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Bayesian statistical methods are widely used in many science and engineering
areas including machine intelligence, expert systems, medical imaging, pattern
recognition, decision theory, data compression and coding, estimation and predic-
tion, bioinformatics, and data mining.

These course notes present the basic principles of Bayesian statistics. The first
sections explain how to estimate parameters for simple standard statistical models
(normal, binomial, Poisson, exponential), using both analytical formulas and the
free WinBUGS data modelling software. This software is then used to explore
multivariate hierarchical problems that arise in real applications. Advanced topics
include decision theory, missing data, change point detection, model selection,
and MCMC computational algorithms.

Students are assumed to have knowledge of basic probability. A standard
introductory course in statistics is useful but not necessary. Additional course
materials (exercises, recorded lectures, model exams) are available at http://
math.tut.fi/~piche/bayes
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1 Introduction

1.1 Who was Thomas Bayes?

X ∼ (n, θ)

(a < θ < b |X = x)?

(a < θ < b |X = x) =

∫ b
a

(
n
x

)

θx(1 − θ)n−xdθ

∫ 1
0

(
n
x

)

θx(1 − θ)n−xdθ

.

The reverend Thomas Bayes (1702–1761) was an English
presbyterian minister whose mathematical writings earned
him a place as fellow of the Royal Society of London. His
friend Richard Price found a manuscript among Bayes’s
effects after his death and had it published:

BAYES, T. (1763) An Essay towards solving
a Problem in the Doctrine of Chances, Philo-
sophical Transactions of the Royal Society 53,
370–418.

Bayes studied the following “inverse probability” (i.e. inference) problem: given

the results of independent trials, y1,y2, . . . ,yn
(say)
= 0,1,1,0,1, . . . ,0, what is the

probability of success? Probability theory (started in the 1650’s by Pascal and
Fermat) was able to solve the “direct problem”: given θ , the number of successes
s = ∑

n
i=1 yi has the distribution s |θ ∼Binomial(n,θ), that is, p(s |θ) =

(n
s

)
θ s(1−

θ)n−s. Bayes’s solution to the inverse problem, which was also independently
discovered in 1774 by Laplace, was:

1. specify a “prior” distribution p(θ) (Bayes and Laplace used p(θ)≡ 1);

2. calculate the “posterior” density

p(θ |s) =
p(θ)p(s |θ)∫ 1

0 p(θ)p(s |θ)dθ
;

3. use the posterior to answer specific questions about θ , for example,

P(a < θ < b |s) =
∫ b

a
p(θ |s)dθ .

Because of this influential paper, Thomas Bayes’s name is commemorated in the
terms Bayes’s formula (law, theorem) and Bayesian statistics.

1.2 The Fall and Rise of the Bayesians
Although the Bayesian approach to inference was extensively developed by Laplace
and others starting in the late eighteenth century, in the twentieth century a com-
pletely different approach to inference, sometimes called Frequentist statistics,
was developed and eventually came to dominate the field. This schism within
the discipline of statistics has generated a great deal of polemical writing on both
sides.

One of the historical drawbacks of Bayesian methods is that inference formu-
las exist only for relatively simple models. This is no longer a limitation since
the development in the 1990’s of effective computer algorithms and software that
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allow the analysis of even very complex models. This development has led to
a dramatic rise in the number of successful applications of Bayesian statistical
methods in all areas of science and technology that continues to this day.

In this course we make extensive use of the free data modelling software
WinBUGS. We explain the Markov Chain Monte Carlo (MCMC) computation method
used by WinBUGS only in the later part of the course, after you’ve acquired expe-
rience in setting up statistical models.

2 Probability

2.1 Probability as a measure of belief
In Bayesian statistics, you use probability to represent degrees of belief (plausibil-
ity, confidence, credibility, certainty). The probability P(E |H) is a number that
measures your belief in the truth of event E given the knowledge that H is true. It
can reasonably be expected to obey the following axioms:

P1 P(E |H)≥ 0

P2 P(H |H) = 1

P3 P(E ∪F |H) = P(E |H)+P(F |H) when E ∩F ∩H = /0

P4 P(E |F ∩H)P(F |H) = P(E ∩F |H)

A sounder mathematical basis is obtained by strengthening axiom P3 to the not so
intuitive axiom

P3* P(∪nEn |H)= ∑n P(En |H) for countable {E1,E2, . . .} that are pairwise-disjoint
given H, that is, Ei∩E j∩H = /0 whenever i 6= j.

From the axioms a number of results can be deduced; these too are intuitively
reasonable properties for a system of plausible reasoning.

• If your information H implies that E is certainly true, then P(E |H) = 1. To
show this, first note that

P(E |H) = P(E |H ∩H) ·1 P2= P(E |H ∩H)P(H |H) P4= P(E ∩H |H). (1)

Then H ⊆ E implies P(E |H)
(1)
= P(E ∩H |H) H⊆E= P(H |H) P2= 1.

• The degree of belief P(E |H) is a number between 0 and 1. To show this,
first note that

1 P2= P(H |H) = P((H \E)∪ (E ∩H) |H) P3= P(H \E |H)+P(E ∩H |H)
(1)
= P(H \E |H)+P(E |H). (2)

Then P(E |H)≤ 1 follows from the fact that P(H \E |H)
P1
≥ 0, and P(E |H)≥

0 follows from P1.
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• If your information H implies that E is certainly false then P(E |H) = 0.

• If E implies F , given H (that is, if E∩H ⊆ F∩H) then P(E |H)≤ P(F |H).

Note that in Bayesian theory there is no such thing as unconditional proba-
bility: all probabilities are conditional. However, in a given context where all
probabilities are conditional on some generally accepted state of knowledge Ω,
and all events under consideration are subsets of Ω, it is convenient to suppress Ω

and write, for example, P(E) in place of P(E |Ω).

2.2 How to assign probability

One way to determine (elicit) your degree of belief is to invite you to make a bet.
Betting an amount M on event E at odds ω means that

• you lose (pay) M if E turns out to be false, and

• you win (receive) ω ·M if E turns out to be true.

