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Abstract—Some of the best performing local stereo-matching
approaches use cross-bilateral filters for proper cost aggrega-
tion. The recent attempts have been directed toward efficient
approximations of such filter aimed at higher speed. In this
paper, we suggest a simple yet efficient coarse-to-fine cost volume
aggregation scheme, which employs pyramidal decomposition of
the cost volume followed by edge-avoiding reconstruction and
aggregation. The scheme substantially reduces the computational
complexity while providing fair quality of the estimated disparity
maps compared to other approximated bilateral filtering schemes.
In fact, the speed of the proposed technique is comparable
with the speed of fixed kernel aggregation implemented through
integral images.

I. INTRODUCTION

Stereo-matching is one of the most important topics in the
computer vision field as it allows estimating scene depth using
a passive stereo camera. In order to estimate a dense depth
map, four steps are usually performed: computation of a cost
volume, local or global cost aggregation, disparity computation
and disparity refinement [1]. The resulting disparity is then
converted to a depth map. The most computationally expensive
step in this scheme is the cost volume aggregation, since the
empirical cost function values are noisy and should be refined
in order to obtain their robust estimates.

Local aggregation is usually expressed by a local filtering
operator (e.g. weighted averaging), working in some spatial
neighborhood. While generally being faster, some recently
proposed local methods match or even outperform global
aggregation methods, such as Graph Cuts or Belief Propa-
gation. However, their complexity is still high due to high
resolution of camera sensors. Complexity of well-performing
local aggregation methods, such as based on bilateral filtering
[2], directly depends on the selected kernel size. Large kernels
are preferred for handling textureless zones, while smaller
kernels are preferred for efficient aggregation.

Recently proposed local stereo-matching techniques use
low-complexity bilateral filter approximations [3], [4], [5] or
non-local aggregation based on the weighted tree-structures
[6] in order to remove the complexity dependence on the
kernel size. However their absolute computational time is
still relatively high, due to high amount of spatial-domain
processing performed at each step of the algorithm.

Fig. 1. Edge-preserving property of the proposed approach: (left) reference
image with marked Dirac-impulse positions and (right) their responses en-
coded with distinctive colors.

Another way to deal with low-confident zones in stereo
pairs, is to address them in a hierarchical manner. A number
of coarse-to-fine approaches have been proposed for solving
the textureless problem as well as for reducing the complexity
[7], [8]. Based on the hypothesis that successful match for
the low confident area can be found on the decimated stereo
pair, those approaches try to propagate depth estimates for the
problematic areas from the coarser pyramid levels. However,
due to modified frequency content in the decimated images as
well as modified disparity range, such propagation is tricky
and prone to errors.

In contrast to the above techniques, cost volume aggrega-
tion performed in a coarse-to-fine manner, can avoid errors
related with disparity range shrinkage, and deliver acceptable
performance. The method proposed in this paper employs
such an approach, where the cost volume aggregation has low
complexity in both asymptotic and absolute run-time senses,
as it only consists of number of weighted decimations and up-
samplings. Figure 1 illustrates the effective support of resulting
kernels, which adapt nicely to the image discontinuities. The
method makes use of the concept of edge-avoiding wavelets
[9], while being specifically tailored for the stereo-matching
case.

II. HIERARCHICAL AGGREGATION

Cost volume is usually defined as a 3D structure, where
each slice represent dissimilarity between input images at a
particular disparity (e.g. shift) [1]:

C(x1, x2, d) = ‖L(x1, x2)−R(x1 − d, x2)‖1, (1)

where L and R represent rectified input images as three-
component color vectors, and L1 norm corresponds to dis-
similarity measured between color components.



Fig. 2. Disparity estimate for ”Teddy” dataset: (left) Gaussian aggregation;
(right) simple hierarchical aggregation.

Consider a slice C(·), where local aggregation can be
defined on some spatial neighborhood Ωx of the processed
pixel x = (x1, x2):

C̃(x) = Σp∈ΩxW (x,p) · C(p), (2)

where C̃(·) is the filtered signal and W (x,p) is a normalized
weighting kernel.

