
Tampere University of Technology

Author(s) Mäkinen, Toni; Kiranyaz, Serkan; Gabbouj, Moncef

Title Content-based audio classification using collective network of binary classifiers

Citation Mäkinen, Toni; Kiranyaz, Serkan; Gabbouj, Moncef 2011. Content-based Audio
 Classification using Collective Network of Binary Classifiers. Evolving and Adpative
 Intelligent Systems EAIS, 2011 IEEE Workshop, 11 - 15 April 2011, Paris, France.
 IEEE Workshop on Evolving and Adpative Intelligent Systems EAIS Piscataway, NJ, IEEE .
 116-123.

Year 2011

DOI http://dx.doi.org/10.1109/EAIS.2011.5945911

Version Post-print

URN http://URN.fi/ URN:NBN:fi:tty-201306271275

Copyright © 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be
 obtained for all other uses, in any current or future media, including reprinting/republishing
 this material for advertising or promotional purposes, creating new collective works, for
 resale or redistribution to servers or lists, or reuse of any copyrighted component of this
 work in other works.

All material supplied via TUT DPub is protected by copyright and other intellectual property rights, and duplication
or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by
you for your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an
authorized user.

Content-based Audio Classification using Collective
Network of Binary Classifiers

Toni Mäkinen

Serkan Kiranyaz

Tampere University of Technology
Department of Signal Processing
P.O. Box 553, Tampere, Finland

Moncef Gabbouj

Abstract—In this paper, a novel collective network of binary
classifiers (CNBC) framework is presented for content-based
audio classification. The topic has been studied in several
publications before, but in many cases the number of different
classification categories is quite limited and needed to be fixed a
priori. We focus our efforts to increase both the classification
accuracy and the number of classes, as well as to create a scalable
network design, which allows introducing new audio classes
incrementally. The approach is based on dividing a major
classification problem into several networks of binary classifiers
(NBCs), where each NBC adapts its internal topology according
to the classification problem at hand, by using evolutionary
Artificial Neural Networks (ANNs). In the current work, feed-
forward ANNs, or the so-called Multilayer Perceptrons (MLPs),
are evolved within an architecture space, where a stochastic
optimization is applied to seek for the optimal classifier
configuration and parameters. The performance evaluations of
the proposed framework over an 8-class benchmark audio
database demonstrate its scalability and notable potential, as
classification error rates of less than 9% are achieved.

Keywords - audio content - based classification; evolutionary
neural networks; particle swarm optimization; multilayer
perceptron

I. INTRODUCTION
The rapid growth of the database sizes both in the Internet

and home computers has created new and challenging tasks in
maintaining the flexibility in handling such large amounts of
data. Audio content-based retrieval offers several advantages
and possibilities over traditional text-based queries, as manual
annotation of audio information in large databases is not
convenient or perhaps feasible at all. Moreover, in many
practical situations it would be ideal to retrieve certain kind of
audio content from a large database using a reference audio
clip, for example when searching for a certain type of music or
environmental sounds. For this, audio content-based
classification is needed, which is studied in this work using a
novel approach of collective (evolutionary) classifier networks.

The idea of content-based audio indexing and retrieval was
first presented by Wold et al. in [1], where pitch, loudness,
brightness and bandwidth features were used in classifying the
used audio database (Muscle Fish). Since then, the research has
been rather active, and many classification schemes have been
proposed to improve the accuracy of the classification

performance. In this paper, the focus is put purely on the audio
classification problem, meaning that audio segmentation and
change-point detection approaches are out of the scope of this
study. The pure audio classification approaches found from the
literature can be divided into two main categories, namely the
model-based and the rule-based methods. The latter ones are
convenient when no complete training data is available, as the
classification is performed in an unsupervised manner. This is
accomplished by using thresholds for different audio features,
as performed in [2]-[4]. There are, however, several problems
with the unsupervised learning techniques, such as the need for
high amount of heuristics, and the limited number of classes
that need to be fixed a priori. Such drawbacks limit their
practical use for dynamic, ever-growing multimedia
repositories, which are common in many environments and
applications today.

In model-based methods, based on supervised learning,
Chen et al. in [5] used a Support Vector Machine (SVM) to
classify audio from two movies into 5 classes, namely music,
speech, environmental sound, speech with music, and music
with environmental sound. The results (~78% classification
accuracy) showed improvements in classification error rates
when compared to k-Nearest Neighbour (kNN), Artificial
Neural Networks (ANNs), and Naive Bayes (NB) classifiers.
Rather high training dataset (70% of the entire database) was
used in achieving the results, whereas Zhu et al. in [6] used the
same kind of SVM approach with a smaller training set and
additional validation set, achieving more or less similar
outcome with [5]. Chu and Champagne [7] used a slightly
different approach for SVM-based classification by introducing
their FFT-based noise-robust spectrum. Improved classification
results were achieved in noisy test cases, but only speech,
music, and noise were classified in their work. SVM was used
also in [8], where it was applied to transform domain indexing
by using a non-standard audio codec in a music genre-
classification application. As a popular classifier, SVM was
also used, along with the Hidden Markov Models (HMMs), in
[9] to classify audio content into five non-silent classes. In [9],
a unique HMM-model is trained for each non-silent class using
MPEG-7 features. Training set encapsulated 50% of the entire
dataset in achieving the reported accuracy rates, which are,
however, highly dependent on the selection of the SVM
parameters, which is a well-known fact in the field. Peeters in
[10] used Gaussian Mixture Models (GMMs) together with the

This work was supported by the Academy of Finland, project No. 213462
(Finnish Centre of Excellence Program (2006 - 2011)

HMMs to model individual classes in the context of music
genre recognition (with six categories). Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA) were
needed to lower the feature space dimensionality, whereas the
classification itself was done based on the generated statistical
models. The classification results obtained in music genre
recognition are close to the state-of-the-art, but selection of the
best classifier configuration remains an unsolved problem.
Another supervised classification approach was presented by
Harb and Chen in [11], where modeling based on human
perception was applied. An average classification accuracy of
63.5% was achieved for six music genres.

