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Abstract—An efficient Bayesian method for off-line estimation
of the position and the path loss model parameters of a base
station is presented. Two versions of three different on-line
positioning methods are tested using real data collected from
a cellular network. The tests confirm the superiority of the
methods that use the estimated path loss parameter distributions
compared to the conventional methods that only use point esti-
mates for the path loss parameters. Taking the uncertainties into
account is computationally demanding, but the Gauss–Newton
optimization methods is shown to provide a good approximation
with computational load that is reasonable for many real-time
solutions.

outdoor positioning; cellular network; received signal strength;
path loss model; statistical estimation

I. I NTRODUCTION

Hybrid navigation means navigation using measurements
from different sources, such as Global Navigation Satellite
Systems (e.g. GPS), Inertial Measurement Unit, and/or local
wireless networks such as cellular networks, WLAN or Blue-
tooth. Range, pseudorange, deltarange, altitude, map constraint
and heading are examples of measurements in hybrid naviga-
tion. This paper focuses on hybrid navigation using one or
more wireless networks. The ranges from the network’s base
stations (BS) are computed using received signal strengths
(RSS) as measurements.

A path loss (PL) model is a model for signal attenuation
in space. In the literature, for example in [1] and [2], there
are many different path loss modeling methods from de-
terministic and computationally heavy ray-tracing algorithms
to empirical and semi-empirical channel models based on
extensive measurement campaigns. Each model contains a set
of tunable parameters which attempt to capture the nature of
the investigated radio propagation environment.

This article uses a simple statistical path loss model. A
method for dynamic estimation of the model parameters for
each BS using learning data collected at known positions is
presented. Estimation is based on the concepts of Bayesian
statistics, which is a flexible and theoretically principled
framework. The number of required path loss parameters is
kept small in order to keep down the computational complexity
and the amount of information required in the positioning
phase. As a very important built-in property, the presented
Bayesian method returns also a statistical description of the
uncertainty for estimated parameter values.

Furthermore, this article shows the influence of PL param-
eter uncertainty on the positioning results. Three positioning
methods are presented in this paper: grid method, Monte Carlo
-based Metropolis–Hastings (MH) sampler and computation-
ally lighter Gauss–Newton method (GN). For each of these,
two versions were implemented: The first one uses point
estimates for the path loss parameters and assumes them to
be accurate. The second version assumes the parameters to
follow specified probability distributions. Using collected real
data sets, the latter is shown to be superior in consistency
and similar or slightly better in accuracy. The latter also
outperforms the coverage area solution which does not utilize
RSS measurements.

The paper is organized as follows: First, in Section II the
path loss model is introduced and the method for estimating
the model parameters is presented. Then, in Section III a
statistical measurement model for the positioning phase is
presented, and the positioning algorithms are presented in
Section IV. The results are presented in Section V. Finally,
Section VI shows the conclusions.

Notations: Matrices are denoted with unitalicised uppercase
letters. Vectors and scalars are not distinguished.N(m,P)
refers to the (multivariate) normal distribution with meanm
and covariance matrixP, andNm

P (x) refers to its probability
density function (pdf) evaluated atx. Notationu← A means
that pseudo-random numberu is generated from probability
distributionA.

II. PATH LOSS MODEL

A. Path loss model input

The input for estimating a single base station (BS) path loss
model is a set of RSS measurements of signals transmitted by
the BS. The measurement setΩ includesNm measurements
given as

Ω ∈ {(xi, Pi) | i = 1, 2, . . . , Nm} , (1)

wherexi ∈ R
2 includes the easting and northing of thei:th

measurement point, andPi is the received signal power of the
i:th measurement point in dBm. We assume that the transmitter
power and antenna gains are fixed during the measurements.
This should be a valid assumption, since the received signal
power values in cellular networks are measured through fixed



beacon channels whose transmission powers are not varying
in time. According to this the received signal power is only
dependent on the measurement coordinatesxi.

In this paper, we are using only 2-dimensional coordinates,
since in many positioning applications this is enough to fulfill
the use case expectations. Furthermore, in macro scale cellular
environment the effect of altitude becomes considerable only
near elevated BSs where the radio wave propagation distance
does not approach to zero when approaching to the BS position
in horizontal plane.

