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Abstract—An efficient Bayesian method for off-line estimation Furthermore, this article shows the influence of PL param-
of the position and the path loss model parameters of a base eter uncertainty on the positioning results. Three pasitig
station is presented. Two versions of three different on-fie methods are presented in this paper: grid method, MonteCarl

positioning methods are tested using real data collected dm - . .
a cellular network. The tests confirm the superiority of the -based Metropolis-Hastings (MH) sampler and computation-

methods that use the estimated path loss parameter distriiions ~ ally lighter Gauss—Newton method (GN). For each of these,
compared to the conventional methods that only use point eist two versions were implemented: The first one uses point
mates for the path loss parameters. Taking the uncertaintieinto  estimates for the path loss parameters and assumes them to
account is computationally demanding, but the Gauss-Newtd o aecyrate. The second version assumes the parameters to

optimization methods is shown to provide a good approximatin e . D .
with computational load that is reasonable for many real-time follow specified probability distributions. Using collect real

solutions. data sets, the latter is shown to be superior in consistency
outdoor positioning; cellular network; received signal strength; @nd similar or slightly better in accuracy. The latter also
path loss model; statistical estimation outperforms the coverage area solution which does noteitili

RSS measurements.
. INTRODUCTION The paper is organized as follows: First, in Section Il the

Hybrid navigation means navigation using measurememtath loss model is introduced and the method for estimating
from different sources, such as Global Navigation Satellithe model parameters is presented. Then, in Section Ill a
Systems (e.g. GPS), Inertial Measurement Unit, and/orl locstatistical measurement model for the positioning phase is
wireless networks such as cellular networks, WLAN or Blugeresented, and the positioning algorithms are presented in
tooth. Range, pseudorange, deltarange, altitude, magpraomns Section IV. The results are presented in Section V. Finally,
and heading are examples of measurements in hybrid navigaction VI shows the conclusions.
tion. This paper focuses on hybrid navigation using one or Notations: Matrices are denoted with unitalicised uppercase
more wireless networks. The ranges from the network’s balgtters. Vectors and scalars are not distinguish€¢in, P)
stations (BS) are computed using received signal strengte$ers to the (multivariate) normal distribution with mean
(RSS) as measurements. and covariance matri®, and Ny’ (z) refers to its probability

A path loss (PL) model is a model for signal attenuatiodensity function (pdf) evaluated at Notationu < A means
in space. In the literature, for example in [1] and [2], therthat pseudo-random numberis generated from probability
are many different path loss modeling methods from déistribution A.
terministic and computationally heavy ray-tracing altfuris
to empirical and semi-empirical channel models based on Il. PATH LOSS MODEL
extensive measurement campaigns. Each model contains gasepath loss model input

of tgnable_ parameters which attempt to capture the nature OtI'he input for estimating a single base station (BS) path loss
the investigated radio propagation environment.

. : . o odel is a set of RSS measurements of signals transmitted b
This article uses a simple statistical path loss model. ER g y

. oo he BS. The measurement detincludesN,, measurements
method for dynamic estimation of the model parameters falrven as m

each BS using learning data collected at known positions3s

presented. Estimation is based on the concepts of Bayesian Qe{(xi,P)]i=1,2,...,Nn}, (1)
statistics, which is a flexible and theoretically princible

framework. The number of required path loss parameterswherez; € R? includes the easting and northing of théh

kept small in order to keep down the computational compjeximeasurement point, anid is the received signal power of the
and the amount of information required in the positioningth measurement pointin dBm. We assume that the transmitter
phase. As a very important built-in property, the presentgadwer and antenna gains are fixed during the measurements.
Bayesian method returns also a statistical descriptiorhef tThis should be a valid assumption, since the received signal
uncertainty for estimated parameter values. power values in cellular networks are measured through fixed



beacon channels whose transmission powers are not varyihgEstimation of BS position and path loss parameters

in time. According to this the received signal power is only Bs position and path loss parameters are estimated using the
dependent on the measurement coordinates _lterative Reweighted Least Squares method (Gauss—Newton
In this paper, we are using only 2-dimensional coordinatasethod). A similar kind of method is studied for positioning

since in many positioning applications this is enough tdilful in simulated cases in [4]. The function to be minimized is
the use case expectations. Furthermore, in macro scaldacell N

environment the effect of altitude becomes considerablg on $(A, n,m) = Z (Pi B hést(Avna m))Q, ®)
near elevated BSs where the radio wave propagation distance
does not approach to zero when approaching to the BS posn\iﬁﬂere
in horizontal plane.

i=1

hés,(A, n,m) = A — 10nlog,,(||m — z;||).

