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Abstract—Due to an increasing number of sniper attacks in
different crises and security threats around the world, there
is a need for new technologies and applications to take place
in helping to prepare against such offensives [1]. Estimation of
sound wave direction of arrival (DOA) based on time differences
between separate microphones is typically applied for sound
source localization, and the existing research achievements of
the field are utilized in the presented study. In this paper, a new
method for estimating the state of a supersonic bullet is proposed.
State is defined here to consist of bullet’s trajectory, caliber,
and speed. The method is based on a mathematical modeling of
the bullet shock wave, and the parameter estimation procedure
is built over the Bayesian inference. Both simulations and real
shooting data are used to test and verify the performance of the
proposed method. Bringing shock wave modeling and Bayesian
inference together is the main focus of the study.

I. INTRODUCTION

In security and peacekeeping it is vital to efficiently estimate
the direction of a hostile shooter. Studies have been made
in the field of bullet shock waves and trajectory estima-
tion [2], [3], and [4]. In these papers, the mathematical mod-
eling of a shooting event is identical, whereas the methods for
detecting waveform signatures and the algorithms for sound
source localization differs. Some anti-sniper systems ([5], [6])
are already being used in certain crisis situations, but there still
exists a need for improving the reliability of the estimation.

This paper applies a mathematical model of the acoustic
waveform of a bullet, that has been studied and measured
by Whitman [7]. The previous studies exploit some basic
principles of the shock wave signature in the estimation. In
contrast, this work applies a Bayesian approach to bullet
state estimation based on measured data and the mathematical
model [7]. The bullet trajectory properties, as well as the
caliber and speed, are enclosed by the mentioned bullet state,
which is estimated with an inverse Bayesian method. Bayesian
method gives an optimal solution in a case where prior
knowledge exists. The state estimation problem is of high
dimension and the underlying likelihood distribution is highly
irregular. Particle filters are suitable for such problems [8],
and are therefore applied in this work.

Acoustical bullet trajectory estimation methods can be di-
vided into three categories: 1) methods using shock waves,

2) methods using the muzzle blast caused by the gun itself,
and 3) methods using both of the features. The methods
belonging to category 3 have more uncertainty involved in
the estimation, since the number of error sources grows
higher. Silencers and long shooting distances can prohibit the
existence of muzzle blast, causing the category 2 methods to
become useless. Nevertheless, they are used in some restless
environments in the USA [9]. The proposed method here
belongs to category 1, meaning that no observation of the
muzzle blast is needed. However, since subsonic bullets do
not cause shock waves, only the supersonic bullet states can
be estimated. The category 1 methods are still suitable against
snipers, who generally prefer rifles yielding supersonic bullets
in order to ensure accuracy.

The structure of this paper is the following: First, in Sec-
tion II the mathematical modeling of a shock wave is reviewed.
The following Section III covers the main contribution of
the paper: the use of particle filtering to solve the inference
problems regarding to the state estimation. In Sections IV
and V, the testing and performance of the developed system is
covered, and finally conclusions and future work is presented
in the last Section VI.

II. MODELING OF A SHOCK WAVE

As a bullet propagates in a homogeneous medium at super-
sonic speed, it creates omni-directionally propagating sound
waves, which together form an acoustical shock wave front.
As a result, a cone-shaped pattern is formed behind the bullet,
see Fig. 1. The angle of the shock wave front with respect
to the bullet’s trajectory is proportional to the speed of the
projectile [10]:

θM = arcsin

(
1

M

)
, (1)

where M is a Mach number, which is defined as M = v/c,
where v and c are the speed of the projectile and sound,
respectively.

The waveform of a shock wave is a function of projectile’s
diameter φ, speed v, and the distance between the trajectory
and the receiving microphone position mi. This miss distance
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Fig. 1. As a bullet propagates from left to right, a shock wave cone is formed
behind the bullet, marked with a purple dashed line. The shock wave front is
propagating at the speed of sound c, while the bullet has a decreasing speed,
approximated here as a constant v. Vector h determines the heading of the
bullet trajectory, whereas the different time indexes are marked by tn, where
n is running from 0 to 4.

is measured from the trajectory’s CPA-point (Closest Point of
Approach), marked here as a. A line drawn from this point
to the microphone position mi lies always perpendicular to
the trajectory. The shock wave’s waveform is mathematically
defined using (2) and (3), which form the Whitman model: [7]

Ai =
0.53P0(M

2 − 1)1/8φ

d
3/4
mi,al

1/4
[Pa], (2)

Li =
1.82Md

1/4
mi,aφ

c(M2 − 1)3/8l1/4
[m], (3)

where P0 is the atmospheric air pressure, dmi,a is the miss
distance, and l is the length of the bullet, which is related to
its diameter by [3]

l ≈ 4.35φ [m]. (4)

In addition, the shock wave’s time of arrival τi to a given
microphone mi from a specific point s of the trajectory is
needed to model a shock wave caused by a bullet. The term
τi is defined as

τi =
||mi − s||

c
=

dmi,s

c
[s], (5)

where dmi,s is the distance between the microphone mi and
the S-point s, which is defined in the next Section II-A.