In general, the aforementioned audio classification efforts,
and many alike, put lots of effort in adjusting the classifier
parameters, so as to “fit” to the specific classification problem
at hand as close as possible. However, it is obvious that this is
not too applicable for a general classifier that should achieve
robust and efficient performance levels over generic audio
databases. Therefore, for any audio repository, the setting of
the classifier parameters, as well as the choice of the classifier
configuration, should be optimal, so as to maximize the
classification accuracy. Also, the number of different classes is
usually quite limited and specific to a certain audio domain,
whereas in order to have a reliable retrieval performance on a
versatile database, more classes should be supported.
Furthermore, support for dynamic updates in the databases is
rare at the moment, as in most cases the training dataset and the
number of classes need to be fixed beforehand.

In order to address these problems, in this paper, we shall
focus on a global and data-adaptive framework design that
embodies a collective network of evolutionary binary
classifiers (CNBC). The main idea of the framework was first
introduced in a previous work [12], for another application
area, being now specifically designed for audio classification
purpose. Earlier, fundamentally similar type of approaches of
constructing an ensemble of neural networks (a.k.a. neuro-
ensemble) have been introduced (see e.g. [13]), but, to our
knowledge, the framework structure presented in this paper has
not been used in audio classification scheme before. The issues
specifically targeted in our approach are:

• Evolutionary Search: Seeking for the optimum
classifier network architecture among a certain
collection of different configurations (the so-called
Architecture Space, AS).

• Evolutionary Update in the AS: Keeping only “the
best” individual configuration in the AS among
indefinite number of evolution runs.

• Class / feature Scalability: Support for varying number
of classes and audio features. A new class / feature can
be dynamically inserted into the framework without
requiring a full-scale re-configuration or re-training.

• High efficiency for the evolution (training) process:
Using as compact and simple classifiers as possible.

• Maximizing the classification accuracy: Using several
audio features to take advantage of the discrimination
power of each one of them.

In this work, Multilayer Perceptrons (MLPs) are evolved in the
proposed CNBC framework. The recently proposed Multi-
Dimensional Particle Swarm Optimization (MD-PSO) [14] is
used as the primary evolutionary search technique.

The rest of the paper is organized as follows. Section II
briefly presents the applied evolutionary ANNs and the MD-
PSO technique, whereas Section III describes the feature
extraction process and introduces the audio features used. The
proposed CNBC framework and the evolutionary update
mechanisms are explained in detail in Section IV, and the
classification results and performance evaluation over an 8-
class database are given in Section V. Finally, Section VI
concludes the paper and discusses future research directions.

II. EVOLUTIONARY NEURAL NETWORKS
In this section, we will first briefly discuss the applied

evolutionary technique, MD-PSO, which is used in an
architecture space to search for the optimal classifier
configuration. Second, the concept of evolutionary feed-
forward artificial neural networks is introduced. Finally, an
overview of the well-known Back Propagation (BP) method
will be given, which can be used also exhaustively to perform a
sequential search for the optimal classifier in an AS.

A. Multi-Dimensional Particle Swarm Optimization
The Particle Swarm Optimization (PSO) was introduced by

Kennedy and Eberhart [15] in 1995 as a population-based
stochastic search and optimization process. In a PSO process, a
swarm of particles, each of which represents a potential
solution to the optimization problem at hand, navigates through
a search space. The particles are randomly distributed over the
search space, and the goal is to converge to the global optimum
of a function or a system. Each particle keeps track of both its
current position, and the best position achieved so far in the
search space. The latter is called the personal best value
(pbest), while the PSO process keeps also track of the global
best solution achieved so far by the whole swarm (gbest).
During their journey in the search space with discrete time
iterations, the velocity of each particle in the next iteration is
computed by the best position of the swarm (position of the
particle gbest, the social component), the best personal position
of the particle (pbest, the cognitive component), and the current
velocity of the particle (the memory term). Both social and
cognitive components contribute randomly to the position of
the particle in the next iteration.

In this research we will use the multi-dimensional (MD)
extension of the basic PSO (bPSO) method, the MD-PSO.
Instead of operating with a fixed number of dimensions, D, the
MD-PSO algorithm is designed to seek both positional and
dimensional optima within a certain dimension range {Dmin,
Dmax}. For this, each particle has two sets of components, each
of which has been subjected to two independent and
consecutive processes. The first set is a regular positional PSO,
taking care of the traditional velocity updates and positional
shifts in the D-dimensional search (solution) space, whereas the
second set is the dimensional PSO, allowing the particles to
navigate through dimensions. Accordingly, now each particle
keeps track of its latest position, velocity and personal best
position in a particular dimension, so that when the particle re-

visits the same dimension later, it can perform its regular
“positional” update. The dimensional PSO process of each
particle may then move the particle to another dimension,
where it will remember its positional status and shall be
updated with the positional PSO process at that dimension. The
swarm, on the other hand, keeps now track of the gbest particle
in each dimension, and the dimensional PSO process of each
particle uses its personal best dimension (in which the personal
best fitness score has been achieved so far). Finally, the swarm
keeps track of the global best dimension, dbest, among all the
personal best dimensions. Thus, the gbest particle in the dbest
dimension represents the optimum solution found.

