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Abstract. The experimental ITER fusion reactor 
will feature a number of remote handling (RH) 
systems that perform maintenance and replace-
ment operations in the reactor. RH control sys-
tems must be fail-safe and recoverable, since no 
humans are allowed in the reactor and a failure 
could cause major economic losses or setbacks 
for the research program. ITER is a complex 
system and requirements for RH system opera-
tions are demanding, including radiation toler-
ance, limits for available space, heavy objects 
etc. The RH control software must be dependa-
ble and operate in real-time, while supporting the 
changes introduced during the multidecadal 
lifetime of the ITER plant. Although the funda-
mentals of implementing teleoperation systems 
are well-known, the application remains de-
manding because of the environment, dependa-
bility and interoperability requirements. Fault-
tolerance techniques based on replication of 
components can be costly and introduce addi-
tional complexity in the system. To achieve the 
goal cost-efficiently, the research aims to find 
and utilize the most useful methods from fault 
prevention, fault removal, fault tolerance and 
fault forecasting methodologies, all of which are 
necessary to ensure required dependability. 
These will be combined in a lean systems engi-
neering framework that will include a reference 
architecture, hardware and software modules, 
processes and recommendations for develop-
ment practices. 

INTRODUCTION 
ITER is an international experimental nuclear 

fusion reactor, being built in the South of France. 
Remote handling (RH) has an important role in 
the ITER plant, because reactor operation pro-
duces high energy neutrons which are absorbed 
by the components inside the reactor vessel, 
leaving them activated. Since humans will not 
have an access to the reactor, all tasks are per-
formed indirectly through remotely operated 
robots, thus making RH critical for the operation 
of the ITER. 

The focus of this research is in the develop-
ment of dependable and fail-safe software archi-
tecture for the ITER RH control system, used to 
control a teleoperated bilateral master-slave 
manipulator (Fig. 1). Teleoperated robots can be 
used in nuclear applications e.g. for inspections 
and decommission [1]. Although not covered by 
this research, a mobile robotic manipulator could 

be used in nuclear catastrophes for repairs, re-
connaissance etc. A manipulator can be used to 
grasp and move objects, or carry tools to per-
form a variety of tasks like bolting or welding. 
However, the remote handling systems used to 
perform these tasks are complex and expensive 
to design and implement. The development 
could benefit from the ability to use ready-made 
components, open standards and other new 
hardware and software technologies [2]. Moreo-
ver, to be able to function with all other systems 
and machines present in nuclear facilities, the 
remote handling system needs to be designed to 
be interoperable. 
 

 
Fig. 1 – Teleoperated bilateral master-slave 

manipulator system. 

Since the robots operate in a hazardous envi-
ronment, the system must be designed to be 
fault tolerant and fail-safe, i.e. it can be guided to 
a safe state. A shared feature with ITER RH and 
Mars pathfinders, satellites etc. is that operations 
are performed independently in an isolated envi-
ronment. However, unlike in space and foreign 
planets, robots in the ITER core can be recov-
ered for maintenance, if properly designed, so 
there is no need for large-scale replication of 
components. Avoiding solutions resorting to 
extensive redundancy gives benefits of smaller 
size, less complexity and better affordability. 
Less complexity makes the system easier to 
specify, design, develop and verify. Neverthe-
less, even though the energy density in the ITER 
reactor cannot cause a catastrophic failure, the 
economic losses in the case of an operation 
failure could be significant – thus the RH system 
is considered safety-critical and needs to take 
the dependability requirements into considera-
tion in the RH system design. For example, the 
system should not immediately drop all function-
ality in the presence of faults, as low availability 
of control systems leads to increased downtime, 



and consequently increased operational costs. 
Instead, the system should try to isolate the fault 
and degrade gracefully, so that the fail-safe state 
is a last resort when nothing else can be done to 
prevent failure – basic implementation for this 
functionality is a so-called limp-home mode. In 
this paper we will present solutions to some of 
these problems in a systems engineering 
framework, including architecture, supervisory 
system and use of off-the-shelf (OTS) compo-
nents. 

BACKGROUND 
This chapter presents the concept of de-

pendability in more detail, describes the target 
application (and its requirements) and the re-
search problem. 