The actual shock wave’s waveform is commonly known as
N-shaped wave (or simply N-wave). This is because the time
domain waveform has very dramatic rising and falling edges,
which are literally making it to look like a letter ”N”. This
kind of a function can be formed by as is shown in (6), where
Ãi represents the normalized version of Ai of (2) [2]:

yi(t) =

{
Ãi

(
1− 2 t−τi

L

)
, τi ≤ t ≤ τi + Li

0, otherwise.
(6)

Obviously, the amplitude of the shock wave increases as
the miss distance decreases. Also the shock wave length is
varying as a function of distance to the trajectory. This can
be seen from (3), where the waveform of the shock wave
becomes longer, as the trajectory moves further away from
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Fig. 2. Modeled and recorded shock waves and the necessary parameters,
τ , A and L, for the modeling. Red dashed line on the left image represents
an ideal shock wave with zero noise level.

the microphone. In Fig. 2, in the left image, an example of
N-wave’s waveform with all the necessary parameters can be
seen. In order to compare the modeled signal with a real shock
wave, also a waveform of a recorded shock wave signal is
shown in the right image.

A. Shock Wave’s Launching Point

The trajectory’s CPA-point differs from the point where the
bullet’s shock wave is actually launched from, i.e. the S-point.
In order to estimate the trajectory of a projectile, the derivation
of the CPA-point using the S-point must be obtained — or vice
versa. An illustration of the S-point with respect to the CPA
is shown in Fig. 3. The blue line represents the line of fire,
i.e. the trajectory to be estimated. Vector g is the position
vector for the weapon, while vector h stands for the direction
(heading) vector for the bullet. The position vectors are defined
in Cartesian coordinates for a particular point, for example
g = [gx, gy, gz]

T . Mach angle θM shown in Fig. 3 is estimated
here between the shock wave front and the bullet trajectory.
The Mach angle can vary significantly, depending on the speed
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Fig. 3. The geometry of the shock wave front with respect to the CPA -
point a and S-point s. The view of the figure is from above.



of the bullet (1). For bullets that are only slightly faster than
the speed of sound, θM is nearly 90◦, whereas for very fast
bullets, say v = 1000 m/s, θM can is as small as ≈ 20◦ [10].
The different angles and metrics of Fig. 3 are obtained by
the means of geometry, as will be seen with the simulation in
Section IV. As a resulting outcome, the relations between the
S-point and CPA can be derived.

III. ESTIMATION OF THE BULLET’S TRAJECTORY

It is assumed that a shock wave — caused by a certain
type of a gun and a bullet — has been observed by an
array of microphones. Furthermore, the coordinates for the
microphones are assumed known. An unambiguous direction
of arriving (DOA) shock wave can be then calculated, when
at least four microphones have observed the shock wave. The
DOA estimate for the shock wave is based on time differences
between the shock wave observations of each microphone.
With these assumptions, an idea of using probabilistic infer-
ence methods to estimate the bullet state is proposed.

In Sections III-A and III-B observed data is used to build a
so-called data model, which is then used to draw conclusions
about the unobserved quantities [11]. Here Bayes-methods are
considered, since dealing with probability distributions instead
of point estimates is a complete solution for the problem.

A. Estimating the Likelihood of a Trajectory

Likelihood function gives probabilities for different sys-
tem outcomes, given that the observed outcome is formed
according to some known parameters. It is possible to con-
struct a likelihood function for estimating the probabilities
for the observed shock wave being caused by a bullet with
an arbitrary chosen trajectory, speed and caliber. Likelihood
function values are here calculated using a generalized cross
correlation (GCC) method. The GCC is calculated between
the shock wave observations and the modeled shock waves
based on (6). The correlation is calculated separately for all
the microphones, and a so-called phase transform (PHAT)
frequency weighting is also used with the GCC:

Ci(t) = IFFT
(

XiY
∗
i

|Xi||Y ∗
i |

)
, (7)

where IFFT stands for an inverse Fourier-transform, Xi and Yi

are the Fourier-transforms of the observed and generated shock
waves xi(t) and yi(t) of microphone channel i, respectively,
(·)∗ stands for a complex conjugate, | · | is an absolute value,
and Ci(t) is the correlation function of microphone channel
i at lag t, where t can have values t ∈ (−τmax, τmax), τmax

being the maximum delay between two microphones. The used
phase transform makes the magnitude spectrums of the shock
wave signals flat, so that only the phase information is used in
calculating the correlation functions [12]. The likelihood value
for a bullet state p is determined by

P (p|O) = max

(
n∏

i=1

Ci(t)

)
, t ∈ (−τmax, τmax) (8)

where O is a n×N matrix containing the observed signals of
length N by n different microphones, and p is a state vector
containing the different parameter values:

p =
[
aT , φ, v

]T
. (9)

Other methods to determine the likelihood value could also
be considered, such as Mean Square Error (MSE) between
the observed and modeled signals, but here the best results
were obtained by using GCC.

In Fig. 4 a outdoor shooting range is shown from above,
and the likelihood function of a bullet CPA is plotted on
the top by altering the CPA’s coordinate. The data used to
calculate the likelihood function is taken from the gunshot
recordings, discussed in more detail in Section V. The blue
areas in Fig. 4 are corresponding to low-probability regions,
whereas the dark red color shows the position of the likelihood
function’s global maximum. The resulting function contains
several local maximums and some clutter caused by some non-
bullet objects and the background noise. This makes the use
of gradient-based search methods difficult. Instead, the particle
filters are studied more closely to solve the estimation problem.
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Fig. 4. Likelihood function (Eq. (8)) as a function of x- and y-coordinates
of the CPA. The parameters z, φ and v are fixed as is described in the title.
Four microphones are used in the microphone array.

B. Particle Filter
Particle filter consists of m particles pj and weights W (pj),

where j = 1, . . . ,m. Particles represent a ”state” of the system
to be studied. Particle filters are also known as sequential
Monte Carlo-methods, and they can be used to numerically es-
timate the hidden parameters or state of the system, based only
on the observed data. This is often needed with the inference
problems that are too complex to be solved analytically [8].

Since particle filtering is an approximation of Bayesian
optimal solution, it follows the Bayes rule (see also (8)):

P (O|p) ∝ P (p|O)P (O), (10)

where ∝ stands for linear proportionality, and P (O) means
the prior probability distribution assigned to the observations.



Considering the state estimation problem, the functionality
of particle filter is bounded to the following process: First,
particles are generated to populate the state space based on the
a priori information of each parameter: CPA-point is located at
radius r from the array, bullet diameter is distributed according
to common bullet calibers, and the velocity ranges upwards
from the speed of sound. Second, the corresponding shock
waves that the microphones would observe are generated based
on the parameters. After the actual shock wave front has
been detected by the used microphone array, i.e. the signals
xi(t) have been received, the process continues by calculating
the weight values W (pj) for each particle pj using (7)
and (8). Note that the bullet shock wave must be detected.
The detection methods vary, see e.g. [13] and [14] for details.
Here the detection stage is omitted for the sake of brevity.

After all the particles are gone through, they are moved
randomly in the state space by using here the Brown’s motion.
New weights are calculated and Metropolis algorithm is then
utilized to update the particles [11]. If a new particle produces
a higher weight than the previous one, the upgrading is certain
to be done. However, movement towards the lower probability
can also occur. The criteria for updating the particles can be
mathematically derived by using a random variable α with a
uniform distribution over the interval (0, 1). A new particle is
then accepted if

P (p⋆
j ,p

t
j) ≥ α, (11)

where p⋆
j is the new candidate particle and pt

j the particle of
the current time index t. Updating is done with the probability

P (p⋆
j ,p

t
j) = min

(
1,

W (p⋆
j )

W (pt
j)

)
, (12)

where W (·) represents the weight of a corresponding particle,
obtained from (8). Equation (12) also shows, that if the update
from pt

j to p⋆
j increases the weight, the candidate particle is

certain to be kept, that is pt+1
j = p⋆

j . Metropolis algorithm is
a way to avoid converging into a local maximum, since the
particles are allowed to move around and to search for the
global maximum [11]. Also, in order to prevent the particle
filter from converging into any local maximum, 5 % of the
particles are randomly distributed again in the state space after
each iteration round.