In a MD-PSO process at time (iteration) ݐ, each particle a in
the swarm with S particles, ξ = {x1,..,xa,..,xS}, is represented by
the following symbols: ݔ௔,௝ௗೌሺ௧ሻሺݐሻ : jth component of the position of particle a in

dimension ݀௔ሺݐሻ. ݔ෤௔,௝ௗೌሺ௧ሻሺݐሻ: jth component of the personal best position of
particle a in dimension ݀௔ሺݐሻ. ݒ௔,௝ௗೌሺ௧ሻሺݐሻ: jth component of the velocity of particle a in
dimension ݀௔ሺݐሻ. ݀௔ሺݐሻ: dimension of particle a. ሚ݀௔ሺݐሻ: personal best dimension of particle a. ݀ݒ௔ሺݐሻ: dimensional velocity of particle a. ݃ݔ௝ௗሺݐሻ: jth component of the global best position of swarm
in dimension ݀.

Let f denote a fitness function that is to be optimized within a
certain dimension range, {Dmin, Dmax}. Without loss of
generality, assume that the objective is to find the minimum of f
at the optimum dimension within a multi-dimensional search
space. Assume also, that the particle a visits (back) the same
dimension after T iterations (i.e. ݀௔ሺݐሻ ൌ ݀௔ሺݐ ൅ ܶሻ). Then,
the personal best position can be updated at iteration t+T as,

ݐ෤௔,௝ௗೌሺ௧ା்ሻሺݔ ൅ ܶሻ ൌൌ ቐݔ෤௔,௝ௗೌሺ௧ሻሺݐሻ ݂݅ ݂ ൬ݔ௔,௝ௗೌሺ௧ା்ሻሺݐ ൅ ܶሻ൰ ൐ ݂ ൬ݔ෤௔,௝ௗೌሺ௧ሻሺݐሻ൰ݔ௔,௝ௗೌሺ௧ା்ሻሺݐ ൅ ܶሻ ݈݁(1) ,݁ݏ

݆ ൌ 1, 2, … , ݀௔ሺݐ ൅ ܶሻ.

Furthermore, the personal best dimension of particle a can be
updated in iteration ݐ ൅ 1 as,

 ሚ݀௔ሺݐ ൅ 1ሻ ൌൌ ൝ ሚ݀௔ሺݐሻ ݂݅ ݂ ൬ݔ௔,௝ௗೌሺ௧ାଵሻሺݐ ൅ 1ሻ൰ ൐ ݂ ൬ݔ෤௔,௝ௗ෨ೌሺ௧ሻሺݐሻ൰݀௔ሺݐ ൅ 1ሻ ݈݁(2) .݁ݏ

Fig. 1 shows an example MD-PSO and bPSO particles.
Particle a in bPSO is at (fixed) dimension, D = 5, and contains
only positional components, whereas in MD-PSO, particle a
contains both the positional and dimensional components. The
dimension range for MD-PSO is given by {Dmin, Dmax} = {2,
10}, so that 9 sets of positional components are included in a.

In this example the particle a currently resides at dimension 2
(݀௔ሺݐሻ = 2), while its personal best dimension is 3 (ሚ݀௔ሺݐሻ ൌ 3).
Hence, at time t a positional PSO update is first performed over
the positional components of ݔ௔ଶሺݐሻ, after which the particle
may move to another dimension with respect to the
dimensional PSO. Recall that each positional component ݔ௔ଶሺݐሻ
represents a potential solution in the data space to the problem.
The algorithmic flowchart and further details about MD-PSO
can be obtained from [16].

B. MD – PSO for Evolving MLPs
The MD-PSO seeks (near-) optimal networks in an AS,

which can be defined over any type of ANNs with any
properties. All network configurations in the AS are
enumerated into a hash table with a proper hash function,
which ranks the networks with respect to their complexity, i.e.
associates higher hash indices to networks with higher
complexity. The MD-PSO can then treat each index as a unique
dimension in the search space. The dimension thus corresponds
to the optimal classifier architecture, while the position
(solution) encapsulates the optimum network parameters
(connections, weights and biases). Suppose, for the sake of
simplicity, that a certain range is defined for the minimum and
maximum number of MLP layers, ሼܮ୫୧୬, ୫ୟ୶ሽ, as well as forܮ
the number of neurons in the hidden layer l, {ܰ୫୧୬௟ , ܰ୫ୟ୶௟ }. The
sizes of both input and output layers, ሼ ௜ܰ, ௢ܰሽ, are determined
by the problem, and hence fixed. The AS can then be defined
by only two range arrays: ܴ୫୧୬ ൌ ൛ ௜ܰ, ܰ୫୧୬ଵ , … , ܰ୫୧୬௅ౣ౗౮ିଵ, ௢ܰൟ, ܴ୫ୟ୶ ൌ ൛ ௜ܰ, ܰ୫ୟ୶ଵ , … , ܰ୫ୟ୶௅ౣ౗౮ିଵ, ௢ܰൟ,

where the first one is for the minimum-, and the second one is
for the maximum number of neurons allowed for each layer of
a MLP. The size of the both arrays is naturally ܮ୫ୟ୶ + 1, where
the corresponding entries define the range of the lth hidden
layer for all those MLPs that can have the lth hidden layer. The
terms ܮ୫୧୬ ≥ 1 and ܮ୫ୟ୶ can be set to any value meaningful for
the problem at stake. The hash function then enumerates all
potential MLP configurations into hash indices, starting from
the simplest MLP with ܮ୫୧୬ – 1 hidden layers (each of which
has the minimum number of neurons given by ܴ୫୧୬), to the

Figure 1. MD-PSO (left) vs. bPSO (right) particle structures for dimensions
{Dmin=2, Dmax=10}. At time t, ࢇࢊሺ࢚ሻ ൌ ૛, ሺ࢚ሻࢇ෩ࢊ ൌ ૜.

most complex one with ܮ୫ୟ୶ – 1 hidden layers (each of which
has the maximum number of neurons given by ܴ୫ୟ୶).

