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Spatter Tracking in Laser Machining
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Abstract. In laser drilling, an assist gas is often used to remove material
from the drilling point. In order to design assist gas nozzles to minimize
spatter formation, measurements of spatter trajectories are required.

We apply computer vision methods to measure the 3D trajectories of
spatter particles in a laser cutting event using a stereo camera configu-
ration. We also propose a novel method for calibration of a weak per-
spective camera that is effective in our application.

The proposed method is evaluated with both computer-generated video
and video taken from actual laser drilling events. The method performs
well on different workpiece materials.

1 Introduction

In laser drilling, a laser beam is focused on a workpiece to melt or vaporize the
material, forming a hole. Often a jet of high-speed assist gas is applied to blow
molten material away from the hole. A recent advance in the field is the use of
a Laval nozzle whose shape accelerates the gas to supersonic speed [1].

A common defect associated with laser drilling is that some material ejected
from the hole lands back on the workpiece and resolidifies, forming spatter.
An example of spatter is shown in Figure 1a. This is especially undesirable in
applications that require high precision. There is therefore interest in improving
the design of an assist gas nozzle to minimize spatter formation. For example,
the material could be expelled away from the workpiece, or caught at a shield.
To guide the designer, the motion of spatter particles can be predicted with
CFD simulation. However, measurements are needed to calibrate the simulation
models and to verify the models’ fidelity.

The objective of this study is to analyze video of laser drilling events taken
with a stereo configuration of two high-speed cameras. An example video frame
is shown in Figure 1b. This study is structured as follows. First we discuss
calibration of such a camera configuration, and propose a method for calibration
of a weak perspective camera that is effective for this application. We then apply
a sequential Monte Carlo (SMC) filter to track spatter particles in the video. We
pair tracks using the epipolar constraint and perform 3D reconstruction using an
unscented Kalman filter (UKF). Finally, we evaluate the proposed method with
synthetic video, and video taken from 30 laser drilling events. Results reported
in [2] were computed using this method.
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(a) Spatter formation surrounding a
laser drilled hole.

(b) A typical input video frame.

Fig. 1: Laser drilling

2 Camera calibration

2.1 Overview

A main obstacle in this study was obtaining accurate calibration. We initially
attempted calibration with Zhang’s method [3]. However, the results obtained
this way suffered from a large reprojection error. We found that Zhang’s method
is unsuitable for an application such as ours, where observations are noisy and
cameras are close to affine, and developed a method based on the weak perspec-
tive camera model.

Like Zhang’s method, our method requires images of a calibration object. A
sample calibration image is shown in Figure 2d. We first calculate homography
matrices, which relate the model plane to each image. Using these matrices,
we estimate the intrinsic parameters that are common to all images. We then
solve the extrinsic parameters that describe the calibration object’s position and
orientation in each image. The following sections describe these steps in more
detail. [3]

2.2 Weak perspective camera model

The affine camera is an abstract model of a camera whose focal length is very
large compared to the object being viewed. The model is accurate for e.g. mi-
croscopes. An affine camera constrained to have zero skew is called a weak per-
spective camera. Compared to the projective camera, which has 5 intrinsic and 6
extrinsic parameters, a weak perspective camera has 2 and 5 respectively, making
it more analytically tractable.

The cameras used in our study have a focal length of tens of centimeters, and
our calibration object is 1mm wide, making them practically indistinguishable
from affine cameras.
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Let x ∈ R2 be a point in the image plane and z ∈ R3 be a point in space. An
affine camera model is given by

x = Mz + t. (1)

where M is a 2 × 3 matrix and t is a translation vector. Using homogenous
coordinates, the affine camera model can be written as

�
x
1

�
= P

�
z
1

�
, (2)

P =




M11 M12 M13 t1
M21 M22 M23 t2
0 0 0 1



 . (3)

The matrix M can be decomposed as M = A22R1:2,1:3, where A22 is an affine
calibration matrix and R1:2,1:3 consists of the first two rows of a rotation matrix.
The calibration matrix is of the form

A22 =

�
α 0
γ β

�
=

�
α 0
0 β

�
. (4)

where α and β represent focal length and aspect ratio, and γ the skew of the
camera, which we constrain to be 0.

