
PLANNING OF DEPENDABLE REMOTE HANDLING CONTROL SYSTEM
ARCHITECTURE FOR ITER

P. Alho1, A. Hahto1, J. Mattila1, L. Aha1
1 Dept. of Intelligent Hydraulics and Automation, Tampere University of Technology, Finland

pekka.alho@tut.fi

Abstract. The experimental ITER fusion reactor
will feature a number of remote handling (RH)
systems that perform maintenance and replace-
ment operations in the reactor. RH control sys-
tems must be fail-safe and recoverable, since no
humans are allowed in the reactor and a failure
could cause major economic losses or setbacks
for the research program. ITER is a complex
system and requirements for RH system opera-
tions are demanding, including radiation toler-
ance, limits for available space, heavy objects
etc. The RH control software must be dependa-
ble and operate in real-time, while supporting the
changes introduced during the multidecadal
lifetime of the ITER plant. Although the funda-
mentals of implementing teleoperation systems
are well-known, the application remains de-
manding because of the environment, dependa-
bility and interoperability requirements. Fault-
tolerance techniques based on replication of
components can be costly and introduce addi-
tional complexity in the system. To achieve the
goal cost-efficiently, the research aims to find
and utilize the most useful methods from fault
prevention, fault removal, fault tolerance and
fault forecasting methodologies, all of which are
necessary to ensure required dependability.
These will be combined in a lean systems engi-
neering framework that will include a reference
architecture, hardware and software modules,
processes and recommendations for develop-
ment practices.

INTRODUCTION
ITER is an international experimental nuclear

fusion reactor, being built in the South of France.
Remote handling (RH) has an important role in
the ITER plant, because reactor operation pro-
duces high energy neutrons which are absorbed
by the components inside the reactor vessel,
leaving them activated. Since humans will not
have an access to the reactor, all tasks are per-
formed indirectly through remotely operated
robots, thus making RH critical for the operation
of the ITER.

The focus of this research is in the develop-
ment of dependable and fail-safe software archi-
tecture for the ITER RH control system, used to
control a teleoperated bilateral master-slave
manipulator (Fig. 1). Teleoperated robots can be
used in nuclear applications e.g. for inspections
and decommission [1]. Although not covered by
this research, a mobile robotic manipulator could

be used in nuclear catastrophes for repairs, re-
connaissance etc. A manipulator can be used to
grasp and move objects, or carry tools to per-
form a variety of tasks like bolting or welding.
However, the remote handling systems used to
perform these tasks are complex and expensive
to design and implement. The development
could benefit from the ability to use ready-made
components, open standards and other new
hardware and software technologies [2]. Moreo-
ver, to be able to function with all other systems
and machines present in nuclear facilities, the
remote handling system needs to be designed to
be interoperable.

Fig. 1 – Teleoperated bilateral master-slave

manipulator system.

Since the robots operate in a hazardous envi-
ronment, the system must be designed to be
fault tolerant and fail-safe, i.e. it can be guided to
a safe state. A shared feature with ITER RH and
Mars pathfinders, satellites etc. is that operations
are performed independently in an isolated envi-
ronment. However, unlike in space and foreign
planets, robots in the ITER core can be recov-
ered for maintenance, if properly designed, so
there is no need for large-scale replication of
components. Avoiding solutions resorting to
extensive redundancy gives benefits of smaller
size, less complexity and better affordability.
Less complexity makes the system easier to
specify, design, develop and verify. Neverthe-
less, even though the energy density in the ITER
reactor cannot cause a catastrophic failure, the
economic losses in the case of an operation
failure could be significant – thus the RH system
is considered safety-critical and needs to take
the dependability requirements into considera-
tion in the RH system design. For example, the
system should not immediately drop all function-
ality in the presence of faults, as low availability
of control systems leads to increased downtime,

and consequently increased operational costs.
Instead, the system should try to isolate the fault
and degrade gracefully, so that the fail-safe state
is a last resort when nothing else can be done to
prevent failure – basic implementation for this
functionality is a so-called limp-home mode. In
this paper we will present solutions to some of
these problems in a systems engineering
framework, including architecture, supervisory
system and use of off-the-shelf (OTS) compo-
nents.

BACKGROUND
This chapter presents the concept of de-

pendability in more detail, describes the target
application (and its requirements) and the re-
search problem.