Let Nl be the number of hidden neurons in layer l of a MLP
with the input and output layer of sizes ௜ܰ and ௢ܰ, respectively.
The input neurons are merely fan-out units, as no processing is
done in them. Let ݃ be the activation function (e.g. sigmoid)
applied over the weighted inputs and a bias. Thus we can write,
௡௟ݕ ሺ݌ሻ ൌ ݃൫ ௡ܻ௣,௟൯, ௡ܻ௣,௟ ൌ ෍ ሻ݌௠௟ିଵሺݕ௠௡௟ିଵݓ ൅ ௡௟௠ߠ ,

(3)

where ݕ௡௟ ሺ݌ሻ is the output of the nth neuron of the lth hidden /
output layer when a pattern p is fed into it, ݓ௠௡௟ିଵ is the weight
from the mth neuron in layer ݈ െ 1 to the nth neuron in layer ݈,
and ߠ௡௟ is the bias value of the nth neuron in the lth layer. The
training mean square error, ܧܵܯ, is formulated as:

ܧܵܯ ൌ 12ܲ ௢ܰ ෍ ෍൫ݐ௡ሺ݌ሻ െ ሻ൯ଶே೚݌௡௢ሺݕ
௡ୀଵ௣א஺ ,

(4)

where ݐ௡ሺ݌ሻ is the target (desired) output, and ݕ௡௢ሺ݌ሻ is the
actual output from the nth neuron in the output layer, l=o, for
pattern p in the training dataset A with size P, respectively. At
time t, the particle a has the positional component formed as,

ሻݐ௔,௝ௗೌሺ௧ሻሺݔ ൌൌ Ψୢ౗ሺ୲ሻ൛ሼݓ௠௡଴ ሽ, ሼݓ௠௡ଵ ሽ, ሼߠ୬ଵሽ, … , ሼݓ௠௡௢ିଵሽ, ሼߠ୬௢ିଵሽ, ሼߠ୬௢ሽൟ, (5)

where ሼݓ௠௡௟ ሽ and ሼߠ୬௟ ሽ represent the sets of weights and biases
of the layer l of the MLP-configuration Ψୢ౗ሺ୲ሻ. Note that the
input layer (l=0) contains only weights, whereas the output
layer (l=o) contains only biases. By the means of such a direct
encoding scheme, the particle a thus represents all potential
network parameters of the MLP architecture at the dimension
(hash index) ݀௔ሺݐሻ. As mentioned earlier, the dimension range
{Dmin, Dmax} where the MD-PSO particles can make inter-
dimensional jumps, is determined by the AS defined. Apart
from the regular limits, such as (positional) velocity range,
{Vmin, Vmax}, and dimensional velocity range, {VDmin, VDmax},
the data space can be also limited by some practical range, i.e. ܺ୫୧୬ ൏ ሻݐ௔,௝ௗೌሺ௧ሻሺݔ ൏ ܺ୫ୟ୶. Setting the ܧܵܯ in (4) as the fitness
function, to be used in the MD-PSO, enables then performing
evolutions of both the network parameters and the network
architectures. Further details and an extensive set of network
evolution experiments can be found in [14].

C. The Back-Propagation Algorithm
Back Propagation (BP) is the most commonly used training

technique for feed-forward ANNs. It is a supervised training
technique that has been used in pattern recognition and
classification problems in many application areas. Essentially,
BP is just a gradient descent algorithm in the error space,
which may be complex and contain many deceiving local
minima (multi-modal). Therefore, BP gets easily trapped into a
local minimum, making it entirely dependent on the initial
(weight) settings. However, due to its simplicity and relatively
lower computational cost, BP can be applied exhaustively over
the network architectures with random initializations, to find

out the optimal architecture. Since the AS is composed of only
compact networks, with such an exhaustive search the
probability of finding (converging) to a (near-) optimum
solution in the error space is significantly increased.

 The used BP algorithm can be summarized as follows:

1. Initialize the weights ݓ௠௡௟ and biases ߠ௡௟ randomly.

2. Feed a pattern p to the network and compute the output ݕ௡௟ ሺ݌ሻ of each neuron n in each hidden layer l.

3. Calculate the error between the final output ݕ௡௢ሺ݌ሻ of
each output neuron and the desired output ݐ௡ሺ݌ሻ as ݁௡௢ሺ݌ሻ ൌ ሻ݌௡ሺݐ െ .ሻ݌௡௢ሺݕ

4. For each neuron n, calculate the partial derivatives డாሺ௣ሻడ௛೙೗ , where ܧሺ݌ሻis the total error energy defined as ܧሺ݌ሻ ൌ ଵଶ ∑ ൫݁௡௢ሺ݌ሻ൯ଶ௡א௢ , and ݄௡௟ is a uniform symbol
for the parameters ݓ௠௡௟ and ߠ௡௟ .

5. Update the parameters as follows: ݄௡௟ ሺݐ ൅ 1ሻ ൌ ݄௡௟ ሺݐሻ െ ߟ ሻ߲݄௡௟݌ሺܧ߲ , (6)

where ߟ is a learning rate parameter.

6. Repeat steps 2-5 until some stopping criterion is
reached.

One complete run over the training dataset is called an
epoch. Usually many epochs are required to obtain the best
training results, but, on the other hand, too many training
epochs can lead to over-fitting. In the above realization of the
BP algorithm, the network parameters are updated after every
training sample (pattern p). This is called an online or
sequential training mode. Another possibility is the batch
mode, where all the training samples are first presented to the
network, and then the parameters are adjusted so to minimize
the total training error. The sequential mode is often favored
over the batch mode, as less storage space is required.
Moreover, the sequential mode is less likely to get trapped into
a local minimum, as updates at every training sample make the
search stochastic in nature. Hence, sequential BP mode is used
for MLP training in this study.