DEPENDABILITY 
Dependability is defined as the “ability of the 

system to deliver service that can justifiably be 
trusted”. Different techniques to attain dependa-
bility are categorized as fault prevention, fault 
removal, fault forecasting, and fault tolerance. 
[3]. To achieve dependability, we need a combi-
nation of techniques from these four areas, alt-
hough this paper focuses mostly in the fault tol-
erance techniques, as they are most closely 
related to the system architecture. The most 
efficient combination of methods depends from 
the situation and system constraints in terms of 
cost, complexity and effectiveness [4]. In order to 
achieve dependability cost-efficiently, the re-
quired level of dependability must be correctly 
captured in the requirements so that the system 
may be implemented to this correct level.  

Related to dependability is the concept of se-
curity; both share common attributes like availa-
bility and integrity of the correct service [3]. Alt-
hough security is not a key requirement in this 
research, it definitely should not be neglected as 
e.g. STUXNET worm and recent outage of the 
PlayStation Network have effectively demon-
strated. A minimum security recommendation for 
supervisory systems would be to separate them 
from the Internet and restricting user access. 

Fault-tolerance techniques in computer sys-
tems are a well-known research topic as it has 
been researched for several decades – e.g. 
Randell presents some fundamental concepts 
still in use today in his 1975 article about soft-
ware fault tolerance [5]. Fault-tolerance methods 
have been developed and applied in demanding 
safety-critical applications like space, aviation, 
nuclear, railways, etc. Techniques used in these 
applications usually rely on replication of com-
ponents, but it is important to notice the differ-
ence between replication and redundancy. Alt-
hough all fault tolerance is based on use of addi-
tional resources, i.e. redundancy, this does not 

necessarily mean replication of software and/or 
hardware components.  

Like most aviation and nuclear systems, IT-
ER RH is also a safety-critical application, be-
cause of a risk of economic losses in the case of 
a failure in the control systems. However, ITER 
RH systems do not necessarily need fault toler-
ance based on extensive replication because 
there is no risk of a catastrophic failure or loss of 
human life. Instead, the fault tolerance could be 
implemented with single-version fault tolerance 
techniques [6]. Single version fault tolerance 
techniques are cost-efficient way to achieve 
safety with possible compromises to reliability 
when compared to replication-based techniques. 
Examples of single version fault tolerance in-
clude system structuring, atomic actions, error 
detection and exception handling, among others 
[7].  

Some common replication-based reference 
architectures used for safety-critical applications 
include e.g. triple modular redundancy, recovery 
blocks, retry blocks and N-version-programming. 
With software systems, diversity of design is 
needed in addition to simple replication of soft-
ware units, since every copy would have the 
same faults. Even though the development costs 
of diverse N-variant software are less than N 
times non-fault-tolerant software [8], it still pre-
sents a major cost increase for the development 
when compared to basic software or single ver-
sion fault tolerance techniques. The problem 
related to redundancy is that programmers tend 
to make same kinds of mistakes so the different 
versions may have same types of mistakes, 
regardless of independent development. Faults 
in the redundant components do not need to be 
identical, it is sufficient that they are coexistent 
[9].  

A solution that uses existing devices to im-
plement a diversified fault-tolerant approach for 
fault-tolerant automobile steer-by-wire system is 
presented in [10]. The solution uses existing 
electronic stability control and driving-torque 
distribution devices as backups, to be used to 
maintain steering in degraded modes under 
component failures. The steer-by-wire system 
avoids structural complication and increased 
costs by not using diversified mechanical de-
signs. This is an example of using graceful deg-
radation to keep offering limited operations, or a 
form of limp-home-mode, in the presence of 
faults.  

Another approach is presented in [11]  using 
a simple well-tested and highly reliable alterna-
tive subsystem to make sure that the higher-
performing but more complex primary control 
subsystem stays inside safe limits. If the high-
performance subsystem breaches these limits, 
the alternative backup takes control until the 



conditions become normal again. This enables 
the system to keep providing some level of ser-
vice even in the presence of faults.  

A similar idea is used in the monitor-actuator 
architecture, where an independent monitoring 
channel maintains a watch on the actuation 
channel looking for an indication that the control 
of the system should be passed to a separate 
safety channel that will bring the system to a 
safe state [12]. 

Finally, it should be noted that since most of 
faults in software systems are due to faulty re-
quirements [4], the whole process must support 
the development of a dependable system. With-
out correct requirements, the right fault tolerance 
techniques cannot be chosen. Dependable sys-
tems cannot be built without appropriate combi-
nation of fault prevention, fault removal, fault 
forecasting, and fault tolerance techniques [4].  

