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Abstract—In this paper, a novel collective network of binary 
classifiers (CNBC) framework is presented for content-based 
audio classification. The topic has been studied in several 
publications before, but in many cases the number of different 
classification categories is quite limited and needed to be fixed a 
priori. We focus our efforts to increase both the classification 
accuracy and the number of classes, as well as to create a scalable 
network design, which allows introducing new audio classes 
incrementally. The approach is based on dividing a major 
classification problem into several networks of binary classifiers 
(NBCs), where each NBC adapts its internal topology according 
to the classification problem at hand, by using evolutionary 
Artificial Neural Networks (ANNs). In the current work, feed-
forward ANNs, or the so-called Multilayer Perceptrons (MLPs), 
are evolved within an architecture space, where a stochastic 
optimization is applied to seek for the optimal classifier 
configuration and parameters. The performance evaluations of 
the proposed framework over an 8-class benchmark audio 
database demonstrate its scalability and notable potential, as 
classification error rates of less than 9% are achieved. 

Keywords - audio content - based classification; evolutionary 
neural networks; particle swarm optimization; multilayer 
perceptron 

I.  INTRODUCTION 
The rapid growth of the database sizes both in the Internet 

and home computers has created new and challenging tasks in 
maintaining the flexibility in handling such large amounts of 
data. Audio content-based retrieval offers several advantages 
and possibilities over traditional text-based queries, as manual 
annotation of audio information in large databases is not 
convenient or perhaps feasible at all. Moreover, in many 
practical situations it would be ideal to retrieve certain kind of 
audio content from a large database using a reference audio 
clip, for example when searching for a certain type of music or 
environmental sounds. For this, audio content-based 
classification is needed, which is studied in this work using a 
novel approach of collective (evolutionary) classifier networks. 

The idea of content-based audio indexing and retrieval was 
first presented by Wold et al. in [1], where pitch, loudness, 
brightness and bandwidth features were used in classifying the 
used audio database (Muscle Fish). Since then, the research has 
been rather active, and many classification schemes have been 
proposed to improve the accuracy of the classification 

performance. In this paper, the focus is put purely on the audio 
classification problem, meaning that audio segmentation and 
change-point detection approaches are out of the scope of this 
study. The pure audio classification approaches found from the 
literature can be divided into two main categories, namely the 
model-based and the rule-based methods. The latter ones are 
convenient when no complete training data is available, as the 
classification is performed in an unsupervised manner. This is 
accomplished by using thresholds for different audio features, 
as performed in [2]-[4]. There are, however, several problems 
with the unsupervised learning techniques, such as the need for 
high amount of heuristics, and the limited number of classes 
that need to be fixed a priori. Such drawbacks limit their 
practical use for dynamic, ever-growing multimedia 
repositories, which are common in many environments and 
applications today. 

In model-based methods, based on supervised learning, 
Chen et al. in [5] used a Support Vector Machine (SVM) to 
classify audio from two movies into 5 classes, namely music, 
speech, environmental sound, speech with music, and music 
with environmental sound. The results (~78% classification 
accuracy) showed improvements in classification error rates 
when compared to k-Nearest Neighbour (kNN), Artificial 
Neural Networks (ANNs), and Naive Bayes (NB) classifiers. 
Rather high training dataset (70% of the entire database) was 
used in achieving the results, whereas Zhu et al. in [6] used the 
same kind of SVM approach with a smaller training set and 
additional validation set, achieving more or less similar 
outcome with [5]. Chu and Champagne [7] used a slightly 
different approach for SVM-based classification by introducing 
their FFT-based noise-robust spectrum. Improved classification 
results were achieved in noisy test cases, but only speech, 
music, and noise were classified in their work. SVM was used 
also in [8], where it was applied to transform domain indexing 
by using a non-standard audio codec in a music genre- 
classification application. As a popular classifier, SVM was 
also used, along with the Hidden Markov Models (HMMs), in 
[9] to classify audio content into five non-silent classes. In [9], 
a unique HMM-model is trained for each non-silent class using 
MPEG-7 features. Training set encapsulated 50% of the entire 
dataset in achieving the reported accuracy rates, which are, 
however, highly dependent on the selection of the SVM 
parameters, which is a well-known fact in the field. Peeters in 
[10] used Gaussian Mixture Models (GMMs) together with the 
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HMMs to model individual classes in the context of music 
genre recognition (with six categories). Principal Component 
Analysis (PCA) and Linear Discriminant Analysis (LDA) were 
needed to lower the feature space dimensionality, whereas the 
classification itself was done based on the generated statistical 
models. The classification results obtained in music genre 
recognition are close to the state-of-the-art, but selection of the 
best classifier configuration remains an unsolved problem. 
Another supervised classification approach was presented by 
Harb and Chen in [11], where modeling based on human 
perception was applied. An average classification accuracy of 
63.5% was achieved for six music genres.  

In general, the aforementioned audio classification efforts, 
and many alike, put lots of effort in adjusting the classifier 
parameters, so as to “fit” to the specific classification problem 
at hand as close as possible. However, it is obvious that this is 
not too applicable for a general classifier that should achieve 
robust and efficient performance levels over generic audio 
databases. Therefore, for any audio repository, the setting of 
the classifier parameters, as well as the choice of the classifier 
configuration, should be optimal, so as to maximize the 
classification accuracy. Also, the number of different classes is 
usually quite limited and specific to a certain audio domain, 
whereas in order to have a reliable retrieval performance on a 
versatile database, more classes should be supported. 
Furthermore, support for dynamic updates in the databases is 
rare at the moment, as in most cases the training dataset and the 
number of classes need to be fixed beforehand. 

