process: Improvement and Practice 7, 1 (2002), 17–31.

[4] Baddoo, N. and Hall, T. De-motivators for software pro-
cess improvement: an analysis of practitioners’ views. Jour-
nal of Systems and Software 66, 1 (2003), 23–33.

[5] Bosch-Sijtsema, P.M., Ruohomäki, V., and Vartiainen,
M. Knowledge work productivity in distributed teams. Jour-
nal of Knowledge Management 13, 6 (2009), 533–546.

[6] Bosch-Sijtsema, P.M., Ruohomäki, V., and Vartiainen,
M. Multi-locational knowledge workers in the office: naviga-
tion, disturbances and effectiveness. New Technology, Work
and Employment 25, 3 (2010), 183–195.

[7] Choudrie, J. and Selamat, M.H. Managing organisational
learning through continuous information systems develop-
ment: tacit knowledge diffusion and meta-abilities perspec-
tives. International Journal of Knowledge and Learning 1, 4
(2005), 342–356.

[8] Dorr, J., Adam, S., Eisenbarth, M., and Ehresmann, M.
Implementing requirements engineering processes: using co-
operative self-assessment and improvement. Software, IEEE
25, 3 (2008), 71–77.

[9] Dyba, T. An empirical investigation of the key factors for
success in software process improvement. Software Engi-
neering, IEEE Transactions on 31, 5 (2005), 410–424.

[10] Fitzgerald, B., Russo, N., and others. Information sys-
tems development: Methods in action. Recherche 67, (2002),
02.

[11] Fitzgerald, B. An empirically-grounded framework for
the information systems development process. Proceedings
of the international conference on Information systems,
(1998), 103–114.

[12] Frakes, W.B. and Kang, K. Software reuse research: Sta-
tus and future. Software Engineering, IEEE Transactions on
31, 7 (2005), 529–536.

[13] Goldfinch, S. Pessimism, computer failure, and infor-
mation systems development in the public sector. Public Ad-
ministration Review 67, 5 (2007), 917–929.

[14] Hall, T., Rainer, A., and Baddoo, N. Implementing soft-
ware process improvement: an empirical study. Software
Process: Improvement and Practice 7, 1 (2002), 3–15.

[15] Iivari, J. and Huisman, M. The relationship between or-
ganizational culture and the deployment of systems develop-
ment methodologies. Mis Quarterly 31, 1 (2007), 35–58.

[16] Iivari, J., Isomäki, H., and Pekkola, S. The user–the
great unknown of systems development: reasons, forms,
challenges, experiences and intellectual contributions of user
involvement. Information systems journal 20, 2 (2010), 109–
117.

[17] Introna, L.D. and Whitley, E.A. Against method-ism:
exploring the limits of method. Logistics information man-
agement 10, 5 (1997), 235–245.

[18] Jacobson, I., Griss, M., and Jonsson, P. Software reuse:
architecture, process and organization for business success.
acm Press, 1997.

[19] Kautz, K., Madsen, S., and Nørbjerg, J. Persistent prob-
lems and practices in information systems development. In-
formation Systems Journal 17, 3 (2007), 217–239.

[20] Larsen, E., Päivärinta, T., and Smolander, K. A model
for analyzing systems development practises and their evolu-
tion in organizations. Journal of Information Technology
Theory and Applications Forthcoming 2012, .

[21] Li, Y., Yin, J., and Dong, J. A Component Management
System for Mass Customization. Computer and Computa-
tional Sciences, 2006. IMSCCS’06. First International Multi-
Symposiums on, (2006), 398–404.

[22] Lyytinen, K. and Robey, D. Learning failure in infor-
mation systems development. Information Systems Journal 9,
2 (1999), 85–101.

[23] Meyers, B.C. and Oberndorf, P. Managing software ac-
quisition: Open systems and COTS products. Recherche 67,
(2001), 02.

[24] Munk-Madsen, A. and Nielsen, P.A. Success Factors
and Motivators in SPI. International Journal of Human Capi-
tal and Information Technology Professionals (IJHCITP) 2,
4 (2011), 49–60.

[25] Myers, M.E. The IS profession and the IS professional:
fit of mis-fit? Proceedings of the 1992 ACM SIGCPR confer-
ence on Computer personnel research, (1992), 350–351.

[26] Niazi, M., Wilson, D., and Zowghi, D. Critical success
factors for software process improvement implementation: an
empirical study. Software Process: Improvement and Prac-
tice 11, 2 (2006), 193–211.

[27] Päivärinta, T., Sein, M.K., and Peltola, T. From ideals
towards practice: paradigmatic mismatches and drifts in

method deployment. Information Systems Journal 20, 5
(2010), 481–516.

[28] Päivärinta, T., Smolander, K., and Larsen, E. \AA. To-
wards a Framework for Building Theory from ISD Practices.
Information Systems Development, (2011), 611–622.

[29] Rainer, A. and Hall, T. Key success factors for imple-
menting software process improvement: a maturity-based
analysis. Journal of Systems and Software 62, 2 (2002), 71–
84.

[30] Rico, D.F. ROI of Software Process Improvement. .

[31] Schuh, P. Integrating agile development in the real
world. Cengage Learning, 2004.

[32] Sherif, K., Appan, R., and Lin, Z. Resources and incen-
tives for the adoption of systematic software reuse. Interna-
tional Journal of Information Management 26, 1 (2006), 70–
80.

[33] van Solingen, R. A follow-up reflection on software pro-
cess improvement ROI. Software, IEEE 26, 5 (2009), 77–79.

[34] Stolterman, E. How system designers think about design
and methods. Scandinavian Journal of Information Systems
4, (1992), 137–150.

[35] Womack, J.P. and Jones, D.T. Beyond Toyota: how to
root out waste and pursue perfection. Harvard business re-
view 74, (1996), 140–172.

[36] Wynekoop, J.L. and Russo, N.L. Studying system devel-
opment methodologies: an examination of research methods.
Information Systems Journal 7, 1 (1997), 47–65.

[37] Zahran, S. Software Process Improvement: Practical
Guidelines for Business Success. ISBN 0-201-17782-X,
(1998).