If you believe strongly in E, then you are willing to accept small odds, whereas
you will insist on large odds if you consider E to be doubtful. You consider
the odds to be fair if, in your estimation, there is no advantage in betting for or
against the proposition. Fair odds given a state of knowledge H is denoted ω̃(H)
and satisfies

P(E |H) · ω̃(H)M = P(Ē |H) ·M, (3)

where Ē = Ω \E is the complement of E. Solving (3) gives P(E |H) = 1
1+ω̃(H) .

Thus, at least in theory, the value of P(E |H) can be deduced from what you
consider to be a fair bet. In practice, however, people are not mathematically
consistent in their evaluations of probabilities!

A more familiar way to determine probability is to use symmetry principles
to determine “equally probable” events. For example, if we known that an urn
contains r red balls and k black balls, then we assign the probability of E = ”a red
ball is drawn” as

P(E |(r,k)) =
r

r + k
.

when we have no information that would favour any ball over any other ball. Note
that this does not assume any physical “randomness” (whatever that means) in the
drawing process, it only models the symmetry that exists in our state of knowledge
(and ignorance).

2.3 Data changes probability

Suppose that after assigning a value to P(E |H), you obtain new information F .
Then your degree of belief in E is updated to P(E | (F ∩H)) (henceforth written
as P(E |F,H)), which can differ from your earlier degree of belief.
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Example: Inferring bias Suppose you have a lapel pin with a convex
face and a flat back. When the pin is spun on a flat surface, it comes to rest
with the face upwards (this outcome is denoted r = 0) or back upwards
(r = 1). Given this information (H), and before performing any experi-
ment, you might believe that P(r = 1 |H) is, say, 1

2 . Then you perform the
experiment ten times and obtain the results

r1:10 = [0, 0, 0, 0, 0, 1, 1, 0, 0, 1]

Because of the small number of outcomes with r = 1, you may think it reasonable
to update your belief such that P(r = 1 |r1:10,H) is a number that is smaller than
1
2 . We’ll see later how to do this update.

2.4 Odds
The odds on E against F given H are defined as the ratio

P(E |H)
P(F |H)

to 1,

or equivalently
P(E |H) to P(F |H).

In some contexts, this is a more natural concept than probability, and can be easier
to define. For example, in the example in §2.3, the prior odds on r = 1 against r = 0
are 1 to 1. Odds are widely used in betting, decision theory, and risk analysis, and
we’ll encounter them in chapter 8 in the context of hypothesis testing.

2.5 Independence
Events E and F are said to be conditionally independent given H if

P(E ∩F |H) = P(E |H) ·P(F |H).

In case the events are independent given a common state of knowledge Ω, we say
the events are independent and write

P(E ∩F) = P(E) ·P(F).

By axiom P4, equivalent characterisations of independence are P(E |F) = P(E)
(when P(F) 6= 0), P(E | F̄) = P(E) (when P(F̄) 6= 0), P(F |E) = P(F) (when
P(E) 6= 0), and P(F | Ē) = P(F) (when P(Ē) 6= 0). Loosely speaking, events E
and F are independent if knowledge of one of the events does not change your
degree of belief in the other. In other words, you learn nothing about E from F ,
and vice versa.

A set of events is said to be mutually independent given H if

P(Ei1 ∩Ei2 ∩·· ·∩Eik |H) = P(Ei1 |H)P(Ei2 |H) · · ·P(Eik |H)

for any finite subset of them.
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Example: Balls and Urns This example brings out some subtleties about inde-
pendence. Consider an urn with r red balls and k black balls, from which we draw
balls one at a time, with replacement. Let E = “the first drawn ball is red” and
F = “the second drawn ball is red”.

If we know the proportion of red balls θ = r/(r +k), then (following classical
probability theory) we have P(F |θ) = θ and P(F |E,θ) = θ , that is, events E
and F are conditionally independent given θ .

If we don’t know θ , then we could treat it (i.e. model it) as a random variable.
Then E and F are not independent, because the result of the first draw provides
information about the proportion of red balls in the urn, and this can change our
state of belief about the result of the second draw. In particular, we have

P(E) =
∫ 1

0
g(θ)P(E |θ)︸ ︷︷ ︸

θ

dθ = E(θ),

where g is the density function of θ , and

P(E ∩F) =
∫ 1

0
g(θ)P(E ∩F |θ)︸ ︷︷ ︸

P(E |θ)P(F |θ)

dθ = E(θ 2) = V(θ)+E(θ)2,

and so

P(F |E) =
P(E ∩F)

P(E)
=

V(θ)+E(θ)2

E(θ)
=

V(θ)
E(θ)

+P(F)≥ P(F).

Thus, the more prior uncertainty you have about θ , the more you learn about F
from E, and you learn nothing if and only if V(θ) = 0.

2.6 Bayes’s formula
Let H1, H2, . . . be a partition of Ω, that is, Hi∩H j = /0 for all i 6= j, and ∪nHn = Ω.
Then for any event E we have (using axioms P4 and P3*) the total probability
formula

P(E) = ∑
n

P(E |Hn)P(Hn).

Example: Probability of twin girls1 Suppose that girls are
equally likely to be born as boys. When twins are born, what is
the probability that both babies are girls? The answer, surprisingly
enough, is not 1

4 . Here’s why.
Twins can be identical (monozygotic, denoted M) or fraternal

(dizygotic, D). Identical twins are always of the same sex. In light of this, a
reasonable model (where we denote GB for twins of different sex, GG for twin
girls, and BB for twin boys) for the birth of a pair of twins is

P(GG |M) = P(BB |M) = 1
2 , P(GB |M) = 0

P(GG |D) = P(BB |D) = 1
4 , P(GB |D) = 1

2

1 taken from Peter M. Lee, Bayesian Statistics: An Introduction, 2nd ed., 1997.
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Then the total probability formula gives

P(GG) = P(GG |M)P(M)+P(GG |D)P(D)
= 1

2P(M)+ 1
4(1−P(M))

= 1
4(P(M)+1)

> 1
4

because P(M) > 0. �

Because
P(Hn |E)P(E) = P(E ∩Hn) = P(Hn)P(E |Hn),

then for P(E) 6= 0 we have Bayes’s formula

P(Hn |E) =
P(Hn)P(E |Hn)

∑k P(E |Hk)P(Hk)
.