III. AUDIO FEATURE EXTRACTION
As a common approach in audio signal processing, the

audio signal to be analyzed is first divided into short time
windows / frames (20-40 ms), from which the audio features
are extracted. This is to prevent averaging the signal over long
segments, in which case the discrimination of audio features
may decrease significantly. In this study, three sets of features
are extracted from each audio clip to be classified, divided as:

• General Audio Features: These consist of sub-band
power (4 bands), band energy ratio (BER), sub-band
centroid (SC), zero-crossing rate (ZCR), short average
energy (SAE), brightness, bandwidth, spectral roll-off,
spectral flux, and fundamental frequency (FF).

• MFCCs: The first 24 coefficients of the extracted Mel-
frequency cepstral coefficients.

• Linear Prediction Coefficients (LPC): The 8th order LP
coefficients (the order is based on the 16 kHz sampling
frequency used in the classified audio samples).

The feature vector (FV) dimensions for each feature set are
thus 13, 24, and 8, respectively.

Extracting the features from short time frames leads into a
rather big number of FVs even from a short audio clip.
Therefore, in our work, a certain amount of key frames (KFs,
see [4]), are first selected among the frames, being sort of
“prototypes”, which are chosen so to represent the others as
accurately as possible. The ultimate goal is to find concise and
representative feature sets from each audio clip, to speed up the
classification process without losing any vital information of
the original signals. The reasoning behind the idea of exploiting
only a small fraction of the audio frames is based on an
assumption, that the elementary sounds within an audio clip are
immensely repetitive, and often entirely alike. For an efficient
KF selection, audio frames with similar acoustical features
within an audio clip are clustered, and only one or few frames
from each cluster are considered as KFs to represent the others
in that cluster. Here the number of KFs is empirically set
between ~1-2% of the total amount of frames, being relatively
lower for longer clips. Thus, the actual number of key frames
selected from each clip varies approximately between 40 and
200 frames, depending on the length and variation of the signal.
Once the number of KFs is determined, a Minimum Spanning
Tree (MST) clustering technique is applied. Every node in the
tree represents the extracted features of a unique audio frame.
The clustering scheme is illustrated in Fig. 2, where the word
“Speech Lab” is divided into seven separate clusters, according
to the similarity of the extracted frames. More technical details
about the audio clustering scheme can be found in [4].

For each of the three extracted features sets, the proposed
classification framework evolves a separate binary classifier
(BC) per each pre-determined class, so that a unique network of
BCs (NBC) is created for each class. Note that, as such, the
proposed framework performs classification over the KFs, and
not the actual audio clips. Hence, a majority rule is applied to
the classified KFs to decide the final class of the corresponding
clip. For this, a specific table is created, where the KF indices
corresponding to each audio clip in the database are stored.

IV. THE CLASSIFICATION FRAMEWORK
This section describes in detail the proposed classification

framework: the Collective Network of (Evolutionary) Binary
Classifiers (CNBC). The framework takes as an input the
extracted feature vectors from the training dataset KFs, after
which the internal network topology is configured, and all the
corresponding binary classifiers are evolved individually.
Before going into full details of the CNBC, the used AS
evolutionary update mechanism will be introduced.

A. Evolutionary Update in the Architecture Space
Since the primary evolution technique used, MD-PSO, is a

stochastic optimization method, it is not guaranteed that it will
always find the optimal solution. Thus, in order to improve the
probability of convergence to the global optimum, several
evolutionary runs can be performed. Let QR be the number of
runs and QC be the number of configurations in the AS. For
each run, the objective is to find the optimal classifier within
the AS, with respect to some pre-defined criterion. Note that,
along with the best classifier, all the other configurations in the
AS are also evolved simultaneously, so that the configurations
are continuously (re-)trained within each run. Thus, during the
process, any network configuration may replace the current
best one in the AS, if it is surpassed in terms of the
classification performance criterion. This is also true in the
exhaustive search, where each network configuration in the AS
is evolved using QR Back-Propagation (BP) runs.

Fig. 3 demonstrates the evolutionary update operation over
a sample AS containing 5 MLP configurations. The bigger
table in Fig. 3 shows the training Mean Square Error (MSE),
which is the criterion used to select the optimal configuration at
each run. The best runs for each configuration are highlighted,
and the best configuration in each run is tagged with ‘*’. In this
case, at the end of three runs, the overall best network with
MSE = 0.1 has a configuration 15x3x2, and thus it is used as
the classifier for all the forthcoming classification tasks, until a
new configuration may surpass it in a future run. As can be
seen from this example, each BC configuration in the AS can
only evolve into a better state from the previous one (in terms
of the training MSE), which is the main motivation for the
proposed evolutionary update mechanism.

Figure 3. Evolutionary update in a sample AS for MLP configuration arrays ࢔࢏࢓ࡾ ൌ ሼ૚૞, ૙, ૛ሽ and ࢞ࢇ࢓ࡾ ൌ ሼ૚૞, ૝, ૛ሽ, where QR = 3 and QC = 5. The best
runs for each configurations are highlighted, and the best configuration in

each run is tagged with ‘*’.

S p ee ch L a b

9

8

1

1 1
2 13

14
18

19
4

'a'

p

1
111

12

17

'L'

1

3
168

21

'b'

8

7

6
9

0
101

1

20

'S'

1

2
9 6

2

1 2
1

15

'ch'

5

7

3
1

2

'ee'

21

Figure 2. An illustrative MST clustering scheme.