B. Path loss model definition A is apparent transmission powerpath loss exponent and
Friis's law determines the received signal power as a fung> p_03|t|c3n._The Jacobian matrix of the measurement model
tion of distance in a free space as function heg is

10 (m—=z;)"

1 —10logyo(|jm — x1]]) T(0) ez [

A 2
= —_— 2
prw(d) PtaGtaGraz (47Td) ; ( ) J =

10 (m—zn,)"
wherepis, gtz gre, @and X are the transmitted signal power, T (10) M, [P
transmitter antenna gain, receiver antenna gain, and Isigna (6)
wavelength, respectively. The distance between transnaitid The Bayesian Gauss—Newton algorithm is described in detail
receiver antenna id. The square term is the actual channeh Algorithm 3.
dependent path loss term, while the other parameters ar&@he measurement data of cellular networks tends to spatiall
transmitter and receiver dependent. However, using tre freorrelated [5]. In order to reduce the effect of correlagion
space model could be a practical approach only in line-gifisi the measurements are mapped to a grid of pre-specified
scenarios, but not in real-life cellular networks wherddings points before the estimation process. In this case, thardist
and ground surface fluctuations act as obstacles to the ra@ween adjacent grid points is 50 meters, and the RSS value
signal path. of a grid point is the mean of the RSSs observed in the
One of the most recognized outdoor path loss models is tpeoximity of the grid point.
classical log-distance model (or power law model) [3]. Ie th To improve convergence properties of the Gauss—Newton
log-distance model which the received signal power is ddfinalgorithm, all the quantities are given an almost uninfdivea

1 —10logyo(|lm — zn,, 1)

as Gaussian prior, i.e. a Gaussian distribution with so large
variance that the influence on the optimum is negligible. A
Pro(d) = P,o(do) — 10nlogy, (ﬂ) +w ©) suitable initial value for the BS position is the position. of

do the strongest observed measurement, because otherwise the

S ) o ~algorithm might locate the BS position to the area of the
where the power?,.(-) is given in logarithmic scaledo is \eakest RSSs. Initial values fof and n can be chosen
a reference distance; is a path loss exponent, and ~ e arbitrarily from the valid ranges, since the distriont
N(0,0%) is a normally distributed random variable whichg typically unimodal, if the number of data points is large.
models the slow fading (shadowing) effects. Here the pathnoie that the algorithm also returns an approximation
loss exponent: and the slow fading standard deviation argy; the covariance matrix of each quantity. Consequently,
dependent on the local propagation environment. Notice thge are potentially able to distinguish between trustworthy
since the termP,..(dy) indicates the received signal powehng yntrustworthy path loss models. In the Bayesian sense,
at the reference distanag, it automatically takes accountipe algorithm tries to estimate the MAP valuedximum a
of the transmission power along with the antenna gains apgsteriorj, and the covariance matrix is the covariance of the
wavelength shown in (2). Moreover, apart from the slojjhearized model.
fading, P,.(d) is only affected by the path loss exponent | an jdeal case without any slow fading variations the BS
wheneverd > dy. Now, by definingdy = 1 m, and denoting position would be found at the coordinate point where the
P,.(do) = A, itis possible to write the final path loss mOdefeceived signal power reaches its maximum value. However,
as in practice there might be several clear peaks in the redeive
signal power map or there might not be enough measurements
Pra(d) = A —10nlogq (d) + w, (4) to find even a single peak. Besides, the BS might not even be
located inside the measured power map.
where the parametet is referred to as apparent transmission However, it should be emphasized that there is no need to
power. know the exact true BS positions as long as the same estimated