In order to address these problems, in this paper, we shall 
focus on a global and data-adaptive framework design that 
embodies a collective network of evolutionary binary 
classifiers (CNBC). The main idea of the framework was first 
introduced in a previous work [12], for another application 
area, being now specifically designed for audio classification 
purpose. Earlier, fundamentally similar type of approaches of 
constructing an ensemble of neural networks (a.k.a. neuro-
ensemble) have been introduced (see e.g. [13]), but, to our 
knowledge, the framework structure presented in this paper has 
not been used in audio classification scheme before. The issues 
specifically targeted in our approach are: 

• Evolutionary Search: Seeking for the optimum 
classifier network architecture among a certain 
collection of different configurations (the so-called 
Architecture Space, AS). 

• Evolutionary Update in the AS: Keeping only “the 
best” individual configuration in the AS among 
indefinite number of evolution runs. 

• Class / feature Scalability: Support for varying number 
of classes and audio features. A new class / feature can 
be dynamically inserted into the framework without 
requiring a full-scale re-configuration or re-training. 

• High efficiency for the evolution (training) process: 
Using as compact and simple classifiers as possible. 

• Maximizing the classification accuracy: Using several 
audio features to take advantage of the discrimination 
power of each one of them.   

In this work, Multilayer Perceptrons (MLPs) are evolved in the 
proposed CNBC framework. The recently proposed Multi-
Dimensional Particle Swarm Optimization (MD-PSO) [14] is 
used as the primary evolutionary search technique. 

The rest of the paper is organized as follows. Section II 
briefly presents the applied evolutionary ANNs and the MD-
PSO technique, whereas Section III describes the feature 
extraction process and introduces the audio features used. The 
proposed CNBC framework and the evolutionary update 
mechanisms are explained in detail in Section IV, and the 
classification results and performance evaluation over an 8-
class database are given in Section V. Finally, Section VI 
concludes the paper and discusses future research directions. 

II. EVOLUTIONARY NEURAL NETWORKS 
In this section, we will first briefly discuss the applied 

evolutionary technique, MD-PSO, which is used in an 
architecture space to search for the optimal classifier 
configuration. Second, the concept of evolutionary feed-
forward artificial neural networks is introduced. Finally, an 
overview of the well-known Back Propagation (BP) method 
will be given, which can be used also exhaustively to perform a 
sequential search for the optimal classifier in an AS. 

A. Multi-Dimensional Particle Swarm Optimization 
The Particle Swarm Optimization (PSO) was introduced by 

Kennedy and Eberhart [15] in 1995 as a population-based 
stochastic search and optimization process. In a PSO process, a 
swarm of particles, each of which represents a potential 
solution to the optimization problem at hand, navigates through 
a search space. The particles are randomly distributed over the 
search space, and the goal is to converge to the global optimum 
of a function or a system. Each particle keeps track of both its 
current position, and the best position achieved so far in the 
search space. The latter is called the personal best value 
(pbest), while the PSO process keeps also track of the global 
best solution achieved so far by the whole swarm (gbest). 
During their journey in the search space with discrete time 
iterations, the velocity of each particle in the next iteration is 
computed by the best position of the swarm (position of the 
particle gbest, the social component), the best personal position 
of the particle (pbest, the cognitive component), and the current 
velocity of the particle (the memory term). Both social and 
cognitive components contribute randomly to the position of 
the particle in the next iteration.  

In this research we will use the multi-dimensional (MD) 
extension of the basic PSO (bPSO) method, the MD-PSO. 
Instead of operating with a fixed number of dimensions, D, the 
MD-PSO algorithm is designed to seek both positional and 
dimensional optima within a certain dimension range {Dmin, 
Dmax}. For this, each particle has two sets of components, each 
of which has been subjected to two independent and 
consecutive processes. The first set is a regular positional PSO, 
taking care of the traditional velocity updates and positional 
shifts in the D-dimensional search (solution) space, whereas the 
second set is the dimensional PSO, allowing the particles to 
navigate through dimensions. Accordingly, now each particle 
keeps track of its latest position, velocity and personal best 
position in a particular dimension, so that when the particle re-



visits the same dimension later, it can perform its regular 
“positional” update. The dimensional PSO process of each 
particle may then move the particle to another dimension, 
where it will remember its positional status and shall be 
updated with the positional PSO process at that dimension. The 
swarm, on the other hand, keeps now track of the gbest particle 
in each dimension, and the dimensional PSO process of each 
particle uses its personal best dimension (in which the personal 
best fitness score has been achieved so far). Finally, the swarm 
keeps track of the global best dimension, dbest, among all the 
personal best dimensions. Thus, the gbest particle in the dbest 
dimension represents the optimum solution found.  