Bayes’s formula can be written concisely as

P(Hn |E)︸ ︷︷ ︸
posterior

∝ P(Hn)︸ ︷︷ ︸
prior

P(E |Hn)︸ ︷︷ ︸
likelihood

,

with the constant of proportionality being 1/P(E).
Bayes’s formula leads directly to the following model comparison formula for

the odds in favour of H j against Hk given E:

P(H j |E)
P(Hk |E)︸ ︷︷ ︸

posterior odds

=
P(H j)
P(Hk)︸ ︷︷ ︸

prior odds

× P(E |H j)
P(E |Hk)︸ ︷︷ ︸

Bayes ratio

.

3 Normal Data
A simple model that relates a random variable θ and real-valued observations
y1, . . . ,yn is the following:

• the observations are mutually independent conditional on θ ,

• the observations are identically normally distributed with mean θ , that is,
yi |θ ∼ Normal(θ ,v), where the variance v is a known constant.

With this model, the joint distribution of the observations given θ has the pdf

p(y1:n |θ) =
(

1
2πv

)n/2

e−
1
2v ∑

n
i=1(yi−θ)2

. (4)

We shall often refer to this pdf as the likelihood, even though some statisticians
reserve this name for the function θ 7→ p(y1:n |θ), whose values are denoted
lhd(θ ;y1:n).

Notice that p(y1, . . . ,yn |θ) = p(yi1, . . . ,yin |θ) for any permutation of the order
of the observations; a sequence of random variables with this property is said to
be exchangeable.
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Example 3.1: Cavendish’s data The English physicist Henry Cavendish per-
formed experiments in 1798 to measure the specific density of the earth. The
results of 23 experiments are

5 5.32 5.64 5.96
0

2

4

6

8

5.36 5.29 5.58 5.65 5.57
5.53 5.62 5.29 5.44 5.34
5.79 5.10 5.27 5.39 5.42
5.47 5.63 5.34 5.46 5.30
5.78 5.68 5.85

Using the simple normal model described above, the function lhd(θ ;y1:n) when
the assumed variance is v = 0.04 is:

5 60

300

θ

In the above model we’ve assumed for simplicity that the variance is known.
A slightly more complicated model has two parameters θ = (µ,σ2):

• the observations are mutually independent conditional on (µ,σ2),

• yi |µ,σ2 ∼ Normal(µ,σ2).

With this model, the joint distribution of the data given (µ,σ2) has the density

p(y1:n |µ,σ2) =
(

1
2πσ2

)n/2

e−
1

2σ2 ∑
n
i=1(yi−µ)2

.

Here’s a plot of lhd(µ,σ2;y1:n) for the Cavendish data.

5.4
5.6

0.02
0.04

0.06
0

100

200

300

µσ2

4 Posteriors, Priors, and Predictive Distributions
Our basic inference tool is Bayes’s theorem in the form

p(θ |y) ∝ p(θ)p(y |θ),

where p(y |θ) is the data model, p(θ) is the probability density describing our
state of knowledge about θ before we’ve received observation values (the prior
density), and p(θ |y) describes our state of knowledge taking account of the ob-
servations (the posterior density).
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4.1 Using the Posterior

Compared to the inference machinery of classical statistics, with its p-values, con-
fidence intervals, significance levels, bias, etc., Bayesian inference is straightfor-
ward: the inference result is the posterior, which is a probability distribution.
Various descriptive statistical tools are available to allow you to study interesting
aspects of the posterior distribution.

Plots You can plot the posterior density of θ = [θ1, . . . ,θp] if p = 1 or p = 2,
while for p≥ 3 you can plot densities of marginal distributions.

Credibility regions A credibility (or Bayesian confidence) region is a subset Cε

in parameter space such that

P(θ ∈Cε |y) = 1− ε, (5)

where ε is a predetermined value (typically 5%) that is considered to be
an acceptable level of error. This definition does not specify Cε uniquely.
In the case of a single parameter, the most common ways of determining a
credibility region (credibility interval, in this case) are to seek either

• the shortest interval,

• an equal tailed interval, that is, an interval [a,b] such that P(θ ≤
a |y) = ε

2 and P(θ ≥ b |y) = ε

2 , or

a b
ε/2 ε/2

equal tailed interval

k

HDI

1−ε

• the highest density interval (HDI), which is the set of θ points where
posterior density values are higher than at points outside the region,
that is,

Cε = {θ : p(θ |y)≥ k},
where k is determined by the constraint (5).

The HDI definition is readily generalised to HDR (highest density region)
for multiple parameters.

Hypothesis testing The probability that a hypothesis such as H : θ > 0 is true2

is, at least conceptually, easily computed from the posterior:

P(H |y) = P(θ > 0 |y) =
∫

∞

0
p(θ |y)dθ .

2 Orthodox “frequentist” statistics has something called a p-value that is often mistakenly
interpreted by students as a probability. It is defined as “the maximum probability, consistent with
H being true, that evidence against H as least as strong as that provided by the data would occur
by chance”.
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Point estimates The posterior is a complete description of your state of knowl-
edge about θ , so in this sense the distribution is the estimate, but in practical
situations you often want to summarize this information using a single num-
ber for each parameter. Popular alternatives are:

• the mode, argmaxθ p(θ |y),
• the median, argmint E(|θ − t| |y),
• the mean, E(θ |y) =

∫
θ p(θ |y)dθ = argmint E((θ − t)2 |y).

You can also augment this summary with some measure of dispersion, such
as the posterior’s variance. The posterior mode is also known as the maxi-
mum a posteriori (MAP) estimator.

4.2 Bayesian Data Analysis with Normal Models
Consider the one-parameter normal data model presented in section 3, in which
the observations are assumed to be mutually independent conditional on the θ and
identically distributed with yi |θ ∼Normal(θ ,v), where the variance v is a known
constant. With these assumptions, the distribution p(y1:n |θ) is given by (4), which
can be written

p(y1:n |θ) ∝ exp

(
− 1

2v

n

∑
i=1

(yi−θ)2

)
.