DEPENDABILITY
Dependability is defined as the “ability of the

system to deliver service that can justifiably be
trusted”. Different techniques to attain dependa-
bility are categorized as fault prevention, fault
removal, fault forecasting, and fault tolerance.
[3]. To achieve dependability, we need a combi-
nation of techniques from these four areas, alt-
hough this paper focuses mostly in the fault tol-
erance techniques, as they are most closely
related to the system architecture. The most
efficient combination of methods depends from
the situation and system constraints in terms of
cost, complexity and effectiveness [4]. In order to
achieve dependability cost-efficiently, the re-
quired level of dependability must be correctly
captured in the requirements so that the system
may be implemented to this correct level.

Related to dependability is the concept of se-
curity; both share common attributes like availa-
bility and integrity of the correct service [3]. Alt-
hough security is not a key requirement in this
research, it definitely should not be neglected as
e.g. STUXNET worm and recent outage of the
PlayStation Network have effectively demon-
strated. A minimum security recommendation for
supervisory systems would be to separate them
from the Internet and restricting user access.

Fault-tolerance techniques in computer sys-
tems are a well-known research topic as it has
been researched for several decades – e.g.
Randell presents some fundamental concepts
still in use today in his 1975 article about soft-
ware fault tolerance [5]. Fault-tolerance methods
have been developed and applied in demanding
safety-critical applications like space, aviation,
nuclear, railways, etc. Techniques used in these
applications usually rely on replication of com-
ponents, but it is important to notice the differ-
ence between replication and redundancy. Alt-
hough all fault tolerance is based on use of addi-
tional resources, i.e. redundancy, this does not

necessarily mean replication of software and/or
hardware components.

Like most aviation and nuclear systems, IT-
ER RH is also a safety-critical application, be-
cause of a risk of economic losses in the case of
a failure in the control systems. However, ITER
RH systems do not necessarily need fault toler-
ance based on extensive replication because
there is no risk of a catastrophic failure or loss of
human life. Instead, the fault tolerance could be
implemented with single-version fault tolerance
techniques [6]. Single version fault tolerance
techniques are cost-efficient way to achieve
safety with possible compromises to reliability
when compared to replication-based techniques.
Examples of single version fault tolerance in-
clude system structuring, atomic actions, error
detection and exception handling, among others
[7].

Some common replication-based reference
architectures used for safety-critical applications
include e.g. triple modular redundancy, recovery
blocks, retry blocks and N-version-programming.
With software systems, diversity of design is
needed in addition to simple replication of soft-
ware units, since every copy would have the
same faults. Even though the development costs
of diverse N-variant software are less than N
times non-fault-tolerant software [8], it still pre-
sents a major cost increase for the development
when compared to basic software or single ver-
sion fault tolerance techniques. The problem
related to redundancy is that programmers tend
to make same kinds of mistakes so the different
versions may have same types of mistakes,
regardless of independent development. Faults
in the redundant components do not need to be
identical, it is sufficient that they are coexistent
[9].

A solution that uses existing devices to im-
plement a diversified fault-tolerant approach for
fault-tolerant automobile steer-by-wire system is
presented in [10]. The solution uses existing
electronic stability control and driving-torque
distribution devices as backups, to be used to
maintain steering in degraded modes under
component failures. The steer-by-wire system
avoids structural complication and increased
costs by not using diversified mechanical de-
signs. This is an example of using graceful deg-
radation to keep offering limited operations, or a
form of limp-home-mode, in the presence of
faults.

Another approach is presented in [11] using
a simple well-tested and highly reliable alterna-
tive subsystem to make sure that the higher-
performing but more complex primary control
subsystem stays inside safe limits. If the high-
performance subsystem breaches these limits,
the alternative backup takes control until the

conditions become normal again. This enables
the system to keep providing some level of ser-
vice even in the presence of faults.

A similar idea is used in the monitor-actuator
architecture, where an independent monitoring
channel maintains a watch on the actuation
channel looking for an indication that the control
of the system should be passed to a separate
safety channel that will bring the system to a
safe state [12].

Finally, it should be noted that since most of
faults in software systems are due to faulty re-
quirements [4], the whole process must support
the development of a dependable system. With-
out correct requirements, the right fault tolerance
techniques cannot be chosen. Dependable sys-
tems cannot be built without appropriate combi-
nation of fault prevention, fault removal, fault
forecasting, and fault tolerance techniques [4].