In a MD-PSO process at time (iteration) ݐ, each particle a in 
the swarm with S particles, ξ = {x1,..,xa,..,xS}, is represented by 
the following symbols: ݔ௔,௝ௗೌሺ௧ሻሺݐሻ : jth component of the position of particle a in 

dimension ݀௔ሺݐሻ. ݔ෤௔,௝ௗೌሺ௧ሻሺݐሻ: jth component of the personal best position of 
particle a in dimension ݀௔ሺݐሻ.  ݒ௔,௝ௗೌሺ௧ሻሺݐሻ:  jth component of the velocity of particle a in 
dimension ݀௔ሺݐሻ. ݀௔ሺݐሻ: dimension of particle a. ሚ݀௔ሺݐሻ: personal best dimension of particle a. ݀ݒ௔ሺݐሻ: dimensional velocity of particle a. ݃ݔ௝ௗሺݐሻ: jth component of the global best position of swarm  
in dimension ݀. 

Let f denote a fitness function that is to be optimized within a 
certain dimension range, {Dmin, Dmax}. Without loss of 
generality, assume that the objective is to find the minimum of f 
at the optimum dimension within a multi-dimensional search 
space. Assume also, that the particle a visits (back) the same 
dimension after T iterations (i.e. ݀௔ሺݐሻ ൌ  ݀௔ሺݐ ൅ ܶሻ). Then, 
the personal best position can be updated at iteration t+T as, 

ݐ෤௔,௝ௗೌሺ௧ା்ሻሺݔ  ൅ ܶሻ ൌൌ ቐݔ෤௔,௝ௗೌሺ௧ሻሺݐሻ   ݂݅ ݂ ൬ݔ௔,௝ௗೌሺ௧ା்ሻሺݐ ൅ ܶሻ൰ ൐ ݂ ൬ݔ෤௔,௝ௗೌሺ௧ሻሺݐሻ൰ݔ௔,௝ௗೌሺ௧ା்ሻሺݐ ൅ ܶሻ     ݈݁(1)                                    ,݁ݏ 

݆ ൌ  1, 2, … , ݀௔ሺݐ ൅ ܶሻ. 

Furthermore, the personal best dimension of particle a can be 
updated in iteration ݐ ൅ 1 as, 

 ሚ݀௔ሺݐ ൅ 1ሻ ൌൌ ൝ ሚ݀௔ሺݐሻ   ݂݅ ݂ ൬ݔ௔,௝ௗೌሺ௧ାଵሻሺݐ ൅ 1ሻ൰ ൐ ݂ ൬ݔ෤௔,௝ௗ෨ೌሺ௧ሻሺݐሻ൰݀௔ሺݐ ൅ 1ሻ                ݈݁(2)                                       .݁ݏ 

Fig. 1 shows an example MD-PSO and bPSO particles. 
Particle a in bPSO is at (fixed) dimension, D = 5, and contains 
only positional components, whereas in MD-PSO, particle a 
contains both the positional and dimensional components. The 
dimension range for MD-PSO is given by {Dmin, Dmax} = {2, 
10}, so that 9 sets of positional components are included in a.   

In this example the particle a currently resides at dimension 2 
(݀௔ሺݐሻ = 2), while its personal best dimension is 3 ( ሚ݀௔ሺݐሻ ൌ 3). 
Hence, at time t a positional PSO update is first performed over 
the positional components of ݔ௔ଶሺݐሻ,  after which the particle 
may move to another dimension with respect to the 
dimensional PSO. Recall that each positional component ݔ௔ଶሺݐሻ 
represents a potential solution in the data space to the problem. 
The algorithmic flowchart and further details about MD-PSO 
can be obtained from [16].  

B. MD – PSO for Evolving MLPs 
The MD-PSO seeks (near-) optimal networks in an AS, 

which can be defined over any type of ANNs with any 
properties. All network configurations in the AS are 
enumerated into a hash table with a proper hash function, 
which ranks the networks with respect to their complexity, i.e. 
associates higher hash indices to networks with higher 
complexity. The MD-PSO can then treat each index as a unique 
dimension in the search space. The dimension thus corresponds 
to the optimal classifier architecture, while the position 
(solution) encapsulates the optimum network parameters 
(connections, weights and biases). Suppose, for the sake of 
simplicity, that a certain range is defined for the minimum and 
maximum number of MLP layers, ሼܮ୫୧୬,  ୫ୟ୶ሽ, as well as forܮ
the number of neurons in the hidden layer l, {ܰ୫୧୬௟ , ܰ୫ୟ୶௟ }. The 
sizes of both input and output layers, ሼ ௜ܰ, ௢ܰሽ, are determined 
by the problem, and hence fixed. The AS can then be defined 
by only two range arrays: ܴ୫୧୬ ൌ ൛ ௜ܰ, ܰ୫୧୬ଵ , … , ܰ୫୧୬௅ౣ౗౮ିଵ, ௢ܰൟ, ܴ୫ୟ୶ ൌ ൛ ௜ܰ, ܰ୫ୟ୶ଵ , … , ܰ୫ୟ୶௅ౣ౗౮ିଵ, ௢ܰൟ,   

where the first one is for the minimum-, and the second one is 
for the maximum number of neurons allowed for each layer of 
a MLP. The size of the both arrays is naturally ܮ୫ୟ୶  + 1, where 
the corresponding entries define the range of the lth hidden 
layer for all those MLPs that can have the lth hidden layer. The 
terms ܮ୫୧୬ ≥ 1 and ܮ୫ୟ୶ can be set to any value meaningful for 
the problem at stake. The hash function then enumerates all 
potential MLP configurations into hash indices, starting from 
the simplest MLP with ܮ୫୧୬ – 1 hidden layers (each of which 
has the minimum number of neurons given by ܴ୫୧୬), to the 