TARGET APPLICATION 
The application for our RH control system is a 

teleoperated bilateral master-slave manipulator 
system, where the operator controls a remote 
manipulator working in a hazardous environ-
ment, as presented in the figures 1 and 2. As a 
whole, ITER RH systems aim to have one mas-
ter system which is used to control several het-
erogeneous slave systems1 for various mainte-
nance tasks, provided by different subcontrac-
tors. All these systems must be able to work 
harmoniously, regardless of changes in other 
systems and technology upgrades during the 
ITER life cycle, expected to be several decades, 
so software interoperability is definitely an im-
portant research aspect. Although basics of im-
plementing teleoperation systems are fairly well 
known, a fusion plant in the scale of ITER is a 
novel environment which sets strict requirements 
for control system performance when compared 
to what has been done before. This makes it an 
interesting development environment, especially 
for researching solutions for making the devel-
opment of fault tolerant RH control systems 
more affordable. 

One goal for our research is to develop a ref-
erence architecture and methods for fault toler-
ant ITER RH equipment control system, i.e. a 
slave-level system. An outline of the target sys-
tem is shown in Fig. 2. The system consists of 
human system interface computers placed in a 
control room, including PCs running virtualization 
software, graphical user interface (GUI) and 
input device controller. Equipment controller PC 
running the RH control system receives orders 
from the HMI PC and possible higher level sys-

                                                   
1Not to be confused with a master-slave tele-

operation system, where master refers to the 
haptic device and slave to the teleoperated ro-
bot. 

tems, and sends control commands to a low 
level control system (LLCS), which is responsi-
ble for commanding robot actuators and reading 
sensor data. 

 

 
Fig. 2 – System outline. 

Target robots for the RH control system in 
this research include a Water Hydraulic Manipu-
lator (WHMAN) developed at Tampere Universi-
ty of Technology’s Department of Intelligent Hy-
draulics and Automation (TUT/IHA) and a com-
mercial robotic manipulator manufactured by 
Comau. WHMAN, shown in Fig. 3, is a multi-
purpose dexterous manipulator with 6 degrees of 
freedom.  

 

 
Fig. 3 – WHMAN wielding the Water Hydraulic 
Jack, shown in a video view with augmented 

reality graphics and data. 

Major requirements for the system include 
fault tolerance, fail-safe functionality, implemen-
tation for the bilateral teleoperation and sufficient 
real-time performance. In order to support kines-
thetic feedback, i.e. bilateral teleoperation, we 
need sampling frequency in the order of 1000 Hz 
which sets great demands for the communica-
tion between the equipment controller PC and 



the control room PCs.  Part of the research is 
investigating how affordable and widely-
supported Ethernet-based networking supple-
mented with open RT protocols and communica-
tion middleware performs in a critical task like 
this. 

To test the proof-of-concept designs for the 
replacement of an ITER divertor component, a 
full scale prototype environment, designated 
‘Divertor Test Platform 2’ (Fig. 4), is operational 
at Tampere, Finland. The facility is hosted by 
VTT and TUT/IHA. TUT/IHA has worked with 
ITER RH since 1994 developing the ITER di-
vertor maintenance, processes, tools and 
equipment. 

 

 
Fig. 4 – Divertor Test Platform 2 at Tampere, 

Finland. 

RESEARCH PROBLEM 
The research needs to combine solutions that 

satisfy requirements for interoperability, depend-
ability and control system performance in a cost-
efficient manner. Modular architecture in the 
form of services allows addition of new compo-
nents into the RH control system, and fast proto-
typing of new approaches. However, integrating 
multiple applications provides both benefits and 
challenges. One of the main benefits is easier 
sharing of information, since the data exchange 
has been designed to happen in a controlled 
way. Challenges include possible common mode 
failures and dependencies [13]. 

We have chosen an approach based on in-
dustrial PCs and real-time operating systems 
(RTOS) instead of embedded systems, even 
though embedded solutions are a more common 
approach for safety-critical real-time systems 
[14]. Embedded systems are built for purpose so 
code change must be done for each configura-
tion which limits modularization and interopera-
bility [2]. This can lead to stovepipe system an-
tipattern, i.e. complex single-purpose ‘soon-to-
be-legacy’ systems that consist of inter-related 
and tightly bound elements. 