TARGET APPLICATION
The application for our RH control system is a

teleoperated bilateral master-slave manipulator
system, where the operator controls a remote
manipulator working in a hazardous environ-
ment, as presented in the figures 1 and 2. As a
whole, ITER RH systems aim to have one mas-
ter system which is used to control several het-
erogeneous slave systems1 for various mainte-
nance tasks, provided by different subcontrac-
tors. All these systems must be able to work
harmoniously, regardless of changes in other
systems and technology upgrades during the
ITER life cycle, expected to be several decades,
so software interoperability is definitely an im-
portant research aspect. Although basics of im-
plementing teleoperation systems are fairly well
known, a fusion plant in the scale of ITER is a
novel environment which sets strict requirements
for control system performance when compared
to what has been done before. This makes it an
interesting development environment, especially
for researching solutions for making the devel-
opment of fault tolerant RH control systems
more affordable.

One goal for our research is to develop a ref-
erence architecture and methods for fault toler-
ant ITER RH equipment control system, i.e. a
slave-level system. An outline of the target sys-
tem is shown in Fig. 2. The system consists of
human system interface computers placed in a
control room, including PCs running virtualization
software, graphical user interface (GUI) and
input device controller. Equipment controller PC
running the RH control system receives orders
from the HMI PC and possible higher level sys-

1Not to be confused with a master-slave tele-

operation system, where master refers to the
haptic device and slave to the teleoperated ro-
bot.

tems, and sends control commands to a low
level control system (LLCS), which is responsi-
ble for commanding robot actuators and reading
sensor data.

Fig. 2 – System outline.

Target robots for the RH control system in
this research include a Water Hydraulic Manipu-
lator (WHMAN) developed at Tampere Universi-
ty of Technology’s Department of Intelligent Hy-
draulics and Automation (TUT/IHA) and a com-
mercial robotic manipulator manufactured by
Comau. WHMAN, shown in Fig. 3, is a multi-
purpose dexterous manipulator with 6 degrees of
freedom.

Fig. 3 – WHMAN wielding the Water Hydraulic
Jack, shown in a video view with augmented

reality graphics and data.

Major requirements for the system include
fault tolerance, fail-safe functionality, implemen-
tation for the bilateral teleoperation and sufficient
real-time performance. In order to support kines-
thetic feedback, i.e. bilateral teleoperation, we
need sampling frequency in the order of 1000 Hz
which sets great demands for the communica-
tion between the equipment controller PC and

the control room PCs. Part of the research is
investigating how affordable and widely-
supported Ethernet-based networking supple-
mented with open RT protocols and communica-
tion middleware performs in a critical task like
this.

To test the proof-of-concept designs for the
replacement of an ITER divertor component, a
full scale prototype environment, designated
‘Divertor Test Platform 2’ (Fig. 4), is operational
at Tampere, Finland. The facility is hosted by
VTT and TUT/IHA. TUT/IHA has worked with
ITER RH since 1994 developing the ITER di-
vertor maintenance, processes, tools and
equipment.

Fig. 4 – Divertor Test Platform 2 at Tampere,

Finland.

RESEARCH PROBLEM
The research needs to combine solutions that

satisfy requirements for interoperability, depend-
ability and control system performance in a cost-
efficient manner. Modular architecture in the
form of services allows addition of new compo-
nents into the RH control system, and fast proto-
typing of new approaches. However, integrating
multiple applications provides both benefits and
challenges. One of the main benefits is easier
sharing of information, since the data exchange
has been designed to happen in a controlled
way. Challenges include possible common mode
failures and dependencies [13].

We have chosen an approach based on in-
dustrial PCs and real-time operating systems
(RTOS) instead of embedded systems, even
though embedded solutions are a more common
approach for safety-critical real-time systems
[14]. Embedded systems are built for purpose so
code change must be done for each configura-
tion which limits modularization and interopera-
bility [2]. This can lead to stovepipe system an-
tipattern, i.e. complex single-purpose ‘soon-to-
be-legacy’ systems that consist of inter-related
and tightly bound elements.