B. Collective Network of Binary Classifiers
1) The Topology:

In the CNBC framework, the individual networks of BCs
(NBCs) evolve continuously with the ongoing evolution
sessions by using the ground truth training data (GTD) given
by the user. Each BC in a particular NBC performs binary
classification using one of the three extracted FVs. Each NBC
has also a “fuser” BC in its output layer, which collects and
fuses the binary outputs of all the BCs in the input layer. A
single binary output is then generated from each NBC,
indicating the relevancy of the current input KF to the NBC’s
corresponding class. Due to its structure, the CNBC can be
dynamically scaled into any number of classes, as whenever a
new class is defined, a new corresponding NBC will be created
and evolved on top of the existing structure. The procedure
does not require changing or updating the other NBCs, as long
as they pass the so-called verification test, which is performed
by selecting a specific accuracy threshold, and by seeing
whether the existing NBCs classify the training samples of the
new class(es) accurately enough (and not confuse with them).
In this work, an accuracy threshold of 95% was applied.

As is shown in Fig. 4, in CNBC, a learning problem with
many classes and features can be divided into as many NBCs
(and BCs within) as necessary, so as to negate the need for
complex classifiers. This is a notable advantage, since the
performance of the training and evolution processes degrades
significantly as the classifier complexity increases (due to the
well-known curse of dimensionality – phenomenon). Another
major benefit of the approach, with respect to efficiency, is that
the configurations in the AS can be kept very compact, so that
unfeasibly large storages and heavy computations can be
avoided. This is especially important for the BP method, since
the amount of deceiving local minima is significantly lower in
the error space for simple and compact ANNs.

In order to maximize the final classification accuracy, a
dedicated class selection technique is applied. In all the BCs, a
1-of-M encoding scheme, with M=2, is used. Let us denote ܥ ௙ܸ,ଵ and ܥ ௙ܸ,ଶ as the first and second output of the ݂୲୦ BC’s
class vector (CV), respectively. The class selection in the 1-of-2
encoding scheme is then performed by comparing the two
individual outputs, and the encoded output is determined as
positive if ܥ ௙ܸ,ଶ ൐ ܥ ௙ܸ,ଵ, and negative otherwise. The same
encoding scheme applies for the fuser BC output, which
determines the output of the whole NBC. A class selection
block, illustrated at the bottom of Fig. 4, then collects the CVs
of each NBC, and selects the “most positive” output among all
the NBCs as the final classification outcome. Here a so-called
winner-takes-all strategy is utilized, where the positive class
index, c*, (“the winner”) is defined as,

כܿ ൌ arg max௖ אሾ଴,஼ିଵሿሺܥ ௖ܸ,ଶ െ ܥ ௖ܸ,ଵሻ, (7)

where C is the number of classes (NBCs). This way the
erroneous cases (false positives), where there exist more than
one NBC with positive outcome, can be handled properly.

2) Evolution of the CNBC:
The evolution of the CNBC, or a subset of NBCs, is per-

formed for each NBC individually with a two-phase operation,
as is illustrated in the upper part of Fig. 4. In Phase 1, the BCs

of each NBC are first evolved by giving an input set of FVs
and the target CVs (the GTD). Recall, that each CV is
associated with a unique NBC, and that the fuser BCs are not
yet used at this phase. Once the evolution session is over, the
AS of each BC is saved, so as to be used for potential
(incremental) evolution sessions in the future (Section IV.B.3).
The best BC configuration in the AS is used to forward-
propagate the respective FVs of the training dataset, in order to
compose the BC outputs, which, again, are used as input FV
for the corresponding fuser BC. The fuser BCs are then
evolved in Phase 2 of the CNBC evolution process, where each
fuser BC learns the significance of its individual BCs (and their
feature sets). This can be viewed as a way of applying an
efficient feature selection scheme, so that the fuser, if properly
evolved and trained, can “weight” each BC accordingly. This
way the potential of each feature set (and its BC) will be
optimally fused according to their discrimination power over
each class. Similarly, each BC in the first layer shall in time
learn the significance of the individual feature components of
the corresponding feature set. That is, the CNBC, if properly
evolved, will learn the significance (or the discrimination
power) of each feature set, as well as their individual
components (the single features).

3) Incremental Evolution of the CNBC:
The proposed CNBC framework is designed for continuous

“incremental” evolution sessions, where each session may
further improve the classification performance of each BC
using the advantage of the “evolutionary updates”. The main
difference between the initial and the subsequent evolution
sessions is in the initialization phase of the evolution process:
the former uses random initialization, whereas the latter starts
from the previously saved AS parameters of each classifier in
each NBC. Note that the training dataset used for the

Figure 4. Illustration of the two-phase evolution session over BC architecture
spaces in each NBC, and the topology of the CNBC framework with C classes

and F feature sets.

incremental evolution session may differ from the ones used in
the previous sessions, and that each session may contain
several runs. The evolutionary update rule hence compares the
performance between the previously received, and the current
(after the update) network over the current training dataset.
Consequently, for the proposed MD-PSO evolutionary
technique, the swarm particles are randomly initialized (as in
the initial evolutionary step), with the exception that the first
particle has its personal best value, pbest, set to the optimal
solution found in the previous evolutionary session. That is,

෤଴ௗሺ0ሻݔ ൌൌ Ψௗ൛ሼݓ௠௡଴ ሽ, ሼݓ௠௡ଵ ሽ, ሼߠ௡ଵሽ, … , ሼݓ௠௡௢ିଵሽ, ሼߠ௡௢ିଵሽ, ሼߠ௡௢ሽൟ, ݀׊ א ሾ2, ௠௔௫ܮ ൅ 1ሿ,
(8)

where Ψௗ is the d-dimensional MLP-configuration retrieved
from the previous AS search.