Due to lack of validity in large textureless areas, the local
filtering kernel must have adequate support size in order to
successfully handle such areas. However, due to the spatially-
variant nature of the commonly used filters, the complexity
of the direct implementation is dependent on the size of the
kernel Ωx. For instance, this is the case of adaptive support
weighting [2], where the filtering kernel corresponds to the
cross-bilateral filter:

W (x,p) =
e−
‖I(x−I(p)‖

σr · e−
‖x−p‖
σs

Σu∈Ωxe
− ‖I(x−I(u)‖

σr · e−
‖x−u‖
σs

, (3)

where σr and σs are adjusting parameters of the filter and I
is the associated color image.

Decimation of the cost volume along spatial axes by some
pre-defined factor f followed by its’ backward up-sampling
can be regarded as aggregation with some spatial kernel

Ci+1 = Ci ↓f , (4)

C̃i = Ci+1 ↑f . (5)

A. Edge-avoiding aggregation

The resulting filtering, while not shift-invariant across the
image, is smooth and approximately isotropic. The strength of
the aggregation can be adjusted either by changing the deci-
mation factor f or by performing additional decimation/up-
sampling steps in a coarse-to-fine manner. In contrast to
the decimation of the input stereo pair, usually applied in
coarse-to-fine stereo approaches [7], [8], down-sampling of
the original cost volume does not affect the disparity range
and thus the coarse cost volume is fully compatible with the
finer one.

In terms of quality such method resembles aggregation
with Gaussian kernel. Figure 2 shows disparity estimates for
”Teddy” dataset [10] aggregated with a large Gaussian kernel
and with a three-level pyramidal decomposition/reconstruction
procedure.

The basic mechanism of decimation/reconstruction of the
cost volume results in over-smoothing of strong depth discon-
tinuities, similarly to the effect of applying spatially-invariant
filtering kernels (c.f. Figure 2). A color image pyramid calcu-
lated along with the cost volume pyramid can be utilized in
order to penalize aggregation across strong color boundaries
and to support edge-preserving hierarchical aggregation.

Consider the Gaussian image pyramid, constructed for the
color image, associated with the cost volume (hereafter we
omit the decimation factor f ):

Ii+1 = Ii ↓, (6)

Ĩi = Ii+1 ↑, (7)

where Ii is an input image at i-th pyramid level and Ĩi is
the same image reconstructed from the coarser level by up-
sampling. In Laplacian pyramid fashion, residual image can
be also constructed for each layer of the pyramid:

∆i(x) = Ii(x)− Ĩi(x). (8)

In the textureless zone, the reconstructed image Ĩi will be
very close to the original image Ii and hence the residual
image ∆i will predominantly contain small values. One can
construct the aggregation mechanism at level i imposing some
edge-preserving properties:

Ĉi(x) = W i(x) · C̃i(x) + (1−W i(x)) · Ci(x), (9)

where Ĉi(x) is the resulting aggregated cost at level i, W (x)
is a range-weighting component W i(x) = G(∆i(x), σ), and
the weighting function G can be defined in the bilateral style:

G(y, σ) = e−
‖y‖
σ . (10)

For the case of highly textured areas, the decimation will
result in substantial smoothing. Subsequently, the details signal
∆i(x) will be strongly penalizing the aggregation.

In order to complete the proposed scheme, the backward
cost up-sampling from level i+1 to level i should use already
aggregated cost at i+ 1:

C̃i = Ĉi+1 ↑ . (11)

B. Separable wavelets

Separable wavelets [9] are favoured for cost volume aggre-
gation, described in the Section II-A because of possibilities
they offer to parallelize the decomposition.