2.3 Homography

An affine mapping from a 3D plane to an image plane can be represented by an
affine homography matrix H ∈ R3×3 whose last row is [0, 0, 1]. Without loss of
generality we can choose a coordinate system such that the image plane lies in
xy-plane, so that z equals zero. We can then write the homography in terms of
the projection matrix:

H =




M11 M12 t1
M21 M22 t2
0 0 1



 . (5)

2.4 Solving for focal length and aspect ratio

Given a set of homographies {H(k)}, the objective of affine calibration is to find
the calibration matrix A, rotation matrices {R(k)} and translation vectors {t(k)}
that fit the given homographies.

First of all we denote Aii = αi. Now from the first two colums of the homog-
raphy H we obtain two equations

h(i)
1:2 = αir

(i)
1:2, for i ∈ {1, 2}. (6)

Adding the missing rotation components, Equation (6) becomes
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[h(i)
1:2, αir

(i)
3 ]T = αir

(i). (7)

Knowing that �r(i)� = 1, and that r(1) · r(2) = 0 we obtain three equations

�
r(i)3

�2
=

�h(i)
1:2�2 − α2

i

α2
i

, for i ∈ {1, 2}, and (8)

h(1)
1:2 ·h

(2)
1:2 = −α1α2r

(1)
3 r(2)3 . (9)

Eliminating rotation elements r(i)3 yields

�
h(1)
1:2 ·h

(2)
1:2

�2
− �h(1)

1:2�2�h
(2)
1:2�2 = −�h(2)

1:2�2α2
1 − �h(1)

1:2�2α2
2 + (α1α2)

2 . (10)

Denoting the expression on the left of (10) as bk, where k denotes the index of

homography used, and ak = −[��h(2)
1:2�2, h

(1)
1:2�2]T, we obtain

bk = ak[α
2
1, α

2
2]

T + (α1α2)
2 . (11)

Taking the differences of any two equations with different indices yields

bk1 − bk2 = (ak1 − ak2) [α
2
1, α

2
2]

T. (12)

For a set of n images, (12) determines an overdetermined set of O(n2) linear
equations to be solved in the least-squares sense.

2.5 Solving for rotation and translation

Due to the affine nature of the problem, translation is equal to the last column
of homography (if it is scaled so that H33 = 1), that is,

t = h(3). (13)

We can obtain the top left 2× 2 block of the rotation matrix as

r(i)1:2 = α−1
i h(i)

1:2. (14)

Now we need to find a rotation matrix that fits the 2 × 2 block. The last com-
ponent of a column can be obtained from the unity constraint as

r(i)3 = ±
�

1−min(1, �r(i)1:2�2), (15)

where the minimum is added to ensure numerical stability. Signs are chosen so
that they preserve orthogonality and right-handedness. The last row is obtained
using the well-known relationship [3]

r(3) = r(1) × r(2), (16)
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After invoking Equation (15), the full rotation matrix is adjusted using SVD-
decomposition to ensure its orthogonality. This procedure also eliminates mir-
roring.

The parameters obtained in this way could be used as an initial guess for
further optimization that minimizes the reprojection error, as in [3], but this
was not done in this study.

2.6 Evaluation

We compared our method to Zhang’s using simulated data. In each trial, we
performed camera calibration with ten synthetic views of a calibration object,
taken at equal distance from random directions, perturbed with Gaussian noise.
We varied the distance and the mean deviation of the noise, ran 100 trials for
every parameter pair, and compared the reprojection RMSE statistic for each
method. The results are shown in Figure 2.

With zero noise, Zhang’s method outperforms ours at any distance, since it
solves the original camera matrix, which is not exactly affine. Also, near the cal-
ibration object, the affine camera is a poor approximation and this causes large
errors for our method. Further away, Zhang’s method becomes highly susceptible
to small amounts of noise, while our method remains robust. In our application
the noise std. dev. is of order 10−3 in normalized coordinates and the distance
is approximately 103. As seen in Figure 2, these conditions are very suitable for
our method and unsuitable for Zhang’s.