What prior do we choose? A convenient choice (because it gives integrals
that we can solve in closed form!) is a normal distribution θ ∼ Normal(m0,w0),
with m0 and w0 chosen such that the prior distribution is a sufficiently accurate
representation of our state of knowledge. Then we have

p(θ) =
1√

2πw0
e−

(θ−m0)2

2w0 ∝ exp
(
− 1

2w0
(θ −m0)2

)
.

By Bayes’s law, the posterior is

p(θ |y) ∝ p(θ)p(y |θ) ∝ exp

(
− 1

2v

n

∑
i=1

(yi−θ)2− 1
2w0

(θ −m0)2

)
= e−

1
2 Q,

where (using completion of squares)

Q =
(

1
w0

+
n
v

)(
θ −

m0
w0

+ nȳ
v

1
w0

+ n
v

)2

+ constant.

and ȳ = 1
n ∑

n
i=1 yi denotes the sample mean. Thus the posterior is θ |y∼Normal(mn,wn)

with

mn =
m0
w0

+ nȳ
v

1
w0

+ n
v

, wn =
1

1
w0

+ n
v

.

We are able to find a closed-form solution in this case because we chose a prior
of a certain form (a conjugate prior) that facilitates symbolic manipulations in
Bayesian analysis. For other priors the computations (normalisation factor p(y) =∫

p(θ)p(y |θ)dθ , credibility interval, etc.) generally have to be done using ap-
proximations or numerical methods.
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Example: Cavendish’s data (continued) Knowing that rocks have specific
densities between 2.5 (granite) and 7.5 (lead ore), let’s choose a prior that is

5 6
0

4

8

θ

relatively broad and centred at 5, say θ ∼Normal(5,0.5)
(shown grey-filled on the right). If we assume a data
model with conditionally independent observations that
are normally distributed yi ∼ Normal(θ ,v) with v =
0.04, we obtain a posterior θ |y ∼ Normal(m23,w23)
with

m23 =
5

0.5 + 23·5.485
0.04

1
0.5 + 23

0.04

= 5.483, w23 =
1

1
0.5 + 23

0.04

= (0.0416)2 = 0.00173.

From this posterior (the unfilled curve) we obtain the 95% equal-tail credibility
interval (5.4015,5.5647).

Here’s a WinBUGS3 model of this example:

model {

for (i in 1:n) { y[i] ∼ dnorm(theta,25) }

theta ∼ dnorm(5,2)

}

Here dnorm means a normal distribution and its two arguments are the mean and
the precision (the reciprocal of variance). The precision values we entered are
25 = 1/0.04 and 2 = 1/0.5.

The data are coded as

list( y=c(5.36,5.29,5.58,5.65,5.57,5.53,5.62,5.29,5.44,5.34,
5.79,5.10,5.27,5.39,5.42,5.47,5.63,5.34,5.46,5.30,
5.78,5.68,5.85), n=23 )

and the simulation initial value is generated by pressing the gen inits button.
The simulation is then run for 2000 steps; the resulting statistics agree well with
the analytical results:

node mean sd 2.5% median 97.5%
theta 5.484 0.0414 5.402 5.484 5.565

The smoothed histogram of the simulated theta values is an approximation of the
posterior distribution.

4.3 Using Bayes’s Formula Sequentially
Suppose you have two observations y1 and y2 that are conditionally independent
given θ , that is, p(y1,y2 |θ) = p1(y1 |θ)p2(y2 |θ). The posterior is then

p(θ |y1,y2) ∝ p(θ)p(y1,y2 |θ) = p(θ)p1(y1 |θ)︸ ︷︷ ︸
∝ p(θ |y1)

p2(y2 |θ).

3 Download it from http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
Watch the demo at http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/winbugsthemovie.
html
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From this formula we see that the new posterior p(θ |y1,y2) can be found in two
steps:

1. Use the first observation to update the prior p(θ) via Bayes’s formula to
p(θ |y1) ∝ p(θ)p1(y1 |θ), then

2. use the second observation to update p(θ |y1) via p(θ |y1,y2) ∝ p(θ |y1)p2(y2 |θ).

This idea can obviously be extended to process a data sequence, recursively up-
dating the posterior one observation at a time. Also, the observations can be pro-
cessed in any order.

In particular, for conditionally independent normal data yi∼Normal(θ ,v) and
prior θ ∼ Normal(m0,w0), the posterior distribution for the first k observations is
θ |y1, . . . ,yk ∼Normal(mk,wk), with the posterior mean and variance obtained via
the recursion

wk =
1

1
wk−1

+ 1
v

, mk =
(

mk−1

wk−1
+

yk

v

)
wk.

Example: Cavendish’s data (continued) Here is how the posterior pdf p(θ |y1:k)
evolves as the dataset is processed sequentially:

5 6
0
4
8 k = 1 k = 2 k = 3

k = 4 k = 10 k = 23

4.4 Predictive Distributions
Before an observation (scalar or vector) y is measured or received, it is an un-
known quantity — let’s denote it ỹ. Its distribution is called the prior predictive
distribution or marginal distribution of data. The density can be computed from
the likelihood and the prior:

p(ỹ) =
∫

p(ỹ,θ)dθ =
∫

p(ỹ |θ)p(θ)dθ .

The predictive distribution is defined in the data space Y , as opposed to the pa-
rameter space Θ, which is where the prior and posterior distributions are defined.
The prior predictive distribution can be used to assess the validity of the model: if
the prior predictive density “looks wrong”, you need to re-examine your prior and
likelihood!

In a similar fashion, after observations y1, . . . ,yn are received and processed,
the next observation is an unknown quantity, which we also denote ỹ. Its distribu-
tion is called the posterior predictive distribution and the density can be computed
from

p(ỹ |y1:n) =
∫

p(ỹ |θ ,y1:n)p(θ |y1:n)dθ .

11



If ỹ is independent of y1:n given θ , then the formula simplifies to

p(ỹ |y1:n) =
∫

p(ỹ |θ)p(θ |y1:n)dθ .