BS positions are used also in the positioning phase. Thie, onAs pointed out before, path loss exponenand the slow
could easily refer to a certain kind of pseudo BS positionfading standard deviation are highly dependent on the radio
Furthermore, it can be shown that using correct BS positiopgopagation environment. For example, in a shadowed urban
may even result in worse modeling outcome. One reasoncilular radio network the typical values ofandc are varying

the used 2D model that does not work accurately in closgoundn = 1 — 8 ando = 3 — 8dBm, respectively [2, 6].
proximity of the BS position where BS antenna height anfixamples of resulted path loss model curves can be found in
antenna tilting have a considerable effect on the receiggiab Fig. 2, in which the path loss models are derived for the same
power. BSs that were previously show in Fig. 1.

2D-projection effects are taken into account by increasina
the covariance matrix of the BS position artificially with ¢
diagonal constant matrix. This reflects also errors thanste
from GPS errors in the learning data and measurement er

correlations due to environmental effects. For this reaswh -60f
for reducing the number of recorded parameters, the cro
covariances of BSs and path loss parameters are ignored. —70r

positions and path loss parameters are thus assumed tc —sol
uncorrelated. Fig. 1 shows power maps (interpolated betwe RSS

the measurement points) of two separate BSs, and the rtg;sul‘(dBmlgo,
BS position estimates along with the covariance ellipse.
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Figure 2: Path loss curves for two separate BSs.
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1. M EASUREMENT MODEL
-90 A. General form
100 Consider the nonlinear Gaussian measurement model
1o y = h(z,a) +v, (7

where y € R™v is the vector of observations; € RM=
Figure 1: Power maps of two separate BS's and the BS positipresents the state of the system ané R™: represents
estimates along with covariance ellipses. nuisance parameters that have conditional prior disiobut

p(a]z). The random noise term~ N(0,R) is assumed to be



zero mean and independent of statand parameter vectar. A. Grid method
The likelihood function of the model is

By (9), the posterior pdf value at pointis
polo) = [ plw.alo)da= [ pyja.slplaia)da @

Np
A "~ palPuve) < TT [ [ Pk, Avonismodp( s maptons)
Let the prior distribution of the state bg(x). The prior i=1

should include all the information that is known before the dA; dn; dm; - p(z),
measurement. In the case of time series, the prior can be, (11)

for example, the prediction estimate of a Bayesian filter. By . . . .
Bayes' rule, the posterior pdf of the state is thus \xhlch can be approximated using standard Monte Carlo inte-

gration. The grid method is presented in Algorithm 1.

plaly) = p(ylz)p ( ) __Jp(la, x) (alz)p(z)da The most crucial implementation issues are the Monte Carlo
S p(y|z)p( [ ['p(yla,z)plalz)p(r)dadz” sample size paramete¥ as well as grid size and density.
9) Note that combining of the likelihood of each BS is done in
B. Path loss model logarithmic space to avoid numerical underflows.

1 1 tadl
_ The path Iqss mode_l with uncertain parameters_presenmorithm 1 Grid with Monte Carlo Integration
in Section Il is a special case of model (7), wherés the

vector of RSS measuremeni= [P, ... Py,| andz 1) Setagrid{z,, € R* | m € {1,..., Ny, }} that covers
is the user position. In additiom, contains unknown system  most of the prior probability mass.
parameters 2) For each heard base statioe- 1,..., Np, draw
T (k) A R
a=[d o o Awe o, mB,]T Aol ([ 8a)
) n; )
and the measurement model function is i " R
Ay — 1004 logo(||m1 — z]]) m; N (miv Emi)
h(z,a) = : 7 fork=1,...,N.
AN, — 100N, log o ([lmap — z|]) 3) At each grid pointz,, compute for each AP =

whereNp is the number of observed BSs. Measurement noise """ »Vp and for each each sample=1,..., N

covariance matrix i = 02 - Iy, n,. Note that because the ™ = NE (Az('k) _ 1()”1(,’@) log1g (‘ ’ml(k) _ me)) ,
path loss parameters of a BS are isotropity|z) = p(a).
For simplicity, this paper assumes that the estimated path andy,,, = 1 Zk ) 1m Then set