3 Spatter object tracking

3.1 SMC filter

Sequential Monte Carlo (SMC) filtering is a method used to estimate the state of
a discrete-time nonlinear dynamic system. It is applied on similar problems for
instance in [4]. A dynamic system has a state sequence xk and a measurement
sequence yk. The state’s evolution is specified by a probabilistic model given by1

xk|xk−1 ∼ p(xk|xk−1). (17)

The state xk is connected to the measurement yk by the observation model
given by

yk|xk ∼ p(yk|xk) ∝ L(yk|xk), (18)

where L(y|xk) is called likelihood. Likelihood needs only be known up to a
multiplicative constant. The solution of the problem is the posterior density
p(xk|y1:k). In this study, the state is the position of a spatter object. We used
the SIFT method to detect candidate spatter particles in the video [5].

1 For the sake of notational simplicity, the distinction between random variables and
their realized values (e.g. using bold font or upper case) is not made.
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(a) Error analysis of Zhang’s method. The
method is at its best close to the calibra-
tion object, and quickly becomes suscepti-
ble to noise as distance grows. The RMSE
is capped at 0.1 for clarity, but it may rise
up to 106.

(b) Error analysis of the affine method. At
close distance the affine approximation is
unusable. The method grows more accurate
as distance grows. With very high noise, the
results are less erratic than in Zhang’s but
still useless.

(c) Comparison of the affine method to
Zhang’s. The Z-axis represents the propor-
tion of trial runs where our method had the
lower RMSE.

(d) A typical calibration image.

Fig. 2: Evaluation of the proposed affine calibration method with synthetic data.
The calibration object is 10 units wide. The noise is added to normalized image
coordinates that range between −1..1.



7

A SMC filter solves the problem by approximating the posterior density with

set of N samples {x(i)
k } and associated weights {w(i)

k } by Equation (19)

p(xk|y1:k) ≈
�

i≤N

w(i)
k δ(xk − x(i)

k ). (19)

Samples are drawn from the distribution π(xk|x1:k−1, y1:k), which is called
the proposal distribution. [6]

3.2 State evolution model

The state evolution model in this study embodies the assumption that the ve-
locity of a spatter particle does not change much in one time step. We estimate
velocity as

vk = xk − xk−1. (20)

which yields the following state model,

xk = xk−1 + vk−1 + εk = 2xk−1 − xk−2 + εk, (21)

where εk is a normally distributed error term.

3.3 Observation model

In a laser drilling video, spatter objects are observed as dark dots relative to
background. The user specifies a background color bk and a threshold θ ≥ 0.

Let Ik(x) be the intensity at the image point x at time k. Likelihood was
computed in a neighborhood Ux of the point x. Mean intensity in a neighborhood
Ux is given by Equation (22)

Ik(x) =

�
Ux

I(x
�
)dx

�

�
Ux

dx� . (22)

In the discrete case integrals are treated as sums. Three criteria were used
to formulate a likelihood function that recognizes particles. Particles should be
distinct from background color, and the mean intensity and texture of a particle
should remain similar in consecutive frames. The likelihood used in this study
is given by

L(I|x1:k, Ik−1) =
�
I(xk)− bk

�2
H

��
I(xk)− bk

�2 − θ
�
×

exp

�
−1

2

�
I(xk)− Ik−1(xk−1

�2

σImax(I)2

�
×

�

U0

exp



−1

2

�
I(x

�
+ xk)− Ik−1(x

�
+ xk−1)

�2

σImax(I)2



 dx
�
(23)
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where σI denotes the assumed intensity covariance of points in consecutive
frames and H( · ) is the Heaviside function. In this study a square neighborhood
of 5 × 5 pixels was used. An ellipse was also tested, but it gave no noticeable
advantage over the square.