It is expected that, especially at the early stages of the MD-
PSO run, the first particle is likely to be the gbest particle in
every dimension, guiding the swarm towards the previous
solution. However, if the training dataset is considerably
different in the incremental evolution sessions, it is quite
probable that MD-PSO will converge to a new solution, while
taking the past solution (experience) into account. In the case
of the BP training technique, the weights ݓ௠௡௟ and biases ߠ௡௟
will be initialized with the parameters retrieved from the last
AS search. Starting from this as the initial point, and using the
current training dataset with the target CVs, the BP algorithm
can then perform its gradient descent in the error space.

V. EXPERIMENTAL RESULTS
The audio database used in the classification experiments

consists of 367 clips, divided into 8 classes. The database is
gathered mostly from the “FreeSound Project” web page [17],
but also RWC Music Database [18] was used to collect the
music classes. The abbreviations of the used audio classes are
as follows: MS (male speech), FS (female speech), FV (female
vocals/singing), MV (male vocals/singing), B (bird chirping),
W (water sounds), CM (classical music) and GM (general
(pop) music). We left the majority of the database clips (75%)
for testing, while a training set containing only 25% of the
samples from each class was used to evolve the CNBC. For the
AS, we used simple ANN configurations with the following
range arrays: ܴ୫୧୬ ൌ ሼ ௜ܰ, 8, 2ሽ and ܴ୫ୟ୶ ൌ ሼ ௜ܰ, 16, 2ሽ, which
indicate that, besides a single-layer perceptron (SLP), all the
MLPs contain only one hidden layer, i.e. ܮ୫ୟ୶ ൌ 2, with no
more than 16 hidden neurons. The software implementations
were made using Visual C++ 6.0 with FFTW library for FFT
processing. Parallel processing was utilized in evolving the
CNBC classifiers, yielding an approximate CPU time of 1-1.5
h to obtain the classification results with the exhaustive BP
method. However, the needed CPU time is highly dependent on
the parameters used, i.e. the number of runs, QR, and epochs,
QE, so that the reported CPU time should be considered as
suggestive only (for example, with QR=1 and QE=100, the CPU
time decreases to only 10-15 minutes). The processor used was
Intel® CoreTM2 Quad Q9400, 2.66 GHz with 8 Gb of RAM.

For the both evolution methods, exhaustive BP and MD-
PSO, the number of runs and training epochs (or iterations in
the case of MD-PSO) were varied to see their effect on the

classification performance, as is shown in Table I. In order to
compare the results with a method representing the current
state of the art ([5], [6]), also SVM classifiers were tested by
applying the libSVM library. Results with four different kernels
(linear, polynomial, radial basis function (RBF), and sigmoid)
were evaluated, for which the best classification accuracy of
89.38% was obtained. Here a “one against one” approach (one
SVM for each pair of classes) was applied in evaluating the
results for the stated multi-class problem.

The performed CNBC evolutions of Table I are much alike
to the (batch) training of traditional classifiers (such as ANNs,
K-nearest neighbour, Bayesian), where the training data (the
features) and the number of classes are all fixed, and the entire
GTD is used during the training (evolution). However, as
detailed earlier, the CNBC can be also evolved incrementally,
i.e. the evolutions can be performed whenever new features /
classes are introduced. For evaluating the incremental evolution
performance, the training dataset was divided into three distinct
partitions, containing 4 (MS, FS, CM, and W), 2 (B and MV)
and 2 (FV and GM) classes, respectively. Three stages of
incremental evolutions were then performed, where at each
stage the CNBC was further evolved using only the dataset
belonging to the new classes in the corresponding partition. At
the end, the resulting CNBC with 4 ൅ 2 ൅ 2 ൌ 8 NBCs,
encapsulating 8 ൈ ሺ3 ൅ 1ሻ ൌ 32 BCs within, was created.
Verification test between each stage was performed (with the
95% accuracy threshold) to determine whether the existing
NBCs needed to be re-trained with the new training samples. A
final classification accuracy of 87.38% was achieved,
indicating only a moderate loss of performance when compared
to the classification accuracies listed in Table I. It is thus
evident that the proposed CNBC design can cope up with the
incremental evolutions also.

The confusion matrix (CM) given in Table II is composed
from the classification results of the exhaustive BP evolutions
with QR = 5, and QE = 200. The rows of the CM correspond to
the ground truth labels of the classes, whereas the columns
indicate the actual classifications results. The average precision
(P) and recall (R) calculated from the CM are:

P = 0.9151 R = 0.9005,

respectively. The overall classification error rate of ~8.8% with
8 classes indicates a substantial level of classification accuracy,
considering the quite limited training dataset used (25%), and
the somewhat overlapping audio classes with inter-class
similarities (e.g. male speech / male vocals). It can be noticed
that the music classes are classified perfectly, whereas some

TABLE I. CLASSIFICATION ACCURACIES OF THE BOTH EVOLUTIONARY
TECHNIQUES WITH DIFFERENT NUMBER OF EPOCHS AND RUNS.

Number of Epochs / Iterations

Evol. Method QE =100 QE =200 QE =300

QR =1
BP 90.11% 91.07% 91.07%

MD PSO 87.91% 88.64% 88.64%
QR =5

BP 90.48% 91.21% 91.21%

MD PSO 89.01% 91.21% 87.91%

TABLE II. CONFUSION MATRIX OF THE EXHAUSTIVE BP EVOLUTIONS
WITH QR = 5, AND QE = 200.

confusion occurs between the speech classes and, rather
surprisingly, between the water sound and general pop music
classes. Nevertheless, for the tested database, the results are
more accurate than those obtained using the “one against one”
SVM approach.