Figure 1. MD-PSO (left) vs. bPSO (right) particle structures for dimensions 
{Dmin=2, Dmax=10}. At time t, ࢇࢊሺ࢚ሻ ൌ ૛, ሺ࢚ሻࢇ෩ࢊ ൌ ૜. 



most complex one with ܮ୫ୟ୶   – 1 hidden layers (each of which 
has the maximum number of neurons given by ܴ୫ୟ୶).  

Let Nl be the number of hidden neurons in layer l of a MLP 
with the input and output layer of sizes ௜ܰ and ௢ܰ, respectively. 
The input neurons are merely fan-out units, as no processing is 
done in them. Let ݃ be the activation function (e.g. sigmoid) 
applied over the weighted inputs and a bias. Thus we can write, 
௡௟ݕ  ሺ݌ሻ ൌ ݃൫ ௡ܻ௣,௟൯, ௡ܻ௣,௟ ൌ ෍ ሻ݌௠௟ିଵሺݕ௠௡௟ିଵݓ ൅ ௡௟௠ߠ ,  

(3) 

where ݕ௡௟ ሺ݌ሻ is the output of the nth neuron of the lth hidden / 
output layer when a pattern p is fed into it, ݓ௠௡௟ିଵ is the weight 
from the mth neuron in layer ݈ െ 1 to the nth neuron in layer ݈, 
and ߠ௡௟  is the bias value of the nth neuron in the lth layer. The 
training mean square error, ܧܵܯ, is formulated as: 

ܧܵܯ  ൌ 12ܲ ௢ܰ ෍ ෍൫ݐ௡ሺ݌ሻ െ ሻ൯ଶே೚݌௡௢ሺݕ
௡ୀଵ௣א஺ ,  

(4) 

where ݐ௡ሺ݌ሻ  is the target (desired) output, and ݕ௡௢ሺ݌ሻ  is the 
actual output from the nth neuron in the output layer, l=o, for 
pattern p in the training dataset A with size P, respectively. At 
time t, the particle a has the positional component formed as, 

ሻݐ௔,௝ௗೌሺ௧ሻሺݔ  ൌൌ Ψୢ౗ሺ୲ሻ൛ሼݓ௠௡଴ ሽ, ሼݓ௠௡ଵ ሽ, ሼߠ୬ଵሽ, … , ሼݓ௠௡௢ିଵሽ, ሼߠ୬௢ିଵሽ, ሼߠ୬௢ሽൟ, (5) 

where ሼݓ௠௡௟ ሽ and ሼߠ୬௟ ሽ represent the sets of weights and biases 
of the layer l of the MLP-configuration Ψୢ౗ሺ୲ሻ. Note that the 
input layer (l=0) contains only weights, whereas the output 
layer (l=o) contains only biases. By the means of such a direct 
encoding scheme, the particle a thus represents all potential 
network parameters of the MLP architecture at the dimension 
(hash index) ݀௔ሺݐሻ. As mentioned earlier, the dimension range 
{Dmin, Dmax} where the MD-PSO particles can make inter-
dimensional jumps, is determined by the AS defined. Apart 
from the regular limits, such as (positional) velocity range, 
{Vmin, Vmax}, and dimensional velocity range, {VDmin, VDmax}, 
the data space can be also limited by some practical range, i.e. ܺ୫୧୬ ൏ ሻݐ௔,௝ௗೌሺ௧ሻሺݔ ൏ ܺ୫ୟ୶. Setting the ܧܵܯ in (4) as the fitness 
function, to be used in the MD-PSO, enables then performing 
evolutions of both the network parameters and the network 
architectures. Further details and an extensive set of network 
evolution experiments can be found in [14].  

C. The Back-Propagation Algorithm 
Back Propagation (BP) is the most commonly used training 

technique for feed-forward ANNs. It is a supervised training 
technique that has been used in pattern recognition and 
classification problems in many application areas. Essentially, 
BP is just a gradient descent algorithm in the error space, 
which may be complex and contain many deceiving local 
minima (multi-modal). Therefore, BP gets easily trapped into a 
local minimum, making it entirely dependent on the initial 
(weight) settings. However, due to its simplicity and relatively 
lower computational cost, BP can be applied exhaustively over 
the network architectures with random initializations, to find 

out the optimal architecture. Since the AS is composed of only 
compact networks, with such an exhaustive search the 
probability of finding (converging) to a (near-) optimum 
solution in the error space is significantly increased. 