Another essential component for the system
is a health monitor that is responsible for identi-

fying faults and failures in the system software
components. Health monitoring can help in iso-
lating faults and preventing failures from propa-
gating [13]. Since the monitor has an important
role for the dependability of the system, it is vital
that it be free from errors itself, similar to voting
adjudicators [4] used in diversity-based fault
tolerance techniques.

FRAMEWORK SOLUTIONS
Although the fundamentals of implementing

teleoperation systems are well-known, the appli-
cation remains demanding because of the envi-
ronment, dependability and interoperability re-
quirements. To achieve the goal cost-efficiently,
the research aims to find and utilize the most
useful methods from fault prevention, fault re-
moval, fault tolerance and fault forecasting
methodologies, all of which are necessary to
ensure required level of dependability. These will
be combined in a lean systems engineering
framework that will include a reference architec-
ture, hardware and software modules, processes
and recommendations for development practic-
es, as suggested in our earlier publication [6].

USE OF OPEN AND COMMERCIAL OFF-THE-
SHELF COMPONENTS

Part of the framework consists of component
reuse and use of commercial off-the-shelf
(COTS) components. This approach shows
some promise for achieving cost reductions in
development. Especially commercial hardware
components give the benefit of utilizing perfor-
mance and energy efficiency of cutting edge
processor technology. Use of software COTS
components and component reuse have more
problems related to them, as there is usually no
guarantee that the components have sufficient
quality for mission-critical applications and may
require additional wrapping. Explosion of Ariane
5 launch system in 1996 is just one famous ex-
ample of catastrophic failure caused by software
reuse [15]. Instead, use of commercial or open
operating systems and communication middle-
ware has the same potential benefits as hard-
ware, i.e. they include the latest developments in
technology and have potentially better quality
and less bugs than custom made software be-
cause of widespread use.

The communication bus/middleware needs to
be fast and reliable. In order to fulfill timeliness
requirements usually present in the machine
control domain, the middleware should also pro-
vide Quality of Service (QoS) parameters. For
networking Ethernet is a low cost and readily
available option. However, typically it is not de-
terministic and proprietary Ethernet solutions
have weak interoperability [16], but e.g. RTnet
[17] can be used to provide hard real-time net-

working for systems using real-time Linux kernel
extensions.

ARCHITECTURE
The architecture and its quality directly affect

the system attributes like dependability and
maintainability. Use of standard components like
messaging buses can improve these attributes
by providing well-tested and documented com-
ponents.

A general control system architecture for ma-
chine automation was introduced, as an alterna-
tive to proprietary, specialized solutions. The
platform emphasizes integrability, interoperabil-
ity, maintainability and heterogeneity, satisfying
many of these requirements by service-oriented
design. The architecture itself is not committed
to any single implementation technology.

Service orientation allows software compo-
nents to be published and located, locally or over
a network [18]. Services usually represent busi-
ness tasks directly, making it more straightfor-
ward for the end-user. The implementation is
usually hidden behind common interfaces, so it
can be modified without users being affected
(e.g. interoperability). The encapsulation, for its
part, facilitates scalability and reuse [19]. For
example, position data is read from the haptic
device and then provided as a service to other
interested parties.

A high level view of the architecture is shown
in Fig. 5. Legacy devices are used through driv-
ers, by both native applications and Intelligent
Device converters. Services can be connected to
Intelligent Devices and the Service Bus connect-
ing these services, including Intelligent Devices,
can be connected to Global Service Bus via
Service Broker. On the other hand, the platform
itself is recursively an Intelligent Device and
thus, a service provider.

Fig. 5 – High level view of the architecture.

Special care was taken to provide a way for a
control unit to be easily deployed on-top of the
existing machine control. A peer-to-peer com-
munication method between all the heterogene-
ous devices supporting the platform was devel-
oped, in order to avoid bottlenecks by decentral-
ization. The networks of local services, residing
inside the same physical machine, can utilize the

services from other physical machines in a simi-
lar manner.

A Quality of Service (QoS) mechanism was
designed, to meet the requirements for reliability.
Each of the services registers through a Service
Broker, acting as a gateway and keeping track of
the system resources (CPU, memory and band-
width). During the registration, a service identi-
fies itself with the required system resources and
the Broker then decides if the machine is capa-
ble of running the registrant. Spawning of the
service can require spawning of other services
also, and this is done in a recursive manner.