VI. CONCLUSIONS
In this paper, a novel CNBC framework was introduced to

address the problem of accurate and efficient content-based
audio classification within large and dynamic audio databases.
The achieved classification results show improvements in
accuracy when compared to the tested Support vector machine
(SVM) classifiers. Furthermore, two notable advantages can be
mentioned on behalf of the proposed approach: First, the
dynamic and evolving structure of the framework supports for
dynamic variations of audio classes in the considered database,
meaning that there is no need to re-train the entire classifier
network again whenever new data is added to the database.
Second, the optimum classifier for the classification problem at
hand can be searched by the underlying evolution technique,
which allows creating a dedicated classifier to discriminate a
certain class type from the others by using only some specific
feature set. This negates the necessity of configuring the
classifier parameters and configurations strictly for some
specific audio dataset, and thus, hopefully, broadens the usage
of the framework for varying type of audio databases.

Future research will be concentrating on supporting larger
number of audio classes and developing more descriptive audio
features. Due to the structure of the CNBC, it would be ideal to
have features with high discrimination power over one (or
some particular) class(es). We aim to develop a perceptual
audio key frame extraction scheme that would take into
account the human auditory system. Also, additional classifiers,
such as weak classifiers, RBFs and random forests, are planned
to be applied within the CNBC network, because of their strong
discriminating power reported for certain type of classification
tasks in the literature. Finally, content-based indexing and
retrieval of audio (and video) clips is a natural way to add more
value to the framework, and will be certainly put under study in

a near future. Based on the achieved classification accuracy,
reliable retrieval results can be expected in the future research.

REFERENCES
[1] E. Wold, T. Blum, D. Keislar, and J. Wheaton, “Content-based

classification, search, and retrieval of audio”, in IEEE Multimedia
Journal, Vol. 3, No. 3, 1996, pp. 27-36.

[2] C. Wu and C. Hsieh, “Multiple change-point audio segmentation and
classification using an MDL-based Gaussian model”, in IEEE
Transactions on Audio, Speech, and Language Processing, Vol. 14, No.
2, March 2006, pp. 647-657.

[3] W. Pan, Y. Yao and Z. Liu, “An unsupervised audio degmentation and
classification approach,” in Fourth International Conference on Fuzzy
Systems and Knowledge Discovery (FSKD), 2007.

[4] S. Kiranyaz, A. F. Qureshi, and M. Gabbouj, “A generic audio
classification and segmentation approach for multimedia indexing and
retrieval”, in IEEE Transactions on Audio, Speech, and Language
Processing, Vol. 14, No. 3, May 2006, pp. 1062-1081.

[5] L. Chen, S. Gündüz and M. T. Özsu, “Mixed type audio classification
with support vector machine,” in IEEE International Conference on
Multimedia and Expo (ICME), pp. 781–784, April 2006.

[6] Y. Zhu, Z. Ming and Q. Huang, “SVM-based audio classification for
content-based multimedia retrieval”, in Proc. of the 2007 International
Conference on Multimedia Content Analysis and Mining (MCAM),
Weihai, China, 2007, pp.474-482.

[7] W. Chu and B. Champagne, “A noise-robust FFT-based spectrum for
audio classification”, in Proc. of Acoustics, Speech and Signal
Processing (ICASSP), May 2006, pp. V-213-V-216.

[8] E. Ravelli, G. Richard, and L. Daudet, “Audio signal representations for
indexing in the transform domain”, in IEEE Transactions on Audio,
Speech, and Language Processing, Vol. 18, No. 3, March 2010, pp. 434-
446.

[9] E. Dogan, M. Sert, A. Yazici, “Content-based classification and
segmentation of mized-type audio by using MPEG-7 features”, in Proc.
of the First International Conference on Advances in Multimedia
(MMEDIA), July 2009, pp. 152-157.

[10] G. Peeters, “A generic system for audio indexing: Application to
speech/music segmentation and music genre recognition”, in Proc. of the
10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux,
France, September 2007.

[11] H. Harb and L. Chen, “A general classifier based on human perception
motivated model”, in Multimedia Tools and Applications Journal, Vol.
34, No. 3, 2007, pp. 375-395.

[12] S. Kiranyaz, M. Gabbouj, J. Pulkkinen, T. Ince and K. Meissner,
“Network of evolutionary binary classifiers for classification and
retrieval in macroinvertebrate databases”, in IEEE International
Conference on Image Processing, September 2010, pp. 2257 – 2260.

[13] H. Abbass, “Pareto neuro-evolution: Constructing ensemble of neural
networks using multi-objective optimization”, in the IEEE Congress on
Evolutionary Computation 2003, pp. 2074 – 2080 Vol. 3.

[14] S. Kiranyaz, T. Ince, A. Yildirim and M. Gabbouj, “Evolutionary
artificial neural networks by multi-dimensional particle swarm
optimization”, Neural Networks, vol. 22, pp. 1448 – 1462, Dec. 2009.

[15] J. Kennedy, R Eberhart., “Particle swarm optimization”, in Proc. of
IEEE Int. Conference On Neural Networks, vol. 4, pp. 1942–1948,
Perth, Australia, 1995.

[16] S. Kiranyaz, T. Ince, A. Yildirim and M. Gabbouj, “Fractional Particle
Swarm Optimization in Multi-Dimensional Search Space”, IEEE Trans.
on Systems, Man, and Cybernetics – Part B, pp. 298 – 319, vol. 40, No.
2, 2010.

[17] The Freesound Project web page, http://www.freesound.org/.
[18] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “RWC music

database: Popular, classical, and jazz music databases”, in Proc. of 3rd
International Conference on Music Information Retrieval, Oct. 2002

Actual
Result MS FS FV MV B W CM GM

G
round Truth

MS 27 4 0 0 0 0 0 3
FS 0 22 2 0 1 0 0 0
FV 0 0 39 0 0 0 1 0
MV 2 0 1 32 0 0 1 0
B 0 0 0 0 37 1 0 0
W 0 1 0 0 0 18 0 7

CM 0 0 0 0 0 0 40 0
GM 0 0 0 0 0 0 0 34