B. Path loss model definition

Friis’s law determines the received signal power as a func-
tion of distance in a free space as

prx(d) = ptxgtxgrx

(

λ

4πd

)2

, (2)

whereptx, gtx, grx, andλ are the transmitted signal power,
transmitter antenna gain, receiver antenna gain, and signal
wavelength, respectively. The distance between transmitter and
receiver antenna isd. The square term is the actual channel
dependent path loss term, while the other parameters are
transmitter and receiver dependent. However, using the free-
space model could be a practical approach only in line-of-sight
scenarios, but not in real-life cellular networks where buildings
and ground surface fluctuations act as obstacles to the radio
signal path.

One of the most recognized outdoor path loss models is the
classical log-distance model (or power law model) [3]. In the
log-distance model which the received signal power is defined
as

Prx(d) = Prx(d0)− 10n log10

(

d

d0

)

+ w (3)

where the powerPrx(·) is given in logarithmic scale,d0 is
a reference distance,n is a path loss exponent, andw ∼
N(0, σ2) is a normally distributed random variable which
models the slow fading (shadowing) effects. Here the path
loss exponentn and the slow fading standard deviation are
dependent on the local propagation environment. Notice that
since the termPrx(d0) indicates the received signal power
at the reference distanced0, it automatically takes account
of the transmission power along with the antenna gains and
wavelength shown in (2). Moreover, apart from the slow
fading, Prx(d) is only affected by the path loss exponentn

wheneverd > d0. Now, by definingd0 = 1m, and denoting
Prx(d0) = A, it is possible to write the final path loss model
as

Prx(d) = A− 10n log10 (d) + w, (4)

where the parameterA is referred to as apparent transmission
power.

C. Estimation of BS position and path loss parameters

BS position and path loss parameters are estimated using the
Iterative Reweighted Least Squares method (Gauss–Newton
method). A similar kind of method is studied for positioning
in simulated cases in [4]. The function to be minimized is

φ(A, n,m) =

Nm
∑

i=1

(

Pi − hi
est(A, n,m)

)2
, (5)

where

hi
est(A, n,m) = A− 10n log10(||m− xi||).

A is apparent transmission power,n path loss exponent andm
BS position. The Jacobian matrix of the measurement model
functionhi

est is

J =











1 −10 log10(||m− x1||) − 10
ln(10)n

(m−xi)
T

||m−x1||
2

...
...

...

1 −10 log10(||m− xNm
||) − 10

ln(10)n
(m−xNm)T

||m−xNm ||2











.

(6)

The Bayesian Gauss–Newton algorithm is described in detail
in Algorithm 3.

The measurement data of cellular networks tends to spatially
correlated [5]. In order to reduce the effect of correlations,
the measurements are mapped to a grid of pre-specified
points before the estimation process. In this case, the distance
between adjacent grid points is 50 meters, and the RSS value
of a grid point is the mean of the RSSs observed in the
proximity of the grid point.

To improve convergence properties of the Gauss–Newton
algorithm, all the quantities are given an almost uninformative
Gaussian prior, i.e. a Gaussian distribution with so large
variance that the influence on the optimum is negligible. A
suitable initial value for the BS position is the position of
the strongest observed measurement, because otherwise the
algorithm might locate the BS position to the area of the
weakest RSSs. Initial values forA and n can be chosen
more arbitrarily from the valid ranges, since the distribution
is typically unimodal, if the number of data points is large.

Note that the algorithm also returns an approximation
for the covariance matrix of each quantity. Consequently,
we are potentially able to distinguish between trustworthy
and untrustworthy path loss models. In the Bayesian sense,
the algorithm tries to estimate the MAP value (maximum a
posteriori), and the covariance matrix is the covariance of the
linearized model.

In an ideal case without any slow fading variations the BS
position would be found at the coordinate point where the
received signal power reaches its maximum value. However,
in practice there might be several clear peaks in the received
signal power map or there might not be enough measurements
to find even a single peak. Besides, the BS might not even be
located inside the measured power map.

However, it should be emphasized that there is no need to
know the exact true BS positions as long as the same estimated



BS positions are used also in the positioning phase. Thus, one
could easily refer to a certain kind of pseudo BS positions.
Furthermore, it can be shown that using correct BS positions
may even result in worse modeling outcome. One reason is
the used 2D model that does not work accurately in close
proximity of the BS position where BS antenna height and
antenna tilting have a considerable effect on the received signal
power.