In particular, when the data are modelled as conditionally mutually independent
yi |θ ∼ Normal(θ ,v) and the prior is θ ∼ Normal(m0,v0), the posterior predic-
tive distribution for a new observation (given n observations) can be found by
the following trick. Noting that ỹ = (ỹ− θ) + θ is the sum of normally dis-
tributed random variables and that (ỹ− θ) |θ ,y1:n ∼ Normal(0,v) and θ |y1:n ∼
Normal(mn,wn) are independent given y1:n, we deduce that ỹ |y1:n is normally
distributed with

E(ỹ |y1:n) = E(ỹ−θ |θ ,y1:n)+E(θ |y1:n) = 0+mn = mn

V(ỹ |y1:n) = V(ỹ−θ |θ ,y1:n)+V(θ |y1:n) = v+wn,

that is, ỹ |y1:n ∼ Normal(mn,v + wn). This result holds also for n = 0, that is, the
prior predictive distribution is ỹ∼ Normal(m0,v+w0).

The above formulas can alternatively be derived using the formulas

E(ỹ |y1:n) = Eθ |y1:n(E(ỹ |θ ,y1:n)),
V(ỹ |y1:n) = Eθ |y1:n(V(ỹ |θ ,y1:n))+Vθ |y1:n(E(ỹ |θ ,y1:n))

Details are left as an exercise.

Example: Cavendish’s data (continued) Here the prior predictive distribution
is ỹ∼ Normal(5,0.54) and the posterior predictive distribution given 23 observa-
tions is ỹ |y1:23 ∼ Normal(5.483,0.0417) = Normal(5.483,(0.2043)2).

3 4 5 6 7
0

0.2

0.4

0.6
p(ỹ)

3 4 5 6 7
0

1

2
p(ỹ|y)

cavendish

for(i IN 1 : n)

theta

y[i]

for(i IN 1 : n)

ypred

theta

y[i]

The predictive distribution can be computed in WinBUGS with

model {
for (i in 1:n) { y[i] ∼ dnorm(theta,25) }
theta ∼ dnorm(5,2)
ypred ∼ dnorm(theta,25)

}

The diagram on the right is the DAG (directed acyclic
graph) representation of the model, drawn with Doodle-
BUGS. The ellipses denote stochastic nodes (variables
that have a probability distribution), and the directed
edges (arrows) indicate conditional dependence. Repeated parts of the graph are con-
tained in a loop construct called a “plate”.

The results after 2000 simulation steps are

12



node mean sd 2.5% median 97.5%
theta 5.483 0.04124 5.402 5.484 5.564
ypred 5.484 0.2055 5.093 5.486 5.88

5 Single-Parameter Models
In this section we look at some standard one-parameter models whose posterior and pre-
dictive distributions can be found in closed form. This is accomplished by choosing priors
that are conjugate to the likelihood. A family C of distributions is said to be conjugate to
a likelihood distribution if, for every prior chosen from C , the posterior also belongs to C .
In practice, conjugate families are parametrised, and by choosing appropriate parameter
values you can usually obtain a distribution that is an acceptable model of your prior state
of knowledge.

The conjugate families and inference solutions that will be presented in this section
are summarised below.

yi |θ ∼ θ ∼ θ | y1:n ∼ ỹ |y1:n ∼
Normal(θ ,v) Normal(m0,w0) Normal(mn,wn) Normal(mn,v+wn)

Binomial(1,θ) Beta(α,β ) Beta(α + s,β +n− s) Binomial(1, α+s
α+β+n)

Poisson(θ) Gamma(α,β ) Gamma(α + s,β +n) NegBin(α + s,β +n)

Exp(θ) Gamma(α,β ) Gamma(α +n,β + s)

Normal(m,θ) InvGam(α,β ) InvGam(α + n
2 ,β + n

2 s2
0)

s = ∑
n
i=1 yi, ȳ = s/n, 1

wn
= 1

w0
+ 1

v/n , mn = (m0
w0

+ ȳ
v/n)wn, s2

0 = 1
n ∑

n
i=1(yi−m)2

The properties of the distributions are summarised below.

x∼ p(x) x ∈ E(x) mode(x) V(x)

Normal(µ,σ2) 1√
2πσ

exp
(
− (x−µ)2

2σ2

)
R µ µ σ 2

Binomial(n, p)
(n

x

)
px(1− p)n−x {0,1, . . . ,n} np b(n+1)pc np(1− p)

Beta(α,β ) Γ(α+β )
Γ(α)Γ(β )xα−1(1− x)β−1 [0,1] α

α+β

α−1
α+β−2

αβ

(α+β )2(α+β+1)

Poisson(λ ) 1
x! λ

xe−λ {0,1, . . .} λ bλc λ

Gamma(α,β ) β α

Γ(α)xα−1e−βx (0,∞) α

β

α−1
β

α

β 2

Exp(λ ) λe−λx (0,∞) 1
λ

0 1
λ 2

NegBin(α,β )
(x+α−1

α−1

)
( β

β+1)α( 1
β+1)x {0,1, . . .} α

β

α

β 2 (β +1)

InvGam(α,β ) β α

Γ(α)x−(α+1)e−β/x (0,∞) β

α−1
β

α+1
β 2

(α−1)2(α−2)
µ ∈ R, σ > 0, α > 0, β > 0, λ > 0, n ∈ {1,2, . . .}, p ∈ [0,1]

5.1 Estimating the mean of a normal likelihood
This is the situation that was considered in sections 3 and 4: we have real-valued obser-
vations y1, . . . ,yn that are assumed to be mutually independent given θ and identically
normally distributed with unknown mean θ and known variance v. The likelihood is thus

p(y1:n |θ) =
(

1
2πv

)n/2

e−
1
2v ∑

n
i=1(yi−θ)2

. (6)
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For a normal prior θ ∼ Normal(m0,w0), we showed earlier that the posterior is θ |y ∼
Normal(mn,wn) with

mn =
m0
w0

+ nȳ
v

1
w0

+ n
v

, wn =
1

1
w0

+ n
v

.

where ȳ = 1
n ∑

n
i=1 yi. The posterior belongs to the same family of distributions as the prior,

that is, the family of normal distributions is conjugate to the likelihood (6).
The posterior mean can be written as the weighted average of the prior mean m0 and

the sample mean ȳ:
mn =

wn

w0
·m0 +

wn

v/n
· ȳ

The weights reflect the relative importance given to the prior and the observations. The
ratio of the weights, 1

w0
: 1

v/n , is the ratio of the precisions (reciprocal variances) of the
prior and sample mean.