Another important functionality for the Service
Broker is to provide health monitoring for the
services. The Broker makes sure that the ser-
vices keep operating normally. If a service
crashes or starts consuming too much system
resources, the Broker takes appropriate
measures to preserve system stability and state
consistency. For networking, the platform pro-
vides multiple QoS parameters such as real-time
deadlines needed for machine control, among
others.

The platform supports all the physical periph-
erals attached to it, such as sensors and actua-
tors, as long as a service conversion layer is
used between. The device data is encapsulated
and converted to services by physical abstrac-
tion, so that the interoperability requirements are
met.

In order to stop faults propagating, the safety-
critical, safety-related and nonsafety-related
software components should be isolated by par-
titioning the software [20]. The architecture pro-
vides a standard way to partition the software
with the services.

SUPERVISORY SYSTEM
The maintenance work of the ITER in-vessel

components must be carried out in a reliable and
safe manner, with a strict schedule [21]. Super-
visory systems are used to provide users with
the necessary features to control a specific de-
vice, including control, indicating, and associated
telemetry equipment at the master station, and
all the complementary devices at the remote
station [22].

This chapter describes the supervisory sys-
tem and its software subsystems developed to
carry out the complex RH maintenance opera-
tions at ITER and DTP2. The RH control system
(Fig. 6) is divided into the supervisory system
that provides the human-machine interface for
the operators, RH controllers and hardware. The
supervisory system is presented in the upper
part of the Fig. 6 with software components
listed next. The DTP2 control room is shown in
Fig. 7.

Operation management system (OMS) is a
software sub-system used to support operation

by planning, helping and instructing execution of
RH procedures. Procedures are complete se-
quences of manual actions required to perform
maintenance or testing operations. IHAPlanner
is an OMS software developed at TUT/IHA.

Visualization system gives operators visual
access to the virtual 3D model of the environ-
ment. Virtual reality software IHA3D can be used
for task planning, practicing and simulation in
addition to aiding the task execution with e.g.
collision detection.

Viewing system (IHAView) can be used to
provide live video feedback from the environ-
ment. The system is comprised of several cam-
eras at the remote site and monitors at the con-
trol room. Augmented reality techniques can be
used to support teleoperation by adding comput-
er-generated graphics and data on top of the
video, as shown in Fig. 3.

Command & control system provides a GUI
that can be used to control RH equipment
through its equipment controller.

Computer assisted teleoperation assists
operators in teleoperation tasks that require
manual manipulation of remote handling equip-
ment. It can e.g. guide the manipulator away
from pre-set force barriers to avoid collisions.

Fig. 6 – Architectural model for the RH control

system.

CONCLUSIONS
This paper has presented the problem of de-

veloping dependable control system architecture
for the ITER RH domain. In order to meet the
interoperability requirements, an SOA for the
machine control domain was developed. The
architecture is based on the use of standard
commercial and open components, and is aimed
to provide real-time performance and QoS pa-
rameters needed in the machine control. Alt-
hough this architecture gives support to key
quality attributes, the development process still
needs to utilize a combination of fault prevention,
fault tolerance, fault removal and fault forecast-
ing in order to ensure that the system is depend-

able. Fault forecasting, for example, can be im-
plemented in the system as a service that per-
forms fault diagnostics and reports possible
problems.

Most control systems, like ITER RH, are not
required to implement fail operate functionality,
so some compromises can be made to achieve
cost-efficiency in the development. E.g. single
version fault tolerance techniques and use of off-
the-shelf components are viable solutions, espe-
cially when combined with the use of fail-safe
functionality or secondary high-assurance con-
trol system. Also systems based on well-tested
COTS or open source communication middle-
ware, OSs and hardware can be used to maxim-
ize interoperability, dependability and affordabil-
ity.

Fig. 7 – Control room for the Divertor Test Plat-

form 2.

ACKNOWLEDGEMENTS
This work supported by European Communi-

ties was carried within the framework of EFDA
and financial support of TEKES, which are great-
ly acknowledged. The views and opinions ex-
pressed herein do not necessarily reflect those
of European Commission or EFDA.

REFERENCES
 [1] Dede, M.;& Tosunoglu, S. (2006). Fault-

tolerant teleoperation systems design. Industrial
Robot, 33(5), 365-372.