2D-projection effects are taken into account by increasing
the covariance matrix of the BS position artificially with a
diagonal constant matrix. This reflects also errors that stem
from GPS errors in the learning data and measurement error
correlations due to environmental effects. For this reasonand
for reducing the number of recorded parameters, the cross-
covariances of BSs and path loss parameters are ignored. BS
positions and path loss parameters are thus assumed to be
uncorrelated. Fig. 1 shows power maps (interpolated between
the measurement points) of two separate BSs, and the resulting
BS position estimates along with the covariance ellipse.
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Figure 1: Power maps of two separate BS’s and the BS position
estimates along with covariance ellipses.

As pointed out before, path loss exponentn and the slow
fading standard deviation are highly dependent on the radio
propagation environment. For example, in a shadowed urban
cellular radio network the typical values ofn andσ are varying
aroundn = 1 − 8 and σ = 3 − 8 dBm, respectively [2, 6].
Examples of resulted path loss model curves can be found in
Fig. 2, in which the path loss models are derived for the same
BSs that were previously show in Fig. 1.
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Figure 2: Path loss curves for two separate BSs.

III. M EASUREMENT MODEL

A. General form

Consider the nonlinear Gaussian measurement model

y = h(x, a) + v, (7)

where y ∈ R
Ny is the vector of observations,x ∈ R

Nx

represents the state of the system anda ∈ R
Na represents

nuisance parameters that have conditional prior distribution
p(a|x). The random noise termv ∼ N(0,R) is assumed to be



zero mean and independent of statex and parameter vectora.
The likelihood function of the model is

p(y|x) =

∫

p(y, a|x) da =

∫

p(y|a, x)p(a|x) da (8)

Let the prior distribution of the state bep(x). The prior
should include all the information that is known before the
measurement. In the case of time series, the prior can be,
for example, the prediction estimate of a Bayesian filter. By
Bayes’ rule, the posterior pdf of the state is thus

p(x|y) =
p(y|x)p(x)

∫

p(y|x)p(x) dx
=

∫

p(y|a, x)p(a|x)p(x) da
∫ ∫

p(y|a, x)p(a|x)p(x) da dx
.

(9)

B. Path loss model

The path loss model with uncertain parameters presented
in Section II is a special case of model (7), wherey is the
vector of RSS measurementsP =

[

P1 . . . PNP

]T
and x

is the user position. In addition,a contains unknown system
parameters

a =
[

A1 n1 mT
1 · · · ANP

nNP
mT

NP

]T
,

and the measurement model function is

h(x, a) =







A1 − 10n1 log10(||m1 − x||)
...

ANP
− 10nNP

log10(||mNP
− x||)






,

whereNP is the number of observed BSs. Measurement noise
covariance matrix isR = σ2 · INP×NP

. Note that because the
path loss parameters of a BS are isotropic,p(a|x) = p(a).
For simplicity, this paper assumes that the estimated path
loss parameters prior distributions are Gaussian and that BS
position and PL parameters are independent a priori. Thus,

p(a) = p(A1:NP
, n1:NP

,m1:NP
)

=

NP
∏

i=1

N
µ̂Ai,ni

Σ̂Ai,ni

([

Ai

ni

])

· Nm̂i

Σ̂mi

(mi),
(10)

where the parameterŝµAi,ni
=

[

Âi n̂i

]T
, Σ̂Ai,ni

, m̂i and
Σ̂mi

are estimated from the learning data using the Gauss–
Newton algorithm.

The priors are modeled to be normal, since the Gauss–
Newton algorithm requires this in its basic form and the
normal pdf ofA andn is the conjugate prior of the likelihood.
However, other prior distribution families such as Student’s t-
distribution could also be studied.

The next section considers the optimal state estimation
problem for this model.

IV. POSITIONING ALGORITHMS

This section uses a Gaussian prior distributionp(x) =
Nx̂

Σ̂x
(x) for the user’s position. In case of multimodal like-

lihood function, the prior may function as a regularizer.
Furthermore, it may reflect location information from other
sources, and in case of time series filtering, the filter prediction
is the prior mean̂x and covariancêΣx.