loss parameters prior distributions are Gaussian and tBat B
position and PL parameters are independent a priori. Thus, . Nr,
lp i=1In (N; (xm)) + Zln([iym), Ly, := exp(l,).
pla) = (Al NpsTM1:Np, M1:Np) G —
A, n; s (10)  4) Normalize the grid to get a set of weights,, =
- HN ' <[ D Ng» (mi)’ ZnLﬁ and compute mean and covariance estimates

where the parameters,, ,, = [/L nZ]T iAi,ni, m; and _ %rj 0
S, are estimated from the learning data using the Gauss— = e
Newton algorithm. -
The priors are modeled to be normal, since the Gauss— f];r = Z Wi (T — 37) (@ m _;ﬁ)T_
Newton algorithm requires this in its basic form and the
normal pdf ofA andn is the conjugate prior of the likelihood.
However, other prior distribution families such as Stutbetit
distribution could also be studied. B.
The next section considers the optimal state estimation

=
+

Metropolis—Hastings method

problem for this model. The Metropolis—Hastings (MH) sampler generates Monte
Carlo samples from an arbitrary posterior distribution of a

IV. POSITIONING ALGORITHMS multivariate random variable. It is an iterative algorittiat
This section uses a Gaussian prior distributipfz) = can be proved to converge towards the target distribution.

NZ (z) for the user's position. In case of multimodal like-The posterior mean and covariance can then be approximated
lihood function, the prior may function as a regularizeby the sample mean and covariance of the sampled set. The
Furthermore, it may reflect location information from othealgorithm is presented in Algorithm 2.

sources, and in case of time series filtering, the filter jptexh The MH sampler uses a so-called proposal distribution,
is the prior meant and covariance,. from which it is straightforward to generate random numbers



At each iteration of the algorithm, proposal values for thélgorithm 2 Metropolis—Hastings algorithm

estimated variables are drawn from the proposal distobuti 1) Setz® = 3, A .— 4, 0¥ .= 4, andm @ = 7
The proposal values are then accepted with the probabikty t fori—1. N;. Setp(® uzsing the formullae in stép 3
is proportional to the ratio of the pdf values of the proposal  gqt). — 1’ ’
value and the latest accepted value. [7, Ch. 5] 2) Generater’™ « N(z(*=D,P,) , and for each AP =
Note that 1,...,Np, generaten,® « N(m® P,,).
p(@,manp [P ) 3) For eachi = 1,...,Np, compute B =

9)
X //p(Plsz|IaAl:Npanlszymlsz)

-p(A1:np, n1:np) dAL N, dRin, - p(x) - p(main,)

[1 —101logy, (Hm;(k) - x’(k)H)} and

—1
= (k BTk | o1
“ 1 50, = (28 B0 + 210,
3 1 - T a1 - R
o) [[ptmdetCan)bow (GrhnSitninn) o0 01 e 4
i=1 Aing T EAlnI 2 B’L Pl + EA,LnI ~
(12) ’ o ’ n;
here k k X1 (k)
w 55 .
, . AN (Niz (¢ ))) + Z {5 In (det(ZAi,m) )
-~ ~ =1
Sain, = (—QB‘TB»—FEZS )
iy 4 4 i 1 T . 1 -
7 1 ; +§ Vf‘i)-,m Zf‘i),m ﬂ%?m +1n (Ngh , (m:(k)))]
ﬂAi,ni = EAT',,TLL (_QBZT—PZ + Egln |:{11:|) 5 '
g R AL 4) Setr := exp(p/® — p*—1)), Generateu + Uni(0,1).
whereB; = [1  —10log;,(||m; — z||)]. The simple form of Cgmpute
this formula enables analytical integration over PL parizmse if 7> u then
A andn. forz‘:kl:Np %o
In the implementation phase, great care must be taken m; )= m;( )
when setting the proposal distributions to make the algorit end for
converge in a computationally feasible number of iteration a®) = /B p(k) = pr(k)
For convenience, the proposal distributions are chosereto b else
multivariate normal with the latest accepted value as tharme for i ﬁ)l : NP(/?&)
and the covariance matricds, and P,,, tuned from prior m; " i=my
covariances oft andm;.n,. end for
x(k) = x(k_l)’ p(k) = p(k_l)
C. Gauss—Newton method end if