Another way of writing the posterior mean formula is

mn = ȳ− (ȳ−m0)
v/n

w0 + v/n
,

which shows “shrinkage” as the posterior mean mn is pulled away from the sample mean
ȳ toward the prior mean m0 ().

These alternative formulas indicate how the posterior mean is a compromise between
prior beliefs and observations. We see that as the number of observations grows, mn→ ȳ,
regardless of the prior mean and variance. Thus, given enough data, the choice of prior
becomes irrelevant.

When the prior is diffuse relative to the precision of the observations (e.g. a normal
prior with w0 � v

n ), then mn ≈ ȳ and wn ≈ v
n , and the 95% credibility interval can be

approximated as ȳ±1.96
√ v

n .

If prior information about the location of the mean is rather weak, one can consider
using a constant prior

p(θ) ∝ κ (a constant).

This of course does not describe a probability density: a proper density satisfies
∫

∞

−∞
p(θ)dθ =

1, and with a constant prior this integral diverges for κ > 0 and is equal to zero for κ = 0.
However, this improper prior can sometimes be a convenient shortcut: substituting it into
Bayes’s rule produces the posterior

p(θ |y) ∝ κ p(y |θ) ∝ exp

(
− 1

2v

n

∑
i=1

(yi−θ)2

)

which is a proper density function, because the integral

∫
∞

−∞

exp

(
− 1

2v

n

∑
i=1

(yi−θ)2

)
dθ

is convergent. The posterior that we obtain is

θ |y∼ Normal(ȳ,
v
n
),

which the same distribution as the limiting case w0→∞ of a posterior that is based on the
proper prior θ ∼ Normal(m0,w0). One should in general however be careful about using
improper priors, because they can in some cases lead to improper posteriors. Also, they
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can lead to difficulties in hypothesis testing (and decision theory in general). Improper
priors cannot be used in WinBUGS.

Situations can arise where there is a serious conflict between the observations and the
prior, that is, the likelihood is small whenever the prior is large, and vice versa. In such
a situation, the product of the prior and likelihood is small for all θ , and the shape of the
posterior is determined by the tails of the prior and likelihood. When prior and likelihood
conflict, the posterior can be quite sensitive to the shapes of the tails. For example, if
the prior is θ ∼Normal(0,1) and the likelihood is y |θ ∼Normal(θ ,1), then the observa-
tion y = 10 produces a posterior whose mean is halfway between the observation and the
prior’s zero mean:

0 10
0

0.5 normal
prior likelihood

posterior

0 10
0

0.5 student(8)
prior

Replacing the standard normal prior by an 8-degree of freedom Student-t distribution4

with the same mean and variance causes a dramatic shift in the posterior toward the like-
lihood:

0 10
0

0.5 normal
prior likelihood

posterior

0 10
0

0.5 student(8)
prior

Generally, in case of conflict the posterior will be dominated by the distribution with the
lighter tail.

The Student-t distribution is often used as a heavy-tailed alternative to the normal
distribution for both the likelihood (because extreme values typically show up in real data
more than the normal distribution predicts) and for the prior (to ensure that observations
will dominate in information-conflict situations). Summary values (mean, variance, HDI,
etc.) for heavy-tailed model posteriors usually have to be computed numerically.

5.2 Estimating the probability parameter in a binomial model
A Bernoulli trial has two possible results, conventionally termed “success” and “failure”,
with the probability of success denoted θ . The result of an observation is represented
as yi = 1 for success and yi = 0 for failure. The problem (first considered by Bayes and
Laplace) is to infer θ from a set of such observations.

The likelihood pmf for a single observation is

p(yi |θ) =
{

θ (yi = 1)
1−θ (yi = 0)

}
= θ

yi(1−θ)1−yi (yi ∈ {0,1}),

4 The pdf for the Student-t distribution with ν degrees of freedom x ∼ tν(µ,σ2) is p(x) =
Γ((ν+1)/2)

Γ(ν/2)
√

νπσ2

(
1+ 1

ν

( x−µ

σ

)2
)−(ν+1)/2

, and E(x) = mode(x) = µ for ν > 1, V(x) = ν

ν−2 σ2 for ν >

2. The standard Student-t distribution tν(0,1) is denoted tν ; x∼ tν(µ,σ2) implies (x−µ)/σ ∼ tν .
The distribution is named for the pseudonym of its author.
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where 00 is taken to be equal to 1. The likelihood pmf of a sequence y1, . . . ,yn that is
assumed to be mutually independent given θ is then

p(y1:n |θ) =
n

∏
i=1

θ
yi(1−θ)1−yi = θ

s(1−θ)n−s, (7)

where s = ∑
n
i=1 yi is the number of successes. Note that s is the only feature of the ob-

servations that appears in the likelihood, and the inference problem could equally well be
stated with s treated as the observation, in which case the likelihood distribution would be
s |θ ∼ Binomial(n,θ).

Computations are facilitated by taking as prior a beta distribution Beta(α,β ) whose
parameters α, β are chosen so as to give an acceptable approximation of your prior state
of knowledge. The beta distribution has pdf

p(θ) =
Γ(α +β )
Γ(α)Γ(β )

θ
α−1(1−θ)β−1

∝ θ
α−1(1−θ)β−1 (θ ∈ [0,1])

where Γ is the gamma function5 and the parameters α and β are positive. The uniform
distribution corresponds to the case α = β = 1. The distribution is named after the nor-
malisation factor of its pdf, the beta function

B(α,β ) =
Γ(α)Γ(β )
Γ(α +β )

.

The mean, variance and mode of the Beta(α,β ) distribution are

E(θ) =
α

α +β
, V(θ) =

αβ

(α +β )2(α +β +1)
, mode(θ) =

α−1
α +β −2

.