A. Grid method

By (9), the posterior pdf value at pointx is

p(x|P1:NP
) ∝

NP
∏

i=1

∫∫∫

p(Pi|x,Ai, ni,mi)p(Ai, ni)p(mi)

dAi dni dmi · p(x),
(11)

which can be approximated using standard Monte Carlo inte-
gration. The grid method is presented in Algorithm 1.

The most crucial implementation issues are the Monte Carlo
sample size parameterN as well as grid size and density.
Note that combining of the likelihood of each BS is done in
logarithmic space to avoid numerical underflows.

Algorithm 1 Grid with Monte Carlo Integration

1) Set a grid{xm ∈ R
2 | m ∈ {1, . . . , Nm}} that covers

most of the prior probability mass.
2) For each heard base stationi = 1, . . . , NP , draw

[

A
(k)
i

n
(k)
i

]

← N

([

Âi

n̂i

]

, Σ̂Ai,ni

)

m
(k)
i ← N

(

m̂i, Σ̂mi

)

for k = 1, . . . , N .
3) At each grid pointxm compute for each APi =

1, . . . , NP and for each each samplek = 1, . . . , N

I
(k)
i,m := NPi

σ2

(

A
(k)
i − 10n

(k)
i log10

(
∣

∣

∣

∣

∣

∣
m

(k)
i − xm

∣

∣

∣

∣

∣

∣

))

,

andIi,m := 1
N

∑N
k=1 I

(k)
i,m. Then set

ℓm := ln
(

Nx̂

Σ̂x
(xm)

)

+

NP
∑

i=1

ln(Ii,m), Lm := exp(ℓm).

4) Normalize the grid to get a set of weightswm =
Lm∑nm

m=1
Lm

and compute mean and covariance estimates

x̂+ :=

Nm
∑

m=1

wmxm

Σ̂+
x :=

Nm
∑

m=1

wm(xm − x̂+)(xm − x̂+)T.

B. Metropolis–Hastings method

The Metropolis–Hastings (MH) sampler generates Monte
Carlo samples from an arbitrary posterior distribution of a
multivariate random variable. It is an iterative algorithmthat
can be proved to converge towards the target distribution.
The posterior mean and covariance can then be approximated
by the sample mean and covariance of the sampled set. The
algorithm is presented in Algorithm 2.

The MH sampler uses a so-called proposal distribution,
from which it is straightforward to generate random numbers.



At each iteration of the algorithm, proposal values for the
estimated variables are drawn from the proposal distribution.
The proposal values are then accepted with the probability that
is proportional to the ratio of the pdf values of the proposal
value and the latest accepted value. [7, Ch. 5]

Note that

p(x,m1:NP
|P1:NP

)

(9)
∝

∫∫

p(P1:NP
|x,A1:NP

, n1:NP
,m1:NP

)

· p(A1:NP
, n1:NP

) dA1:NP
dn1:NP

· p(x) · p(m1:NP
)

∝ p(x)

NP
∏

i=1

p(mi) det(Σ̌Ai,ni
)

1

2 exp

(

1

2
µ̌T
Ai,ni

Σ̌−1
Ai,ni

µ̌Ai,ni

)

(12)

where

Σ̌Ai,ni
:=

(

1

σ2
Bi

TBi + Σ̂−1
Ai,ni

)−1

µ̌Ai,ni
:= Σ̌Ai,ni

(

1

σ2
Bi

TPi + Σ̂−1
Ai,ni

[

Âi

n̂i

])

,

whereBi =
[

1 −10 log10(||mi − x||)
]

. The simple form of
this formula enables analytical integration over PL parameters
A andn.

In the implementation phase, great care must be taken
when setting the proposal distributions to make the algorithm
converge in a computationally feasible number of iterations.
For convenience, the proposal distributions are chosen to be
multivariate normal with the latest accepted value as the mean
and the covariance matricesPx and Pmi

tuned from prior
covariances ofx andm1:NP

.

C. Gauss–Newton method

With suitable measurement models, iterative state estimation
methods can be as accurate as any closed form solution
but simpler and easier to implement [8]. The Gauss–Newton
method, also known as the Iterative Reweighted Least Squares
method, is tested for positioning with the presented path loss
model. The detailed description is in Algorithm 3.

The iteration does not converge globally, but including
good enough prior information and initial values prevents the
method from diverging. To improve convergence properties
further, the step length in the state-space is adaptive so that
the objective function value decreases at every iteration.As an
exception to this, the while loop is exited after a number of
iterations to ensure stability. The global convergence results
of the Gauss–Newton method with adaptive step length are
discussed in [9, 10].