With suitable measurement models, iterative state estimat 5) Setk := k + 1. If k < N, go to step 2. Otherwise, set
methods can be as accurate as any closed form solution

but simpler and easier to implement [8]. The Gauss—Newton 41 al (k)

method, also known as the Iterative Reweighted Least Sguare TN Z v

method, is tested for positioning with the presented pask lo k;l

model. The detailed description is in Algorithm 3. S+ 1 Z(x(k) ) @® — )T,
The iteration does not converge globally, but including ¢ N

good enough prior information and initial values prevehts t

method from diverging. To improve convergence properties

further, the step length in the state-space is adaptive &b th

the objective function value decreases at every iteraf\gran

exception to this, the while loop is exited after a number of

iterations to ensure stability. The global convergencealtes

of the Gauss-Newton method with adaptive step length affe remaining partial derivatives are zeros. Note that the

discussed in [9, 10]. Jacobian matrixJ of the measurement model is always full
For formulating the Jacobian matrix that is needed in thank so the least-squares estimation can be performed. The

Gauss—-Newton algorithm, the analytical partial derivegiof measurement covariance matikx is the diagonal matrix of

the measurement functidnare formed: the measurement variances. In Algorithm 3 the complete stat

T
Ohi _ 10 n; (mi — ) , Ohi _ 1, is denoted with: = . As in the PL parameter estimation
dx  In(10) " ||m,; — x||2 0A; ) _ ]
+ Phase, the output of the algorithm contains estimates for
Oh; _ o Oh; 1 (m; — ) the MAP and the covariance matrix of the posterior of the
= —101logyo(||mi — =[]), = g 25 ;
on; om; In(10) " ||m; — «||> linearized model.



Algorithm 3 Gauss—Newton algorithm RSS values corresponding to the likelihoods af## (on the

1) Choose the stopping toleranéel et left), —75 and —90 dBm. Path loss model standard deviation
A s . . . is o = 6dBm. It can be seen that with strong signals, the RSS
¥ = blkdiag(Xs, ¥4, 0y, Xmys -+ BAy,nn, s 2my,.)  likelinood is unimodal or almost unimodal when the paramete

uncertainties are taken into account.
and
s [~T A & AT 7 . ~1 1T
2e=102T A oo owmT ... Any ne mNP] - -

w
8
3
w
8
3

be the prior covariance and mean. Let the initial gues:
be z, := 2. Additionally, measurement variane€ is
required. Set: := 0. Denote the objective function with

@
8
3
@
8
3

y coordinate (m)
)
°

y coordinate (m)
\
°
y coordinate (m)
\
o

-y
3
S
-y
3
S

NP -600-300 0 300 600 -600-300 0 300 600 —600-300 0 300 600

. 1 I’L _ P x coordinate (m) x coordinate (m) x coordinate (m)
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a
g
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g
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2) Compute the Jacobian E o ™ E o £
ohy Ohy ohy ohy OT 8;—300 E; 300 9},7300
Dz DA, any oma 4(Np—1)
— : . : -600-300 0 300 600 -600-300 0 300 600 —600-300 0 300 600
J k . . . .  coordinate (m) x coordinate (m) x coordinate (m)
Ohnp T dhnp  Ohnp dhnp _ o
dx 4(Np—1) BdAn, Onn, Omnp Figure 3: The likelihoods of measurement$0, —75 and
3) Set —90 dBm. In the upper row, parameter uncertainties have been

. taken into account.
A 1
Az = — (Ezl + ;JEJ;@)
In the case of radially symmetric BS position distribution,