The clever way to compute the mean is

E(θ) =
∫ 1

0
θ

Γ(α +β )
Γ(α)Γ(β )

θ
α−1(1−θ)β−1 dθ

=
Γ(α +1)Γ(α +β )
Γ(α)Γ(α +β +1)

∫ 1

0

Γ(α +β +1)
Γ(α +1)Γ(β )

θ
(α+1)−1(1−θ)β−1 dθ

=
αΓ(α)
Γ(α)

· Γ(α +β )
(α +β )Γ(α +β )

·1

=
α

α +β
.

The integral in the second line is equal to 1 because it is the integral of the pdf of Beta(α +
1,β ). A similar trick can be used to compute the variance — details are left as an exercise.

In practical situations it may be easier for you to specify the prior’s mean E(θ) = m0
and variance V(θ) = w0, then use the formulas

α =
m0(m0−m2

0−w0)
w0

, β =
m0−m2

0−w0

w0(1−m0)

to define the beta distribution parameters.
With a likelihood p(y1:n |θ) = θ s(1− θ)n−s and prior p(θ) ∝ θ α−1(1− θ)β−1, the

posterior is given by Bayes’s formula as

p(θ |y1:n) ∝ θ
α+s−1

θ
β+n−s−1,

5 Γ(z) =
∫

∞

0 tz−1e−t dt satisfies the recursion Γ(z) = (z−1)Γ(z−1) with Γ(1) = 1, so Γ(n) =
(n−1)! for n ∈ {1,2, ...}. Stirling’s formula is Γ(z)≈

√
2πezzz− 1

2 .
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that is, θ |y1:n ∼ Beta(α + s,β + n− s). Notice that the posterior belongs to the same
family of distributions as the prior, that is, the family of beta distributions is conjugate to
the likelihood (7). The α and β in the prior are updated to α + s and β + n− s, and the
summary statistics are updated similarly, for example the posterior mean and the posterior
mode (MAP estimate) are

E(θ |y1:n) =
α + s

α +β +n
, mode(θ |y1:n) =

α + s−1
α +β +n−2

.

As n→ ∞, the mean and mode both tend toward ȳ = s/n. Also, with large n one can use
the normal approximation to define an approximate 95% credibility interval as

E(θ |y)±1.96
√

V(θ |y).

The predictive posterior distribution ỹ |y1:n for a single observation has the pmf spec-
ified by

P(ỹ = 1 |y1:n) =
∫ 1

0
P(ỹ = 1 |θ)︸ ︷︷ ︸

=θ

p(θ |y1:n)dθ = E(θ |y1:n) =
α + s

α +β +n
.

As the number of observations grows, the predicted probability that a trial will be a “suc-
cess” tends toward

lim
n→∞

α + s
α +β +n

=
s
n

= ȳ,

that is, the mean number of successes in the observation set, and the influence of the prior
disappears as n→ ∞.

The predictive posterior distribution for the number of successes s̃ in m observations
has the pmf

p(s̃ |y1:n) =
∫ 1

0
p(s̃ |θ)p(θ |y1:n)dθ

=
∫ 1

0

(
m
s̃

)
θ

s̃(1−θ)m−s̃ θ α+s−1(1−θ)β+n−s−1

B(α + s,β +n− s)
dθ

=
(

m
s̃

)
B(α + s+ s̃,β +n+m− s− s̃)

B(α + s,β +n− s)
.

This pmf is called a beta-binomial distribution — the predictive posterior is not a binomial
distribution! The predictive posterior mean is

E(s̃ |y1:n) = E(ỹ1 + · · ·+ ỹm |y1:n) = E(ỹ1 |y1:n)+ · · ·+E(ỹm |y1:n) = m · α + s
α +β +n

.

Example: Opinion survey An opinion survey is conducted to determine the propor-
tion θ of the population that is in favour of a certain policy. After some discussion with
various experts, you determine that the prior belief has E(θ) > 0.5, but with a lot of un-
certainty. The results of the survey are that, out of n = 1000 respondents, s = 650 were in
favour of the policy. What do you conclude?

0 1
0

2

θ

p(θ)

prior

0 1
0

20

p(θ|y)

posterior

You decide on a prior distribution with E(θ) = 0.6
and V(θ) = 0.32, which corresponds to a beta distribu-
tion with α = 1 and β = 2

3 , that is,

p(θ) ∝ (1−θ)−1/3
θ ∈ [0,1].
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The survey results give you a posterior distribu-
tion with density θ |y1:n ∼ Beta(651,350.667), whose
mean and variance are

E(θ |y1:n) = 0.6499, V(θ |y1:n) = 0.01512.

The 95% credibility interval found using the normal approximation is

0.6499±1.96 ·0.0151 = (0.620,0.679),

which agrees (to three decimals) with the 95% credibility interval computed using the
inverse beta cdf. The probability that the 1001st respondent will be in favour is P(ỹ =
1 |y1:n) = E(θ |y1:n) = 0.6499.

In the following WinBUGS model, we base the inference on the number of successes
observed, and use the likelihood s |θ ∼Binomial(n,θ). The rectangle in the DAG denotes
a constant.

Opinion survey

model;
{

theta ~ dbeta(1,0.666)
y ~ dbin(theta,n)

}

data
list(y=650,n=1000)

inits
list(theta=0.5)

ypred s

ntheta

theta sample: 2000

   0.55     0.6    0.65

    0.0

   10.0

   20.0

   30.0

model {
s ∼ dbin(theta,n)
theta ∼ dbeta(1,0.667)
ypred ∼ dbin(theta,1)

}

The data are entered as

list(s=650,n=1000)

The results after 2000 simulation steps are

node mean sd 2.5% median 97.5%
theta 0.6497 0.01548 0.6185 0.6499 0.6802
ypred 0.6335