For formulating the Jacobian matrix that is needed in the
Gauss–Newton algorithm, the analytical partial derivatives of
the measurement functionh are formed:

∂hi

∂x
=

10

ln(10)
ni

(mi − x)T

||mi − x||
2 ,

∂hi

∂Ai

= 1,

∂hi

∂ni

= −10 log10(||mi − x||),
∂hi

∂mi

= −
10

ln(10)
ni

(mi − x)
T

||mi − x||
2 .

Algorithm 2 Metropolis–Hastings algorithm

1) Setx(0) := x̂, A(0)
i := Âi, n

(0)
i := n̂i andm(0)

i := m̂
(0)
i

for i = 1, . . . , NP . Setp(0) using the formulae in step 3.
Setk = 1.

2) Generatex′(k) ← N(x(k−1),Px) , and for each APi =
1, . . . , NP , generatem′(k)

i ← N(m
(k)
i ,Pmi

).
3) For each i = 1, . . . , NP , compute B

(k)
i =

[

1 −10 log10

(∣

∣

∣

∣

∣

∣
m

′(k)
i − x′(k)

∣

∣

∣

∣

∣

∣

)]

and

Σ̌
(k)
Ai,ni

:=

(

1

σ2
B

(k)
i

T
B

(k)
i + Σ̂−1

Ai,ni

)−1

µ̌
(k)
Ai,ni

:= Σ̌
(k)
Ai,ni

(

1

σ2
B

(k)
i

T
Pi + Σ̂−1

Ai,ni

[

Âi

n̂i

])

p′(k) := ln
(

Nx̂

Σ̂x
(x′(k))

)

+

NP
∑

i=1

[

1

2
ln
(

det(Σ̌
(k)
Ai,ni

)
)

+
1

2
µ̌
(k)
Ai,ni

T
Σ̌

(k)
Ai,ni

−1
µ̌
(k)
Ai,ni

+ ln
(

Nm̂i

Σ̂mi

(m
′(k)
i )

)

]

4) Setr := exp(p′(k) − p(k−1)). Generateu ← Uni(0, 1).
Compute

if r > u then
for i = 1 : NP do

m
(k)
i := m

′(k)
i

end for
x(k) := x′(k), p(k) := p′(k)

else
for i = 1 : NP do

m
(k)
i := m

(k−1)
i

end for
x(k) := x(k−1), p(k) := p(k−1)

end if
5) Setk := k + 1. If k < N , go to step 2. Otherwise, set

x̂+ :=
1

N

N
∑

k=1

x(k)

Σ̂+
x :=

1

N

N
∑

k=1

(x(k) − x̂+)(x(k) − x̂+)T.

The remaining partial derivatives are zeros. Note that the
Jacobian matrixJ of the measurement model is always full
rank so the least-squares estimation can be performed. The
measurement covariance matrixR is the diagonal matrix of
the measurement variances. In Algorithm 3 the complete state

is denoted withz =

[

x

a

]T

. As in the PL parameter estimation

phase, the output of the algorithm contains estimates for
the MAP and the covariance matrix of the posterior of the
linearized model.



Algorithm 3 Gauss–Newton algorithm

1) Choose the stopping toleranceδ. Let

Σ̂z := blkdiag(Σ̂x, Σ̂A1,n1
, Σ̂m1

, . . . , Σ̂ANP
,nNP

, Σ̂mNP
)

and

ẑ :=
[

x̂T Â1 n̂1 m̂T
1 . . . ÂNP n̂NP

m̂T
NP

]T

be the prior covariance and mean. Let the initial guess
be z0 := ẑ. Additionally, measurement varianceσ2 is
required. Setk := 0. Denote the objective function with

θ(z) := (z − ẑ)TΣ̂z

−1
(z − ẑ) +

NP
∑

i=1

hi(z)− Pi

σ2
.

2) Compute the Jacobian

Jk :=









∂h1

∂x
∂h1

∂A1

∂h1

∂n1

∂h1

∂m1

0
T
4(NP−1)

...
. . .

...
∂hNP

∂x
0
T
4(NP−1)

∂hNP

∂ANP

∂hNP

∂nNP

∂hNP

∂mNP









.