Another very essential concept, called resampling, has been
developed to help the particles in converging near to the global
maximum of the likelihood function. Resampling is used for
replacing the particles with low weights with higher weighted
ones. This is practically done to avoid the degeneracy problem,
which can easily occur, if all but one of the particle have
weights near zero. In this paper, the systematic resampling is
used [8]. After the iterative particle moving, median of the
resampled particles is taken to represent the output of the
particle filter. The iterations are done in total for k times, as is
seen in Alg. 1, where the main steps of the proposed procedure
are roughly gone through. Because of the orthogonality, the

Algorithm 1: A rough algorithm for estimating the CPA.
Input: The observed shock wave by each n microphones
Output: Estimated CPA
Initialize the particles according to the prior knowledge.1

for iteration← 1 to k do2

for particle← 1 to m do3

Derive S-point using the current CPA (sec. II-A).4

for each microphone channel i do5

Model the shock wave addressed by the6

current particle pj (Eq. (2), (3), (5)).
Calculate the cross correlation between the7

observed and modeled shock wave (Eq. (7)).
Multiply the correlation results and take the8

maximum value (Eq. (8)).
Update pj using Metropolis algorithm (Eq. (12)).9

Resample p1:m with the resampling algorithm.10

pbest ← median{p1:m}.11

a← pbest(1 : 3) .12

obtained CPA contains all the necessary information to derive
the bullet trajectory.

IV. SIMULATIONS

For testing the capability of a particle filter to find the
global maximum of a likelihood function, a simulation based
on the theory of Section II was created. In the simulation, the
positions of the gun and each microphone can be determined,
along with the bullet’s direction, speed and caliber. All of
the parameters can be chosen freely, so that the testing
environment can be considered as relatively diverse. The
distances between the settled microphones and the trajectory
are calculated by [15]

dmi,a =
||(mi − g)× h||

||h|| , (13)

where ||h|| is the norm of vector h, × represents the cross
product of two vectors, and rest of the symbols are described
in Section II. Considering again the metrics of Fig. 3, the
relations between the CPA and the S-point can be found by
solving all the geometric distances. The angle β = 90◦− θM ,
whereas the terms dmi,s and ds,a are found as is shown in (14)
(using a sine rule):

dmi,s =
dmi,a

sinβ
, ds,a =

dmi,a sin γ

sinβ
. (14)

Now the observations xi(t) of the shock wave can be
modeled according to the chosen simulation settings. Also
some Gaussian noise was added to the ”observed” signals to
test the estimation performance with different Signal-To-Noise
Ratio (SNR) levels, which are computed for each channel i by

SNRi = 10 log10
Exi

Eni

, (15)



where Exi and Eni are the energies of the observed signals
xi(t) and the added noise for each channel, respectively.
Energy for signal xi(t) of length N is calculated by

Exi =
1

N

N∑

t=1

xi(t)
2. (16)

The probability of finding the real likelihood maximum and,
unfortunately, the computational burden increases as the num-
ber of particles is increased. During the testing it was found out
that 2000–3000 particles are enough for the filter to converge
in a computational time of about 10 seconds (using Matlab).
The number of iterations k was now set to 20, which was
decided by following the general progression of the particle
weights. The estimation method was tested by generating four
separate trajectories with a common microphone array located
at the origin. The geometrical parameters of the trajectories
are shown in Table I. Simulated gunshots were shot 5-7 times
along each trajectory, so that in total over 20 estimations were
made for each different noise level.

TABLE I
THE USED GEOMETRICAL PARAMETERS IN THE SIMULATIONS.

parameter x (m) y (m) z (m)
g1 20.000 90.000 1.000
h1 -60.000 -150.000 0.000
g2 -15.000 110.000 0.000
h2 55.000 -150.000 0.000
g3 15.000 80.000 1.000
h3 -20.000 -150.000 0.000
g4 -25.000 80.000 1.000
h4 20.000 -150.000 0.000
m1 -0.150 0.000 0.040
m2 0.149 0.000 0.040
m3 0.000 0.175 0.040
m4 0.000 0.094 0.196

The normalized Root-Mean-Square errors (RMSE) of the
averaged S-point estimates are drawn as a function of SNR in
Fig. 5. The RMS error is defined for an observation sequence
of length s as

RMSE =

√√√√1

s

s∑

ind=1

(θ̂ind − θind)2, (17)

where θ̂ and θ are the estimated and observed parameter
vectors of length s, respectively. Normalization is done here by
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Fig. 5. Normalized RMSE values for the averaged S-point estimates as a
function of SNR level.

mapping both the known and the estimated S-point vectors into
unit vectors before calculating the RMSE values. Hence only
the direction of the S-point is considered, which simplifies the
comparison between estimation performances at different SNR
levels. As the SNR value decreases, the RMS error starts to
increase, as one would expect. However, the performance is
still good at the SNR level of -8 dB, after which a sudden
rise on the error values occur. The results are promising
considering the usability of the method in a noisy environment.