. (f)zl(zk —2)+ %JT(h(zk) —P)). the posterior density depends only on the distance from
g the mean of the BS position estimate. Fig. 4 illustrates the
4) Adapt step length: likelihoods of the user’s position as a function of this dis-
a:=1 tance. They have been computed using standard Monte Carlo
while ||6(zk + aAzg)|| > ||6(zx)|] anda > ap do integration and normalized so that the maximal likelihood
a:=g value is one. Curve “N” represents algorithms that assume PL
end while parameters to be normally distributagbriori, and curve “acc”
where o is a configuration parameter, e.g. 0.05. Sdfe algorithms that assume that the parameters are known
Zhi1 = 26 + QA zp. accurately. Fig. 4 shows that the tails of the “N” curve are

5) If stopping condition||Az|| < & is not satisfied and considerably heavier.
k < kmax incrementt and repeat frzl)m Step 2. Otherwise
computeP := (2;1+0_—12JEJ;€) and set the state 1 N
estimate

Lhood value
o
Lhood value
o
@
Lhood value
o
@

st o O+ ;
T = 2pg1,12, Xp = Proie oLk oL o
0 300 600 900 12001500 0 300 600 900 12001500 0 300 _600 900 12001500

Distance (m) Distance (m) Distance (m)

Figure 4: Likelihoods of measurements50, —75 and
V. POSITIONING TESTS —90dBm as a function of the distance from the mean of the
BS position estimate. Curve “N” represents algorithms that
) ) ) _ assume PL parameters to be normally distribwigutiori, and
Fig. 3 illustrates the influence of the uncertain pasyryve “acc” the algorithm that assumes that the parameters a

rameters on the likelihood. In the present case| ~ known accurately.

A. Tests with artificial data

321135 0.15 In Fig. 5 the likelihood of two RSS measurements-e§0
values are based on our experimental knowledge of the FinndBm is presented. The PL parameters are similar to the ones
cellular network. The likelihoods are calculated using the Fig. 3, and the distance between BS’s is 400 meters. If
Monte Carlo based grid algorithm. The upper row illustratdbe parameter uncertainties are not taken into accounth@n t
the likelihoods of the model that takes the parameter unceight), the support of the likelihood consists of two separa
tainties into account, and the lower row shows the likelif®o parts, whereas in the left figure there is significant amodint o
assumed that the path loss parameter values are correct. litedihood mass also in the BS positions’ surroundings.

N( 2 LlOO 3.5D andm ~ N (0,2-10%-T). These



Table I: Results for the real data tests.

Solver Mean Med 95% err. Cons| Time
i m m m ) | (5
Hervanta

grid, N 247 204 432 96 49
@ grid, acc 250 225 444 85 22

@
o
=]
@
o
=]

w
o
=]
w
o
=]

|
]
o
=]

y coordinate (m)
o
I
w
o
o

y coordinate (m)
o

~600 ~600 MH, N 258 215 473 81 | 38

MH, acc 273 233 517 38 | 23

-600-300 0 300 600 -600-300 0 300 600 GN, N 243 186 438 94 0.6

x coordinate (m) x coordinate (m) GN, acc 232 186 409 81 0.4

. . . L CA 258 212 458 99 | 0.24
Figure 5: The combined likelihood of two BS'’s with signal CUKonmaKT

strengths—80 dBm. On the left, parameter uncertainties have grid, N 219 144 520 93 | 82

been taken into account. grid, acc 226 158 530 82 | 38

MH, N 238 161 572 83 | 67

MH, acc 286 172 837 40 | 36

GN, N 223 162 502 95 | 0.8

; GN, acc 267 220 599 81| 05

B. Tests with real data oA %51 203 o3> 96 | 026
A measurement campaign was accomplished to evaluate Linnainmaa

the performance of different algorithms in a real use case.  9¢ N 195 159 4l2 % | 83