Another essential component for the system 
is a health monitor that is responsible for identi-

fying faults and failures in the system software 
components. Health monitoring can help in iso-
lating faults and preventing failures from propa-
gating [13]. Since the monitor has an important 
role for the dependability of the system, it is vital 
that it be free from errors itself, similar to voting 
adjudicators [4] used in diversity-based fault 
tolerance techniques. 

FRAMEWORK SOLUTIONS 
Although the fundamentals of implementing 

teleoperation systems are well-known, the appli-
cation remains demanding because of the envi-
ronment, dependability and interoperability re-
quirements. To achieve the goal cost-efficiently, 
the research aims to find and utilize the most 
useful methods from fault prevention, fault re-
moval, fault tolerance and fault forecasting 
methodologies, all of which are necessary to 
ensure required level of dependability. These will 
be combined in a lean systems engineering 
framework that will include a reference architec-
ture, hardware and software modules, processes 
and recommendations for development practic-
es, as suggested in our earlier publication [6]. 

USE OF OPEN AND COMMERCIAL OFF-THE-
SHELF COMPONENTS 

Part of the framework consists of component 
reuse and use of commercial off-the-shelf 
(COTS) components. This approach shows 
some promise for achieving cost reductions in 
development. Especially commercial hardware 
components give the benefit of utilizing perfor-
mance and energy efficiency of cutting edge 
processor technology. Use of software COTS 
components and component reuse have more 
problems related to them, as there is usually no 
guarantee that the components have sufficient 
quality for mission-critical applications and may 
require additional wrapping. Explosion of Ariane 
5 launch system in 1996 is just one famous ex-
ample of catastrophic failure caused by software 
reuse [15]. Instead, use of commercial or open 
operating systems and communication middle-
ware has the same potential benefits as hard-
ware, i.e. they include the latest developments in 
technology and have potentially better quality 
and less bugs than custom made software be-
cause of widespread use. 

The communication bus/middleware needs to 
be fast and reliable. In order to fulfill timeliness 
requirements usually present in the machine 
control domain, the middleware should also pro-
vide Quality of Service (QoS) parameters. For 
networking Ethernet is a low cost and readily 
available option. However, typically it is not de-
terministic and proprietary Ethernet solutions 
have weak interoperability [16], but e.g. RTnet 
[17] can be used to provide hard real-time net-



working for systems using real-time Linux kernel 
extensions. 

ARCHITECTURE 
The architecture and its quality directly affect 

the system attributes like dependability and 
maintainability. Use of standard components like 
messaging buses can improve these attributes 
by providing well-tested and documented com-
ponents.  

A general control system architecture for ma-
chine automation was introduced, as an alterna-
tive to proprietary, specialized solutions. The 
platform emphasizes integrability, interoperabil-
ity, maintainability and heterogeneity, satisfying 
many of these requirements by service-oriented 
design. The architecture itself is not committed 
to any single implementation technology. 

Service orientation allows software compo-
nents to be published and located, locally or over 
a network [18]. Services usually represent busi-
ness tasks directly, making it more straightfor-
ward for the end-user. The implementation is 
usually hidden behind common interfaces, so it 
can be modified without users being affected 
(e.g. interoperability). The encapsulation, for its 
part, facilitates scalability and reuse [19]. For 
example, position data is read from the haptic 
device and then provided as a service to other 
interested parties. 

A high level view of the architecture is shown 
in Fig. 5. Legacy devices are used through driv-
ers, by both native applications and Intelligent 
Device converters. Services can be connected to 
Intelligent Devices and the Service Bus connect-
ing these services, including Intelligent Devices, 
can be connected to Global Service Bus via 
Service Broker. On the other hand, the platform 
itself is recursively an Intelligent Device and 
thus, a service provider. 
 

 
Fig. 5 – High level view of the architecture. 

Special care was taken to provide a way for a 
control unit to be easily deployed on-top of the 
existing machine control. A peer-to-peer com-
munication method between all the heterogene-
ous devices supporting the platform was devel-
oped, in order to avoid bottlenecks by decentral-
ization. The networks of local services, residing 
inside the same physical machine, can utilize the 

services from other physical machines in a simi-
lar manner. 