3.4 Proposal distribution

In SMC filtering it is common to use bootstrap filtering, where the state model
is the proposal distribution for the sampling. However in a spatter tracking
application particles are small and bootstrap filtering leads to sampling from
regions that are of no interest. To make tracking more efficient, we used data
dependent sampling, where part of the likelihood is merged to the proposal
distribution [4]. This lead to a proposal distribution given by

π(xk|x1:k−1, I1:k) ∝ pxk|xk−1
(xk|xk−1)exp

�
−1

2

�
Ik(xk)− Ik−1(xk−1)

�2

σImax(Ik)2

�
.

(24)
Sampling from this proposal distribution can be achieved using Metropolis-

Hastings algorithm [7] with the state model pxk|xk−1
(xk|xk−1) as a target distri-

bution. This caused most samples to end up inside a spatter particle, allowing
the use of very small sample sizes. We achieved good performance with a short
random walk of tens of samples.

4 3D reconstruction

4.1 Spatter object matching

After tracking spatter objects in the separate videos from the two cameras, we
match them to form pairs. Image points x, x

� ∈ P2 from different views must
satisfy the equation

xTFx� = 0, (25)

where F is the fundamental matrix between the two views. The fundamental
matrix can be computed from 7 point correspondences between two images. [8]

We matched each particle to the particle that minimizes the mean of xTFx�

over the shared lifetime of the pair. Since the fundamental matrix constrains
the particles only to a line, not a point, this may result in spurious matches. To
reduce the number of spurious matches, we reject very short tracks, as well as
tracks that have a high reprojection error after reconstruction.

4.2 3D path reconstruction

In this study, 3D reconstruction was done by an unscented Kalman filter (UKF)
[9]. The UKF solves problems similar to the SMC filter. Here the 2D locations of
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(a) Reconstruction from a synthetic
test video with Matlab prototype.
Dashed line: ground truth, Cont.
line: reconstructed.

(b) Reconstruction from laser
drilling data with a threaded C++
implementation.

Fig. 3: Evaluation

a particle were chosen as measurements and the state evolution model was similar
to the one used with the SMC filter. An advantage of UKF over the extended
Kalman filter (EKF) is that it doesn not require the computation of Jacobian
matrices of these models. The standard constant velocity motion model[10] was
used as the state evolution model.

Given camera matrices Px and Py of both cameras, the 3D position z ∈ R3

is connected to homogenous image coordinates x and y by

�
x
y

�
∝

�
Px

Py

�
z. (26)

With a perspective camera, the observation model would be nonlinear due
to the use of homogenous coordinates.

5 Evaluation of method

The proposed method was used to track particles in computer generated video
and in actual laser drilling data. Tests with synthetic data showed that the
method was accurate at least in conditions of constant lighting and low noise.
Typical results from an eight particle test video are shown in Figure 3a.

The method was also tested on data measured from actual laser drilling
events. The used laser was a Nd:YAG-laser, with a pulse energy of 0.2 J. 30 videos
were recorded. Each video recorded a single laser pulse applied to a workpiece.
The assist gas was nitrogen, with cylinder pressure 0.6MPa. Frame rate was
1Mfps and exposure time was 0.5 µs.

Tests carried out with real data gave natural looking results. Typical results
of spatter tracking can be seen in Figure 3b. Fuirther experimental results using
the proposed tracking method are reported in [2].
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6 Conclusions

The proposed method for spatter measurements produces plausible trajectory
reconstructions from real data recorded by the high speed video cameras and
obtains good accuracy in our simulated test cases. There is currently no other
way to obtain detailed knowledge such as individual particle velocities or particle
sizes for statistical analysis from a cutting event. The results will be used to
calibrate and verify CFD simulation in assist gas nozzle design.

The method could also be used for spatter tracking in laser cutting of ma-
terials such as steel, aluminium and plastics. The main limitation is the use of
oxygen as an assist gas, as it makes the observation of particles difficult.

Practical problems with the method were mostly associated with difficulty
of obtaining accurate camera calibration. These problems were resolved by de-
veloping the weak-perspective calibration method described earlier. The weak
perspective method may be useful for other applications, for example some
Augmented Reality research uses Zhang’s method to locate fiducial markers,
for instance in [11]. Since markers may be relatively far from the camera, our
method may be more robust.
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