[2] Cucinotta, T.;Mancina, A.;Anastasi,
G.;Lipari, G.;Mangeruca, L.;Checcozzo, R.;et al.
(2009). A Real-Time Service-Oriented Architec-
ture for Industrial Automation. Industrial Infor-
matics, IEEE Transactions on, 5(3).

[3] Avizienis, A.;Laprie, J.-C.;Randell, B.;&
Landwehr, C. (2004). Basic Concpets and Tax-
onomy of Dependable and Secure Computing.
Transactions on Dependable and Secure Com-
puting, 1(1).

[4] Pullum, L. (2001). Software Fault Toler-
ance Techniques and Implementation. Artech
House.

[5] Randell, B. (1975). System structure for
software fault tolerance. Proceedings of the in-
ternational conference on Reliable software.
New York: ACM.

[6] Alho, P.;& Mattila, J. (2011). Dependable
Control Systems Design and Evaluation. Con-
ference on Systems Engineering Research
(CSER) 2011. Los Angeles.

[7] Torres-Pomales, W. (2000). Software
Fault Tolerance: A Tutorial. NASA.

[8] Laprie, J.-C.;Arlat, J.;Beounes, C.;& Ka-
noun, K. (1990). Definition and Analysis of
Hardware- and Software-Fault-Tolerant Architec-
tures. Computer, 23(7), 39-51.

[9] Knight, J.;& Leveson, N. (1986). An Ex-
perimental Evaluation Of The Assumption Of
Independence In Multi-Version Programming.
Transactions on Software Engineering, 12, 96-
109.

[10] Hayama, R.;Higashi, M.;Kawahara,
S.;Nakano, S.;& Kumamoto, H. (2010). Fault-
tolerant automobile steering based on diversity
of steer-by-wire, braking and acceleration. Reli-
ability Engineering and System Safety, 95, 10-
17.

[11] Sha, L. (2001). Using Simplicity to Con-
trol Complexity. IEEE Software, 18(4), 20-28.

[12] Douglass, B. (2002). Real-Time Design
Patterns: Robust Scalable Architecture for Real-
Time Systems. Addison-Wesley Professional.

[13] Krode, J.;& Romanski, G. (2007). Real-
Time Operating Systems and Component Inte-
gration Considerations in Integrated Modular
Avionics Systems Report. Federal Aviation Ad-
minstration.

[14] Flammini, F. (2010). Dependability As-
surance of Real-Time Embedded Control Sys-
tems. New York: Nova Science Publishers.

[15] Nuseibeh, B. (1997). Ariane 5: Who
Dunnit? IEEE Software , 14(3).

[16] Moss, B. (2002). Real-time Control on
Ethernet. Dedicated Systems Magazine(q2).

[17] RTnet Development Team. (2010). Ref-
erenced 12. May 2011 from RTnet:
http://www.rtnet.org/index.html

[18] Ambroszkiewicz, S.;Bartyna,
W.;Faderewski, M.;& Terlikowski, G. (2007).
Interoperability in Open Hererogeneous Multi-
robot Systems. AAAI Fall Symposium, FS-07-06,
ss. 24-31. Arlington, Virginia.

[19] Jammes, F.;& Smit, H. (2005). Service-
Oriented Paradigms in Industrial Automation.
IEEE Transactions on Industrial Informatics,
1(1).

[20] Herrmann, D. (1999). Software Safety
and Reliability. IEEE.

[21] Hahto, A.;Aha, L.;Nurminen, T.;Aaltonen,
A.;Heikkilä, L.;Mattila, J.;et al. (2011). Superviso-
ry System for DTP2 Remote Handling Opera-
tions. Fusion Engineering and Design.

[22] Ackerman, W.;& Block, W. (1992). Un-
derstanding supervisory systems. Computer
Applications in Power, IEEE, 5(4), 37-40.

	INTRODUCTION
	BACKGROUND
	DEPENDABILITY
	TARGET APPLICATION
	RESEARCH PROBLEM

	FRAMEWORK SOLUTIONS
	USE OF OPEN AND COMMERCIAL OFF-THE-SHELF COMPONENTS
	ARCHITECTURE
	SUPERVISORY SYSTEM

	CONCLUSIONS
	ACKNOWLEDGEMENTS

	REFERENCES