V. RESULTS USING REAL-DATA

The simulation does not take into account any non-ideal
aspects, such as echo, noise, or wind, which can render the
observation circumstances challenging. Moreover, due to the
aforementioned facts, the actual observed shock wave form
does not perfectly obey the simplified signal model (6), as
could be clearly seen in Fig. 2. Therefore, the state estimation
procedure was also tested with over a hundred actual shock
wave recordings, recorded in a outdoor shooting range with
a 7.62 mm rifle and two separate microphone arrays with
four Sennheiser MKE 2P-C condenser microphones attached
to both ([16]). Rifle shots were recorded with both arrays at
the same time, meaning that the caused shock waves were
the same for the both arrays. The shooting sites, as well as
the target point, were roughly spatially annotated during the
recordings, so that the real bullet trajectory can be kept as
more or less known. The microphone positions mi are exactly
known, and the shock wave observation moments are here
manually annotated to avoid false detections and misses.

In Fig. 6, the CPA and S-point estimation results for both
the microphone arrays with the recorded 7.62 mm rifle shots
can be seen. Totally 114 shots from three different distances
(75 m, 50 m, and 25 m) were used. The estimations were
done using 2500 particles with 20 iteration rounds, yielding
the results with averages µ and standard deviations σ shown in
Table II. The average bullet trajectories are plotted with blue
dashed lines in Fig. 6, and they are based on the µ results of
Table II. The column D on the Table II stands for the estimated
miss distance, and it is determined as

D =
1

n

n∑

i=1

||mi − a||. (18)

The prior knowledge used to initialize the particles is also
shown on the last row of Table II. The particle values are
kept within these borders during the estimation, e.g. no caliber
values less than 2.50 mm are allowed.

TABLE II
THE AVERAGE RESULTS FOR THE CALIBER, BULLET SPEED, AND MISS

DISTANCE ESTIMATIONS FOR BOTH ARRAYS.

Array 1 caliber (mm) speed (m/s) D (m)
ground truth 7.62 ≈ 670− 690 ≈ 3.0− 7.0

µ± σ 6.85 ± 1.31 673 ± 105 11.3 ± 6.0
Array 2 caliber (mm) speed (m/s) D (m)

ground truth 7.62 ≈ 670− 690 ≈ 16.0− 20.0
µ± σ 7.98 ± 1.14 665 ± 108 16.2 ± 6.8
Priors φ ∈ (2.50, 12.00) v ∈ (450, 900) D ∈ (0.0, 40.0)
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Fig. 6. Estimated CPAs (black crosses) and S-points (red circles) of both
microphone arrays for 114 rifle shots. The average bullet trajectories are
plotted with blue dashed lines.

In the case of array 1, the miss distance estimates of the
nearest 25 m shooting site are too large, which affects also
on the overall miss distance result. As the gun is close to the
array, the delay between the shock wave and muzzle blast be-
comes much shorter than with longer shooting distances. The
muzzle blast signature can thus easily mix up the estimation,
especially since the annotated shock wave observations are
not perfect. Due to a rather high amount of separate gunshots,
also the standard deviation values are quite high. However,
the mean values are approximately correct, as most of the
state estimates are concentrated near the ground truth values.
It should be yet noted, that the actual trajectory estimation
results of Fig. 6 are not completely comparable between the
two arrays, since the arrays are not sharing exactly the same
Cartesian coordinate grid. Nevertheless, it can be stated that
the estimation procedure is verified to work with real data.

VI. CONCLUSIONS

Using particle filters for trajectory estimation is shown to be
working trustworthily with a moderate computational effort.
The amount of particles needed in the estimation procedure
is scalable, allowing adjustment to be made between the
speed and accuracy of the method. Estimations of the bullet
caliber and speed are also working relatively well, although the
standard deviation can raise rather large, due to misestimated
single shots in a longer series.

The proposed estimation approach is shown to be capable
to solve the multidimensional inference problem of bullet state
estimation. The cross correlation is not dependent on the signal
amplitude, which, again, is the most reliable signature for
determining the miss distance for the trajectory. Therefore,
more research is focused on refining the proposed scheme, as
some new recordings with calibrated microphones are planned
to be made. Testing the method with correlating noise sources
is another future task to be studied.
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