Considering only a 1-D image I and 1-D signal C and for
the case of f = 2, the decimation can be formulated in an
edge-avoiding manner [9]:

Ii+1(x) =
Ii(2x) + w1 · Ii(2x− 1) + w2 · Ii(2x+ 1)

1 + w1 + w2
,

(12)

Ci+1(x) =
Ci(2x) + w1 · Ci(2x− 1) + w2 · Ci(2x+ 1)

1 + w1 + w2
,

(13)



where x is a pixel coordinate at the decimated image, and w1

and w2 are weights calculated based on the difference between
the corresponding color values:

w1 = G(Ii(x)− Ii(x− 1), σd), (14)

w2 = G(Ii(x)− Ii(x+ 1), σd), (15)

where σd controls the amount of kept details.
Note, that since we do not need to keep details at each de-

composition step, the three-steps lifting scheme split-predict-
update used in the [9] can be replaced by a single operation.

C. 1-D hierarchical aggregation

When considering pixels near strong color edges, one can
see a drawback of the initial scheme (Eq. 4 - 11). Due to
penalization on the finer levels (Eq. 9), those pixels may
remain not aggregated, even if they are associated with large
textureless areas. In [5], a direct bilateral filter has been used in
order to smooth out cost values within small support window
and thus avoid penalization of the boundary pixels. The
proposed 1-D interpolation scheme resolves the problem using
small overlaps during the decimation and the up-sampling
steps. 1-D decimation (Eq. 12) uses three pixels at the finer
resolution to obtain value of one pixel at the coarser level,
for decimation factor equal to two. Backward step, which
combines aggregation with up-sampling can also be re-defined
with some overlap:

C̃i(2x) =
w · C̃i+1(x) + w∗ · Ci(2x)

w + w∗
(16)

C̃i(2x+ 1) = (17)

=
wL · C̃i+1(x) + wR · C̃i+1(x+ 1) + w+C

i(2x+ 1)

wL + wR + w+
,

w, wL and wR are defined using color difference between
image at the current level i and the coarser one at the level
i+ 1:

w = G(Ii(2x)− Ii+1(x), σl
c), (18)

wL = G(Ii(2x+ 1)− Ii+1(x), σl
c), (19)

wR = G(Ii(2x+ 1)− Ii+1(x+ 1), σl
c). (20)

The weights w∗ and w+ can be defined similarly to Eq.
9, however such weighting can be prone to errors caused by
noise. We introduce an additional parameter γ, γ ∈ (0; 1] to
regulate the shape of the impulse responses:

w∗ = min(γ, 1− w1), (21)
w+ = min(γ, 1−max(w1, w2)), (22)

where γ = 1 corresponds to the weighting approach with
significant spikes in the actually generated filtering kernels.
A decreased γ value results in smoother aggregation, making
kernels similar to the bilateral ones.

Another approach to overcome noise is to apply level-
dependent aggregation, controlled by the parameter σl

c, where

l is the number of the current level and N is the total number
of levels:

σl
c = σc ·

(
l

N

)−1

. (23)

Figure 1 shows impulse responses for number of Dirac-
impulses placed at interesting points in the cost volume and
aggregated with the proposed coarse-to-fine scheme. Each
impulse response is encoded with distinctive color. The figure
illustrates the adaptive and edge-preserving performance of the
algorithm.

D. Implementation and complexity

To correctly estimate the actual complexity of the proposed
approach one should carefully consider the implementation
details. As the color-weighting is intensively used during both
decimation and aggregation steps, their direct calculation can
significantly degrade the computational speed. Pre-calculated
lookup tables can be used in order to avoid unnecessary
weights calculations. In such a way, single decimation/up-
sampling step has to perform 2 · X weighted averaging
operations, where X is the original resolution of the color
image. The overall computational time Y can be estimated
considering number of levels N in the decomposition:

Y = 2 ·
N∑
l=1

X

(2)l
. (24)

The overall computational time tends to 4·X when N →∞,
which is still linear.

We have implemented the proposed approach on MS Visual
C++ using Matlab/MEX interface to obtain compiled MEX
functions, directly accessible from the Matlab environment.
We used number of optimizations, such as OpenMP multi-
processing and look-up tables for the weight maps.