3) Set

∆zk := −

(

Σ̂−1
z +

1

σ2
JTk Jk

)−1

·

(

Σ̂−1
z (zk − ẑ) +

1

σ2
JT(h(zk)− P )

)

.

4) Adapt step length:

α := 1
while ||θ(zk + α∆zk)|| ≥ ||θ(zk)|| andα > α0 do

α := α
2

end while
where α0 is a configuration parameter, e.g. 0.05. Set
zk+1 := zk + α∆zk.

5) If stopping condition||∆zk|| < δ is not satisfied and
k ≤ kmax, incrementk and repeat from Step 2. Otherwise

computeP :=
(

Σ̂−1
z + 1

σ2 J
T
k Jk

)−1

and set the state
estimate

x̂+ := zk+1,1:2, Σ̂+
x := P1:2,1:2

V. POSITIONING TESTS

A. Tests with artificial data

Fig. 3 illustrates the influence of the uncertain pa-

rameters on the likelihood. In the present case

[

A

n

]

∼

N

([

2
3.2

]

,

[

100 3.5
3.5 0.15

])

andm ∼ N
(

0, 2 · 104 · I
)

. These

values are based on our experimental knowledge of the Finnish
cellular network. The likelihoods are calculated using the
Monte Carlo based grid algorithm. The upper row illustrates
the likelihoods of the model that takes the parameter uncer-
tainties into account, and the lower row shows the likelihoods
assumed that the path loss parameter values are correct. The

RSS values corresponding to the likelihoods are−50 (on the
left), −75 and−90 dBm. Path loss model standard deviation
is σ = 6 dBm. It can be seen that with strong signals, the RSS
likelihood is unimodal or almost unimodal when the parameter
uncertainties are taken into account.
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Figure 3: The likelihoods of measurements−50, −75 and
−90 dBm. In the upper row, parameter uncertainties have been
taken into account.

In the case of radially symmetric BS position distribution,
the posterior density depends only on the distance from
the mean of the BS position estimate. Fig. 4 illustrates the
likelihoods of the user’s position as a function of this dis-
tance. They have been computed using standard Monte Carlo
integration and normalized so that the maximal likelihood
value is one. Curve “N” represents algorithms that assume PL
parameters to be normally distributeda priori, and curve “acc”
the algorithms that assume that the parameters are known
accurately. Fig. 4 shows that the tails of the “N” curve are
considerably heavier.
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Figure 4: Likelihoods of measurements−50, −75 and
−90 dBm as a function of the distance from the mean of the
BS position estimate. Curve “N” represents algorithms that
assume PL parameters to be normally distributeda priori, and
curve “acc” the algorithm that assumes that the parameters are
known accurately.

In Fig. 5 the likelihood of two RSS measurements of−80
dBm is presented. The PL parameters are similar to the ones
in Fig. 3, and the distance between BS’s is 400 meters. If
the parameter uncertainties are not taken into account (on the
right), the support of the likelihood consists of two separate
parts, whereas in the left figure there is significant amount of
likelihood mass also in the BS positions’ surroundings.
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Figure 5: The combined likelihood of two BS’s with signal
strengths−80 dBm. On the left, parameter uncertainties have
been taken into account.

B. Tests with real data

A measurement campaign was accomplished to evaluate
the performance of different algorithms in a real use case.
First, a large set of fingerprints was collected from the 3G
cellular network in Tampere urban area, Finland for learning
the radiomap. The measured RSS values are based on the mea-
sured Received Signal Code Power (RSCP) indicator reported
by the user equipment. The coverage area of each BS was
estimated by fitting a normal distribution to the data [11, 12].
Furthermore, path loss model parameters were estimated using
the method that was presented in Section II of this paper.

There are three separate test tracks. The first track (Her-
vanta) was collected by a pedestrian in a densely populated
urban/suburban area. In the second track (Lukonmäki) the
measurer rode a bicycle with a low velocity in a suburban area.
The third track (Linnainmaa) is a higher velocity suburban
bicycle case. In all the cases the true user positions were
tracked down using conventional GPS positioning. By plotting
the GPS solutions on the map, it was confirmed that the GPS
error on the area is small compared to the cellular positioning
accuracy.

In all these tracks, the prior distribution is computed in
each estimation point using the estimated coverage areas of
the BS’s that are observed at the point concerned. The prior
is the product distribution of Gaussian coverage areas, so it is
also a Gaussian distribution.