X : , : grid, acc 197 177 420 91 | 36

First, a large set of fingerprints was collected from the 3G MH, N 213 179 456 90 | 45

cellular network in Tampere urban area, Finland for leagnin MH, acc 260 222 600 39 | 25

the radiomap. The measured RSS values are based on the mea- SN N 218 176 S44 89 | 06

p. Ihe o GN, acc 229 170 523 82 | 03

sured Received Signal Code Power (RSCP) indicator reported  ca 271 214 741 97 | 0.16

by the user equipment. The coverage area of each BS was
estimated by fitting a normal distribution to the data [11]. 12
Furthermore, path loss model parameters were estimated usi is questionable whether the RSS measurements should
the method that was presented in Section |l of this paper. be used at all, if the uncertainties are not in the model.
There are three separate test tracks. The first track (HEhe only case where the “acc” slightly outperforms “N” is
vanta) was collected by a pedestrian in a densely populatedrvanta with Gauss—Newton positioning. This is likely to
urban/suburban area. In the second track (Lukonmaki) tb@em from the linearization approximation of the methonigsi
measurer rode a bicycle with a low velocity in a suburban.aree phenomenon is not visible with the other methods.
The third track (Linnainmaa) is a higher velocity suburban Column “Cons.” displays the 95% consistency that was
bicycle case. In all the cases the true user positions wefétermined using Gaussian consistency test [13, pp. 23B] wi
tracked down using conventional GPS positioning. By phatti risk level 5%. The solver is deemed to be consistent at a
the GPS solutions on the map, it was confirmed that the GR&rtain time step, if the true position is within the 95%-
error on the area is small compared to the cellular posit@niellipse of the posterior distribution, assuming normality
accuracy. the posterior. The closer this number is to 95%, the more
In all these tracks, the prior distribution is computed ifealistic the covariance matrix estimation is. From the riigu
each estimation point using the estimated coverage areastafan be seen that taking the parameter uncertainties into
the BS’s that are observed at the point concerned. The prigfcount improves the consistency remarkably and indepgnde
is the product distribution of Gaussian coverage areag, iso iof the estimation method. Thus, the “N” method seems to be

also a Gaussian distribution. beneficial especially if location information from otheusces
i ) is combined with RSS measurements or when positioning is
C. Results and discussion done with Bayesian time-series filters.

The results of the true data tests are in Table |. Abbreviatio Among the three estimation methods, the grid and MH
“N” stands for the algorithms that assume the path losampler approach the exact Bayesian model posterior-distri
parameters to be normally distributadpriori whereas “acc” bution. The grid gives the precise posterior values in thé gr
indicates that the parameter values are assumed known. “@&ints assuming that the Monte Carlo integration’s acourac
refers to the product of coverage areas. Columns “Means$, adequate. The MH sampler converges theoretically to the
“Med” and “95% err.” are mean error, median error anttue posterior as the sample size paraméeterapproaches
empirical 95% percentile of errors in meters. “Time” is thénfinity. In practice, however, the rate of convergence in MH
average running time of our MLAB implementation in algorithms is highly dependent on the form and parameters
seconds. Note that the codes are not highly optimized ebthe proposal distributions. With the chosen configuratio
the running time values have to be considered only roughlye method usually fails to compete with the grid especially
indicative. The times are also highly dependent on the ahosa consistency, still providing a good estimate with slight
configuration parameters. lighter computation.

Presented “N” algorithms seem to outperform “acc” algo- The Gauss—Newton method lacks global convergence prop-
rithms in the positioning accuracy. In the Lukonmaki caserties and the covariance matrix estimate is based onivterat



linearization procedure and has thus a less clear Bayesian Transactions onvol. 29, no. 3, pp. 317-325, August
interpretation. Indeed, the real data tests showed that the 1980.
algorithm’s convergence is more dependent on the qualitj4] X. Li, “RSS-based location estimation with unknown

of the prior distribution. However, the presented resulis a
comparable with those of the other methods, and the GN is

clearly the computationally lightest one of these alganish
and is applicable in many real-time solutions.

VI. CONCLUSIONS

It was shown that estimating the path loss parameter une]
certainties and taking them into account in the positioning
phase has significant influence on the positioning perfooman
Both accuracy and consistency are improved compared to
the conventional methods where the path loss parameters
are assumed to be known accurately. If the uncertainti
are not used, it seems to be questionable, whether the path
loss modeling brings any benefit compared with the coveral
area positioning. Furthermore, it was shown that Gauss—

Newton optimization algorithm provides satisfactory aexy
and consistency, being also computationally feasible fanyn

applications. The comparison methods were Monte Carlo [9]

based Grid method and Metropolis—Hastings sampler.
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