 The used BP algorithm can be summarized as follows: 

1. Initialize the weights ݓ௠௡௟  and biases ߠ௡௟  randomly. 

2. Feed a pattern p to the network and compute the output ݕ௡௟ ሺ݌ሻ of each neuron n in each hidden layer l. 

3. Calculate the error between the final output ݕ௡௢ሺ݌ሻ of 
each output neuron and the desired output ݐ௡ሺ݌ሻ  as ݁௡௢ሺ݌ሻ ൌ ሻ݌௡ሺݐ െ   .ሻ݌௡௢ሺݕ

4. For each neuron n, calculate the partial derivatives డாሺ௣ሻడ௛೙೗ , where ܧሺ݌ሻis the total error energy defined as ܧሺ݌ሻ ൌ ଵଶ ∑ ൫݁௡௢ሺ݌ሻ൯ଶ௡א௢ ,  and ݄௡௟ is a uniform symbol 
for the parameters ݓ௠௡௟  and ߠ௡௟ . 

5. Update the parameters as follows: ݄௡௟ ሺݐ ൅ 1ሻ ൌ ݄௡௟ ሺݐሻ െ ߟ ሻ߲݄௡௟݌ሺܧ߲ , (6) 

where ߟ is a learning rate parameter. 

6. Repeat steps 2-5 until some stopping criterion is 
reached. 

One complete run over the training dataset is called an 
epoch. Usually many epochs are required to obtain the best 
training results, but, on the other hand, too many training 
epochs can lead to over-fitting. In the above realization of the 
BP algorithm, the network parameters are updated after every 
training sample (pattern p). This is called an online or 
sequential training mode. Another possibility is the batch 
mode, where all the training samples are first presented to the 
network, and then the parameters are adjusted so to minimize 
the total training error. The sequential mode is often favored 
over the batch mode, as less storage space is required. 
Moreover, the sequential mode is less likely to get trapped into 
a local minimum, as updates at every training sample make the 
search stochastic in nature. Hence, sequential BP mode is used 
for MLP training in this study.  

III. AUDIO FEATURE EXTRACTION 
As a common approach in audio signal processing, the 

audio signal to be analyzed is first divided into short time 
windows / frames (20-40 ms), from which the audio features 
are extracted. This is to prevent averaging the signal over long 
segments, in which case the discrimination of audio features 
may decrease significantly. In this study, three sets of features 
are extracted from each audio clip to be classified, divided as: 

• General Audio Features: These consist of sub-band 
power (4 bands), band energy ratio (BER), sub-band 
centroid (SC), zero-crossing rate (ZCR), short average 
energy (SAE), brightness, bandwidth, spectral roll-off, 
spectral flux, and fundamental frequency (FF). 

• MFCCs: The first 24 coefficients of the extracted Mel-
frequency cepstral coefficients.  



• Linear Prediction Coefficients (LPC): The 8th order LP 
coefficients (the order is based on the 16 kHz sampling 
frequency used in the classified audio samples). 

The feature vector (FV) dimensions for each feature set are 
thus 13, 24, and 8, respectively.  

Extracting the features from short time frames leads into a 
rather big number of FVs even from a short audio clip. 
Therefore, in our work, a certain amount of key frames (KFs, 
see [4]), are first selected among the frames, being sort of 
“prototypes”, which are chosen so to represent the others as 
accurately as possible. The ultimate goal is to find concise and 
representative feature sets from each audio clip, to speed up the 
classification process without losing any vital information of 
the original signals. The reasoning behind the idea of exploiting 
only a small fraction of the audio frames is based on an 
assumption, that the elementary sounds within an audio clip are 
immensely repetitive, and often entirely alike. For an efficient 
KF selection, audio frames with similar acoustical features 
within an audio clip are clustered, and only one or few frames 
from each cluster are considered as KFs to represent the others 
in that cluster. Here the number of KFs is empirically set 
between ~1-2% of the total amount of frames, being relatively 
lower for longer clips. Thus, the actual number of key frames 
selected from each clip varies approximately between 40 and 
200 frames, depending on the length and variation of the signal. 
Once the number of KFs is determined, a Minimum Spanning 
Tree (MST) clustering technique is applied. Every node in the 
tree represents the extracted features of a unique audio frame. 
The clustering scheme is illustrated in Fig. 2, where the word 
“Speech Lab” is divided into seven separate clusters, according 
to the similarity of the extracted frames. More technical details 
about the audio clustering scheme can be found in [4].  

For each of the three extracted features sets, the proposed 
classification framework evolves a separate binary classifier 
(BC) per each pre-determined class, so that a unique network of 
BCs (NBC) is created for each class. Note that, as such, the 
proposed framework performs classification over the KFs, and 
not the actual audio clips. Hence, a majority rule is applied to 
the classified KFs to decide the final class of the corresponding 
clip. For this, a specific table is created, where the KF indices 
corresponding to each audio clip in the database are stored.  

IV. THE CLASSIFICATION FRAMEWORK 
This section describes in detail the proposed classification 

framework: the Collective Network of (Evolutionary) Binary 
Classifiers (CNBC). The framework takes as an input the 
extracted feature vectors from the training dataset KFs, after 
which the internal network topology is configured, and all the 
corresponding binary classifiers are evolved individually. 
Before going into full details of the CNBC, the used AS 
evolutionary update mechanism will be introduced. 