C. Results and discussion

The results of the true data tests are in Table I. Abbreviation
“N” stands for the algorithms that assume the path loss
parameters to be normally distributeda priori whereas “acc”
indicates that the parameter values are assumed known. “CA”
refers to the product of coverage areas. Columns “Mean”,
“Med” and “95% err.” are mean error, median error and
empirical 95% percentile of errors in meters. “Time” is the
average running time of our MATLAB implementation in
seconds. Note that the codes are not highly optimized so
the running time values have to be considered only roughly
indicative. The times are also highly dependent on the chosen
configuration parameters.

Presented “N” algorithms seem to outperform “acc” algo-
rithms in the positioning accuracy. In the Lukonmäki case

Table I: Results for the real data tests.

Solver Mean Med 95% err. Cons. Time
(m) (m) (m) (%) (s)

Hervanta
grid, N 247 204 432 96 49
grid, acc 250 225 444 85 22
MH, N 258 215 473 81 38
MH, acc 273 233 517 38 23
GN, N 243 186 438 94 0.6
GN, acc 232 186 409 81 0.4
CA 258 212 458 99 0.24
Lukonmäki
grid, N 219 144 520 93 82
grid, acc 226 158 530 82 38
MH, N 238 161 572 83 67
MH, acc 286 172 837 40 36
GN, N 223 162 502 95 0.8
GN, acc 267 220 599 81 0.5
CA 251 203 532 96 0.26
Linnainmaa
grid, N 195 159 412 96 83
grid, acc 197 177 420 91 36
MH, N 213 179 456 90 45
MH, acc 260 222 600 39 25
GN, N 218 176 544 89 0.6
GN, acc 229 170 523 82 0.3
CA 271 214 741 97 0.16

it is questionable whether the RSS measurements should
be used at all, if the uncertainties are not in the model.
The only case where the “acc” slightly outperforms “N” is
Hervanta with Gauss–Newton positioning. This is likely to
stem from the linearization approximation of the method, since
the phenomenon is not visible with the other methods.

Column “Cons.” displays the 95% consistency that was
determined using Gaussian consistency test [13, pp. 235] with
risk level 5%. The solver is deemed to be consistent at a
certain time step, if the true position is within the 95%-
ellipse of the posterior distribution, assuming normalityof
the posterior. The closer this number is to 95%, the more
realistic the covariance matrix estimation is. From the figures
it can be seen that taking the parameter uncertainties into
account improves the consistency remarkably and independent
of the estimation method. Thus, the “N” method seems to be
beneficial especially if location information from other sources
is combined with RSS measurements or when positioning is
done with Bayesian time-series filters.

Among the three estimation methods, the grid and MH
sampler approach the exact Bayesian model posterior distri-
bution. The grid gives the precise posterior values in the grid
points assuming that the Monte Carlo integration’s accuracy
is adequate. The MH sampler converges theoretically to the
true posterior as the sample size parameterN approaches
infinity. In practice, however, the rate of convergence in MH
algorithms is highly dependent on the form and parameters
of the proposal distributions. With the chosen configuration
the method usually fails to compete with the grid especially
in consistency, still providing a good estimate with slightly
lighter computation.

The Gauss–Newton method lacks global convergence prop-
erties and the covariance matrix estimate is based on iterative



linearization procedure and has thus a less clear Bayesian
interpretation. Indeed, the real data tests showed that the
algorithm’s convergence is more dependent on the quality
of the prior distribution. However, the presented results are
comparable with those of the other methods, and the GN is
clearly the computationally lightest one of these algorithms
and is applicable in many real-time solutions.

VI. CONCLUSIONS

It was shown that estimating the path loss parameter un-
certainties and taking them into account in the positioning
phase has significant influence on the positioning performance.
Both accuracy and consistency are improved compared to
the conventional methods where the path loss parameters
are assumed to be known accurately. If the uncertainties
are not used, it seems to be questionable, whether the path
loss modeling brings any benefit compared with the coverage
area positioning. Furthermore, it was shown that Gauss–
Newton optimization algorithm provides satisfactory accuracy
and consistency, being also computationally feasible for many
applications. The comparison methods were Monte Carlo -
based Grid method and Metropolis–Hastings sampler.
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