III. RESULTS

The proposed approach addresses the problem of the cost
volume aggregation, which is one of the steps in the general
stereo-matching method. It, however, can be extended to the
complete stereo-matching solution by introducing additional
post-processing step. Such post-processing can be done in
the same manner as proposed in [4]. Initial aggregation of
the left and the right cost volumes, followed by left-to-right
correspondence check are used to obtain an initial disparity
estimate along with the confidence map. Another cost vol-
ume, synthesized in the probabilistic manner from the initial
disparity is aggregated once again to obtain the final disparity
estimate. The same technique can be adjusted to the proposed
approach using the same algorithm parameters during post-
processing as those, used during the initial aggregation step.

Table I presents the performance of the proposed local
stereo approach tested on the Middlebury stereo datasets [1].
Disparity error in three different zones: non-occluded areas
(nonocc), whole image (all) and near discontinuities (disc)
is estimated for each of four stereo pairs Tsukuba, Venus,
Teddy and Cones. Disparity results of the first aggregation step



Fig. 3. Raw aggregation results for Midddlebury stereo evaluation [1] datasets.

(without post-processing) (marked (A) and visualized in Fig-
ure 3) have fair quality acceptable for number of applications.
However, results obtained with the post-processing (marked
(B) and visualized in Figure 4 illustrate significantly improved
quality in both numerical and visual senses.

We compare our approach with the adaptive coarse-to-
fine (ACTF) approach, proposed by Sizintsev [7]. The latter
has inferior performance, as seen in Fig. 8 in [7], while
having comparable running time (approaches A1-A4 from the
[7]). The running time provided in [7] cannot be directly
used to compare our approaches due to different hardware
configurations, while still may imply approximate equivalence
of the computational complexity.

The actual running time of our proposed approach averaged
across several runs is 2.61 seconds for all four Middlebury
datasets for the single aggregation step and 6.12 seconds
for obtaining fully post-processed results (including all other
required steps). Average run-time of the fixed window aggre-
gation, implemented with integral images on the same PC and
implemented in similar manner as a compiled MEX is 1.02
sec. However, since our MEX implementation re-calculates
lookup tables at each run and uses intensive memory alloca-
tions, the complexity difference can be further minimized by
using standalone implementation written as pure C/C++ code.

Tsukuba Venus
nonocc all disc nonocc all disc

(A) 2.84 4.20 12.6 2.48 3.28 10.0
(B) 1.41 2.02 5.85 2.58 3.10 7.72

[ACTF] 6.5 8.0 16.5 4.0 5.0 15.0
Teddy Cones

nonocc all disc nonocc all disc
(A) 11.7 16.7 22.8 6.15 13.0 14.0
(B) 8.52 13.6 18.2 3.75 10.1 9.41

[ACTF] 8.0 15.5 20.5 5.5 14.0 14.0

TABLE I
RESULTS OF THE PROPOSED APPROACH ON THE MIDDLEBURY DATASETS;

(A) SINGLE AGGREGATION, (B) POST-PROCESSED. LINE MARKED
[ACTF] APPROXIMATE ADAPTIVE COARSE-TO-FINE RESULTS FROM [7].

Fig. 4. Post-filtered results for Midddlebury stereo evaluation [1] datasets.

IV. CONCLUSIONS

We have proposed new hierarchical cost volume aggregation
scheme, based on the edge-avoiding wavelet decomposition.
While it shares same ideas with basic coarse-to-fine stereo-
matching methods, it successfully solves their main drawbacks
by constructing a pyramid out of the 3D cost volume rather
than out of the image pairs. Disparity propagation from
coarser levels goes naturally by up-sampling of the coarse
cost volume, while in classical coarse-to-fine methods some
complicated non-linear fusion approaches are required. The
proposed method have demonstrated a fair performance while
having low computational complexity. It also bears potential
for further improvements.
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