A. Evolutionary Update in the Architecture Space 
Since the primary evolution technique used, MD-PSO, is a 

stochastic optimization method, it is not guaranteed that it will 
always find the optimal solution. Thus, in order to improve the 
probability of convergence to the global optimum, several 
evolutionary runs can be performed. Let QR be the number of 
runs and QC be the number of configurations in the AS. For 
each run, the objective is to find the optimal classifier within 
the AS, with respect to some pre-defined criterion. Note that, 
along with the best classifier, all the other configurations in the 
AS are also evolved simultaneously, so that the configurations 
are continuously (re-)trained within each run. Thus, during the 
process, any network configuration may replace the current 
best one in the AS, if it is surpassed in terms of the 
classification performance criterion. This is also true in the 
exhaustive search, where each network configuration in the AS 
is evolved using QR Back-Propagation (BP) runs.  

Fig. 3 demonstrates the evolutionary update operation over 
a sample AS containing 5 MLP configurations. The bigger 
table in Fig. 3 shows the training Mean Square Error (MSE), 
which is the criterion used to select the optimal configuration at 
each run. The best runs for each configuration are highlighted, 
and the best configuration in each run is tagged with ‘*’. In this 
case, at the end of three runs, the overall best network with 
MSE = 0.1 has a configuration 15x3x2, and thus it is used as 
the classifier for all the forthcoming classification tasks, until a 
new configuration may surpass it in a future run. As can be 
seen from this example, each BC configuration in the AS can 
only evolve into a better state from the previous one (in terms 
of the training MSE), which is the main motivation for the 
proposed evolutionary update mechanism. 

 

Figure 3. Evolutionary update in a sample AS for MLP configuration arrays ࢔࢏࢓ࡾ ൌ ሼ૚૞, ૙, ૛ሽ and ࢞ࢇ࢓ࡾ ൌ ሼ૚૞, ૝, ૛ሽ, where QR = 3 and QC = 5. The best 
runs for each configurations are highlighted, and the best configuration in 

each run is tagged with ‘*’. 
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Figure 2. An illustrative MST clustering scheme. 



B. Collective Network of Binary Classifiers 
1) The Topology: 

In the CNBC framework, the individual networks of BCs 
(NBCs) evolve continuously with the ongoing evolution 
sessions by using the ground truth training data (GTD) given 
by the user. Each BC in a particular NBC performs binary 
classification using one of the three extracted FVs. Each NBC 
has also a “fuser” BC in its output layer, which collects and 
fuses the binary outputs of all the BCs in the input layer. A 
single binary output is then generated from each NBC, 
indicating the relevancy of the current input KF to the NBC’s 
corresponding class. Due to its structure, the CNBC can be 
dynamically scaled into any number of classes, as whenever a 
new class is defined, a new corresponding NBC will be created 
and evolved on top of the existing structure. The procedure 
does not require changing or updating the other NBCs, as long 
as they pass the so-called verification test, which is performed 
by selecting a specific accuracy threshold, and by seeing 
whether the existing NBCs classify the training samples of the 
new class(es) accurately enough (and not confuse with them). 
In this work, an accuracy threshold of 95% was applied.  

As is shown in Fig. 4, in CNBC, a learning problem with 
many classes and features can be divided into as many NBCs 
(and BCs within) as necessary, so as to negate the need for 
complex classifiers. This is a notable advantage, since the 
performance of the training and evolution processes degrades 
significantly as the classifier complexity increases (due to the 
well-known curse of dimensionality – phenomenon). Another 
major benefit of the approach, with respect to efficiency, is that 
the configurations in the AS can be kept very compact, so that 
unfeasibly large storages and heavy computations can be 
avoided. This is especially important for the BP method, since 
the amount of deceiving local minima is significantly lower in 
the error space for simple and compact ANNs. 

In order to maximize the final classification accuracy, a 
dedicated class selection technique is applied. In all the BCs, a 
1-of-M encoding scheme, with M=2, is used. Let us denote ܥ ௙ܸ,ଵ and ܥ ௙ܸ,ଶ as the first and second output of the ݂୲୦ BC’s 
class vector (CV), respectively. The class selection in the 1-of-2 
encoding scheme is then performed by comparing the two 
individual outputs, and the encoded output is determined as 
positive if ܥ ௙ܸ,ଶ ൐ ܥ ௙ܸ,ଵ,  and negative otherwise. The same 
encoding scheme applies for the fuser BC output, which 
determines the output of the whole NBC. A class selection 
block, illustrated at the bottom of Fig. 4, then collects the CVs 
of each NBC, and selects the “most positive” output among all 
the NBCs as the final classification outcome. Here a so-called 
winner-takes-all strategy is utilized, where the positive class 
index, c*, (“the winner”) is defined as,  

כܿ  ൌ arg max௖ אሾ଴,஼ିଵሿሺܥ ௖ܸ,ଶ െ ܥ ௖ܸ,ଵሻ,   (7)

where C is the number of classes (NBCs). This way the 
erroneous cases (false positives), where there exist more than 
one NBC with positive outcome, can be handled properly.  