A Quality of Service (QoS) mechanism was 
designed, to meet the requirements for reliability. 
Each of the services registers through a Service  
Broker, acting as a gateway and keeping track of 
the system resources (CPU, memory and band-
width). During the registration, a service identi-
fies itself with the required system resources and 
the Broker then decides if the machine is capa-
ble of running the registrant. Spawning of the 
service can require spawning of other services 
also, and this is done in a recursive manner. 

Another important functionality for the Service 
Broker is to provide health monitoring for the 
services. The Broker makes sure that the ser-
vices keep operating normally. If a service 
crashes or starts consuming too much system 
resources, the Broker takes appropriate 
measures to preserve system stability and state 
consistency. For networking, the platform pro-
vides multiple QoS parameters such as real-time 
deadlines needed for machine control, among 
others. 

The platform supports all the physical periph-
erals attached to it, such as sensors and actua-
tors, as long as a service conversion layer is 
used between. The device data is encapsulated 
and converted to services by physical abstrac-
tion, so that the interoperability requirements are 
met. 

In order to stop faults propagating, the safety-
critical, safety-related and nonsafety-related 
software components should be isolated by par-
titioning the software [20]. The architecture pro-
vides a standard way to partition the software 
with the services. 

SUPERVISORY SYSTEM 
The maintenance work of the ITER in-vessel 

components must be carried out in a reliable and 
safe manner, with a strict schedule [21]. Super-
visory systems are used to provide users with 
the necessary features to control a specific de-
vice, including control, indicating, and associated 
telemetry equipment at the master station, and 
all the complementary devices at the remote 
station [22].  

This chapter describes the supervisory sys-
tem and its software subsystems developed to 
carry out the complex RH maintenance opera-
tions at ITER and DTP2. The RH control system 
(Fig. 6) is divided into the supervisory system 
that provides the human-machine interface for 
the operators, RH controllers and hardware. The 
supervisory system is presented in the upper 
part of the Fig. 6 with software components 
listed next.  The DTP2 control room is shown in 
Fig. 7. 

Operation management system (OMS) is a 
software sub-system used to support operation 



by planning, helping and instructing execution of 
RH procedures. Procedures are complete se-
quences of manual actions required to perform 
maintenance or testing operations. IHAPlanner 
is an OMS software developed at TUT/IHA.  

Visualization system gives operators visual 
access to the virtual 3D model of the environ-
ment. Virtual reality software IHA3D can be used 
for task planning, practicing and simulation in 
addition to aiding the task execution with e.g. 
collision detection. 

Viewing system (IHAView) can be used to 
provide live video feedback from the environ-
ment. The system is comprised of several cam-
eras at the remote site and monitors at the con-
trol room. Augmented reality techniques can be 
used to support teleoperation by adding comput-
er-generated graphics and data on top of the 
video, as shown in Fig. 3. 

Command & control system provides a GUI 
that can be used to control RH equipment 
through its equipment controller. 

Computer assisted teleoperation assists 
operators in teleoperation tasks that require 
manual manipulation of remote handling equip-
ment. It can e.g. guide the manipulator away 
from pre-set force barriers to avoid collisions. 
 

 
Fig. 6 – Architectural model for the RH control 

system. 

CONCLUSIONS 
This paper has presented the problem of de-

veloping dependable control system architecture 
for the ITER RH domain. In order to meet the 
interoperability requirements, an SOA for the 
machine control domain was developed. The 
architecture is based on the use of standard 
commercial and open components, and is aimed 
to provide real-time performance and QoS pa-
rameters needed in the machine control. Alt-
hough this architecture gives support to key 
quality attributes, the development process still 
needs to utilize a combination of fault prevention, 
fault tolerance, fault removal and fault forecast-
ing in order to ensure that the system is depend-

able. Fault forecasting, for example, can be im-
plemented in the system as a service that per-
forms fault diagnostics and reports possible 
problems. 

Most control systems, like ITER RH, are not 
required to implement fail operate functionality, 
so some compromises can be made to achieve 
cost-efficiency in the development. E.g. single 
version fault tolerance techniques and use of off-
the-shelf components are viable solutions, espe-
cially when combined with the use of fail-safe 
functionality or secondary high-assurance con-
trol system. Also systems based on well-tested 
COTS or open source communication middle-
ware, OSs and hardware can be used to maxim-
ize interoperability, dependability and affordabil-
ity. 

 

 
Fig. 7 – Control room for the Divertor Test Plat-

form 2. 
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