2) Evolution of the CNBC: 
The evolution of the CNBC, or a subset of NBCs, is per-

formed for each NBC individually with a two-phase operation, 
as is illustrated in the upper part of Fig. 4. In Phase 1, the BCs 

of each NBC are first evolved by giving an input set of FVs 
and the target CVs (the GTD). Recall, that each CV is 
associated with a unique NBC, and that the fuser BCs are not 
yet used at this phase. Once the evolution session is over, the 
AS of each BC is saved, so as to be used for potential 
(incremental) evolution sessions in the future (Section IV.B.3). 
The best BC configuration in the AS is used to forward-
propagate the respective FVs of the training dataset, in order to 
compose the BC outputs, which, again, are used as input FV 
for the corresponding fuser BC. The fuser BCs are then 
evolved in Phase 2 of the CNBC evolution process, where each 
fuser BC learns the significance of its individual BCs (and their 
feature sets). This can be viewed as a way of applying an 
efficient feature selection scheme, so that the fuser, if properly 
evolved and trained, can “weight” each BC accordingly. This 
way the potential of each feature set (and its BC) will be 
optimally fused according to their discrimination power over 
each class. Similarly, each BC in the first layer shall in time 
learn the significance of the individual feature components of 
the corresponding feature set. That is, the CNBC, if properly 
evolved, will learn the significance (or the discrimination 
power) of each feature set, as well as their individual 
components (the single features). 

3) Incremental Evolution of the CNBC: 
The proposed CNBC framework is designed for continuous 

“incremental” evolution sessions, where each session may 
further improve the classification performance of each BC 
using the advantage of the “evolutionary updates”. The main 
difference between the initial and the subsequent evolution 
sessions is in the initialization phase of the evolution process: 
the former uses random initialization, whereas the latter starts 
from the previously saved AS parameters of each classifier in 
each NBC. Note that the training dataset used for the 

Figure 4. Illustration of the two-phase evolution session over BC architecture 
spaces in each NBC, and the topology of the CNBC framework with C classes 

and F feature sets. 



incremental evolution session may differ from the ones used in 
the previous sessions, and that each session may contain 
several runs. The evolutionary update rule hence compares the 
performance between the previously received, and the current 
(after the update) network over the current training dataset. 
Consequently, for the proposed MD-PSO evolutionary 
technique, the swarm particles are randomly initialized (as in 
the initial evolutionary step), with the exception that the first 
particle has its personal best value, pbest, set to the optimal 
solution found in the previous evolutionary session. That is,  

෤଴ௗሺ0ሻݔ  ൌൌ Ψௗ൛ሼݓ௠௡଴ ሽ, ሼݓ௠௡ଵ ሽ, ሼߠ௡ଵሽ, … , ሼݓ௠௡௢ିଵሽ, ሼߠ௡௢ିଵሽ, ሼߠ௡௢ሽൟ, ݀׊ א ሾ2, ௠௔௫ܮ ൅ 1ሿ,                                                 
(8) 

where Ψௗ is the d-dimensional MLP-configuration retrieved 
from the previous AS search. 

It is expected that, especially at the early stages of the MD-
PSO run, the first particle is likely to be the gbest particle in 
every dimension, guiding the swarm towards the previous 
solution. However, if the training dataset is considerably 
different in the incremental evolution sessions, it is quite 
probable that MD-PSO will converge to a new solution, while 
taking the past solution (experience) into account. In the case 
of the BP training technique, the weights ݓ௠௡௟  and biases ߠ௡௟  
will be initialized with the parameters retrieved from the last 
AS search. Starting from this as the initial point, and using the 
current training dataset with the target CVs, the BP algorithm 
can then perform its gradient descent in the error space. 

V. EXPERIMENTAL RESULTS 
The audio database used in the classification experiments 

consists of 367 clips, divided into 8 classes. The database is 
gathered mostly from the “FreeSound Project” web page [17], 
but also RWC Music Database [18] was used to collect the 
music classes. The abbreviations of the used audio classes are 
as follows: MS (male speech), FS (female speech), FV (female 
vocals/singing), MV (male vocals/singing), B (bird chirping), 
W (water sounds), CM (classical music) and GM (general 
(pop) music). We left the majority of the database clips (75%) 
for testing, while a training set containing only 25% of the 
samples from each class was used to evolve the CNBC. For the 
AS, we used simple ANN configurations with the following 
range arrays: ܴ୫୧୬ ൌ ሼ ௜ܰ, 8, 2ሽ  and ܴ୫ୟ୶ ൌ ሼ ௜ܰ, 16, 2ሽ,  which 
indicate that, besides a single-layer perceptron (SLP), all the 
MLPs contain only one hidden layer, i.e. ܮ୫ୟ୶ ൌ 2, with no 
more than 16 hidden neurons. The software implementations 
were made using Visual C++ 6.0 with FFTW library for FFT 
processing. Parallel processing was utilized in evolving the 
CNBC classifiers, yielding an approximate CPU time of 1-1.5 
h to obtain the classification results with the exhaustive BP 
method. However, the needed CPU time is highly dependent on 
the parameters used, i.e. the number of runs, QR, and epochs, 
QE, so that the reported CPU time should be considered as 
suggestive only (for example, with QR=1 and QE=100, the CPU 
time decreases to only 10-15 minutes). The processor used was 
Intel® CoreTM2 Quad Q9400, 2.66 GHz with 8 Gb of RAM.  

For the both evolution methods, exhaustive BP and MD-
PSO, the number of runs and training epochs (or iterations in 
the case of MD-PSO) were varied to see their effect on the 

classification performance, as is shown in Table I. In order to 
compare the results with a method representing the current 
state of the art ([5], [6]), also SVM classifiers were tested by 
applying the libSVM library. Results with four different kernels 
(linear, polynomial, radial basis function (RBF), and sigmoid) 
were evaluated, for which the best classification accuracy of 
89.38% was obtained. Here a “one against one” approach (one 
SVM for each pair of classes) was applied in evaluating the 
results for the stated multi-class problem.  

The performed CNBC evolutions of Table I are much alike 
to the (batch) training of traditional classifiers (such as ANNs, 
K-nearest neighbour, Bayesian), where the training data (the 
features) and the number of classes are all fixed, and the entire 
GTD is used during the training (evolution). However, as 
detailed earlier, the CNBC can be also evolved incrementally, 
i.e. the evolutions can be performed whenever new features / 
classes are introduced. For evaluating the incremental evolution 
performance, the training dataset was divided into three distinct 
partitions, containing 4 (MS, FS, CM, and W), 2 (B and MV) 
and 2 (FV and GM) classes, respectively. Three stages of 
incremental evolutions were then performed, where at each 
stage the CNBC was further evolved using only the dataset 
belonging to the new classes in the corresponding partition. At 
the end, the resulting CNBC with 4 ൅ 2 ൅ 2 ൌ 8  NBCs, 
encapsulating 8 ൈ ሺ3 ൅ 1ሻ ൌ 32  BCs within, was created.  
Verification test between each stage was performed (with the 
95% accuracy threshold) to determine whether the existing 
NBCs needed to be re-trained with the new training samples. A 
final classification accuracy of 87.38% was achieved, 
indicating only a moderate loss of performance when compared 
to the classification accuracies listed in Table I. It is thus 
evident that the proposed CNBC design can cope up with the 
incremental evolutions also. 

The confusion matrix (CM) given in Table II is composed 
from the classification results of the exhaustive BP evolutions 
with QR = 5, and QE = 200. The rows of the CM correspond to 
the ground truth labels of the classes, whereas the columns 
indicate the actual classifications results. The average precision 
(P) and recall (R) calculated from the CM are:  

P = 0.9151  R = 0.9005,  

respectively. The overall classification error rate of ~8.8% with 
8 classes indicates a substantial level of classification accuracy, 
considering the quite limited training dataset used (25%), and 
the somewhat overlapping audio classes with inter-class 
similarities (e.g. male speech / male vocals). It can be noticed 
that the music classes are classified perfectly, whereas some 

TABLE I.  CLASSIFICATION ACCURACIES OF THE BOTH EVOLUTIONARY 
TECHNIQUES WITH DIFFERENT NUMBER OF EPOCHS AND RUNS. 

Number of Epochs / Iterations

Evol.  Method QE =100 QE =200 QE =300 

QR =1 
BP 90.11% 91.07% 91.07%

MD PSO 87.91% 88.64% 88.64%
QR =5 

BP 90.48% 91.21% 91.21%

MD PSO 89.01% 91.21% 87.91%



TABLE II.  CONFUSION MATRIX OF THE EXHAUSTIVE BP EVOLUTIONS 
WITH QR = 5, AND QE = 200. 

confusion occurs between the speech classes and, rather 
surprisingly, between the water sound and general pop music 
classes. Nevertheless, for the tested database, the results are 
more accurate than those obtained using the “one against one” 
SVM approach. 

VI. CONCLUSIONS 
In this paper, a novel CNBC framework was introduced to 

address the problem of accurate and efficient content-based 
audio classification within large and dynamic audio databases. 
The achieved classification results show improvements in 
accuracy when compared to the tested Support vector machine 
(SVM) classifiers. Furthermore, two notable advantages can be 
mentioned on behalf of the proposed approach: First, the 
dynamic and evolving structure of the framework supports for 
dynamic variations of audio classes in the considered database, 
meaning that there is no need to re-train the entire classifier 
network again whenever new data is added to the database. 
Second, the optimum classifier for the classification problem at 
hand can be searched by the underlying evolution technique, 
which allows creating a dedicated classifier to discriminate a 
certain class type from the others by using only some specific 
feature set. This negates the necessity of configuring the 
classifier parameters and configurations strictly for some 
specific audio dataset, and thus, hopefully, broadens the usage 
of the framework for varying type of audio databases.  

Future research will be concentrating on supporting larger 
number of audio classes and developing more descriptive audio 
features. Due to the structure of the CNBC, it would be ideal to 
have features with high discrimination power over one (or 
some particular) class(es). We aim to develop a perceptual 
audio key frame extraction scheme that would take into 
account the human auditory system. Also, additional classifiers, 
such as weak classifiers, RBFs and random forests, are planned 
to be applied within the CNBC network, because of their strong 
discriminating power reported for certain type of classification 
tasks in the literature. Finally, content-based indexing and 
retrieval of audio (and video) clips is a natural way to add more 
value to the framework, and will be certainly put under study in 

a near future. Based on the achieved classification accuracy, 
reliable retrieval results can be expected in the future research. 
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Actual 
Result MS FS FV MV B W CM GM 

G
round Truth 

MS 27 4 0 0 0 0 0 3
FS 0 22 2 0 1 0 0 0
FV 0 0 39 0 0 0 1 0
MV 2 0 1 32 0 0 1 0
B 0 0 0 0 37 1 0 0
W 0 1 0 0 0 18 0 7

CM 0 0 0 0 0 0 40 0
GM 0 0 0 0 0 0 0 34