5.3 Poisson model for count data
Let #I denote the number of occurrences of some phenomenon that are observed in an
interval I (of time, usually). For example, #I could be the number of traffic accidents on
a given stretch of highway, the number of particles emitted in the radioactive decay of an
isotope sample, the number of outbreaks of a given disease in a given city. . . The number
y of occurrences per unit time is often modelled as y |θ ∼ Poisson(θ), which has the pmf
P(#(t0, t0 +1] = y |θ) = (θ)y

y! e−θ (y ∈ {0,1,2, . . .}).
The Poisson model can be derived as follows. Assume that the events are relatively

rare and occur at a constant rate θ , that is,

P(#(t, t +h] = 1 |θ) = θh+o(h), P(#(t, t +h]≥ 2 |θ) = o(h),
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where o(h) means lim
h→0

o(h)
h = 0. Assume also that the numbers of occurences in distinct

intervals are independent given θ . Letting Pk(t) := P(#(0, t] = k |θ), we have

P0(t +h) = P(#(0, t] = 0 & #(t, t +h] = 0 |θ)
= P(#(t, t +h] = 0 |#(0, t] = 0,θ)P(#(0, t] = 0 |θ)
= (1−θh+o(h))P0(t).

Letting h→ 0 gives the differential equation P′0(t) =−θP0(t), which with the initial con-
dition P0(0) = 1 has the solution P0(t) = e−θ t . Similary, for k > 0 we have

Pk(t +h) = P(#(0, t] = k & #(t, t +h] = 0 |θ)
+P(#(0, t] = k−1 & #(t, t +h] = 1 |θ)

= (1−θh+o(h))Pk(t)+(θh+o(h))Pk−1(t),

which in the limit h→ 0 gives the differential equations

P′k(t) =−θPk(t)+θPk−1(t).

Solving these with the initial conditions Pk(0) = 0 (k > 0) gives

Pk(t) =
(θ t)k

k!
e−θ t , (k ∈ {0,1,2, . . .}),

which for t = 1 is the Poisson pmf.
Thus, a Poisson-distributed random variable y |θ ∼ Poisson(θ) has the pmf

P(y = k |θ) =
θ k

k!
e−θ , (k ∈ {0,1,2, . . .})

and the summary statistics

E(y |θ) = θ , V(y |θ) = θ .

The likelihood pmf of a sequence y1, . . . ,yn of Poisson-distributed counts on unit-
length intervals, assumed to be mutually independent conditional on θ , is

p(y1:n |θ) =
n

∏
i=1

(θ)yi

yi!
e−θ

∝ θ
se−nθ

where s = ∑
n
i=1 yi.

The conjugate prior for the Poisson distribution is the Gamma(α,β ) distribution,
which has the pdf

p(θ) =
β α

Γ(α)
θ

α−1e−βθ (θ > 0).

The distribution gets its name from the normalisation factor of its pdf. The mean, variance
and mode of θ ∼ Gamma(α,β ) are

E(θ) =
α

β
, V(θ) =

α

β 2 , mode(θ) =
α−1

β
.

The formula for the mean can be derived as follows:

E(θ) =
∫

∞

0
θ

β α

Γ(α)
θ

α−1e−βθ dθ

=
Γ(α +1)
βΓ(α)

∫
∞

0

β α+1

Γ(α +1)
θ

(α+1)−1e−βθ dθ

=
αΓ(α)
βΓ(α)

·1 =
α

β
.
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The parameter β > 0 is a scaling factor (note that some tables and software use 1/β

instead of β to specify the gamma distribution); the parameter α > 0 determines the
shape:

0 10
0
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 p(θ)

θ

α = 1

α = 2

α = 5

Gamma(α,1)

With the likelihood pdf p(y1:n |θ) ∝ θ se−nθ and the prior pdf p(θ) ∝ θ α−1e−βθ ,
Bayes’s formula gives the posterior pdf

p(θ |y1:n) ∝ θ
α+s−1e−(β+n)θ ,

that is, θ |y1:n ∼ Gamma(α + s,β + n). The α and β parameters in the prior’s gamma
distribution are thus updated to α +s and β +n in the posterior’s gamma distribution. The
summary statistics are updated similarly, in particular the posterior mean and posterior
mode (MAP estimate) are

E(θ |y1:n) =
α + s
β +n

, mode(θ |y1:n) =
α + s−1

β +n
.

As n→ ∞, both the posterior mean and posterior mode tend to ȳ = s/n.
The prior predictive distribution (marginal distribution of data) has the pmf

P(ỹ = k) =
∫

∞

0
P(ỹ = k |θ)p(θ)dθ =

∫
∞

0

θ k

k!
e−θ β α

Γ(α)
θ

α−1e−βθ

=
Γ(α + k)β α

k!(β +1)α+kΓ(α)

∫
∞

0

(β +1)α+k

Γ(α + k)
θ

α+k−1e−(β+1)θ dθ︸ ︷︷ ︸
=1

=
(α + k−1)(α + k−2) · · ·αΓ(α)

Γ(α)k!

(
β

β +1

)α( 1
β +1

)k

=
(

α + k−1
α−1

)(
β

β +1

)α( 1
β +1

)k

.

This is the pmf of the negative binomial distribution. The summary statistics of ỹ ∼
NegBin(α,β ) are

E(ỹ) =
α

β
, V(ỹ) =

α

β 2 +
α

β
.

The negative binomial distribution also happens to model the number of Bernoulli failures
occurring before the αth success when the probability of success is p = β

β+1 . For this
reason, many software packages (including Matlab, R and WinBUGS) use p instead of β

as the second parameter to specify the negative binomial distribution.
The posterior predictive distribution can be derived similarly as the prior predictive,

and is
ỹ |y1:n ∼ NegBin(α + s,β +n).
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Example: moose counts A region is divided into equal-area (100 km2) squares and
the number of moose spotted in each square is recorded. The prior distribution is θ ∼
Gamma(4,0.5), which corresponds to the prior predictive pmf ỹ∼ NegBin(4,0.5).
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0

0.12

 p(θ)

θ
0 5 10 15 20

0

0.1

P(ỹ = k)

k

1 5 9 13 17
0

1

2

3

4

#    

y

n 15
mean 7.07
sd 4.51

On a certain day the following moose counts are col-
lected from an aerial survey of 15 squares:

5 7 7 12 2
14 7 8 5 6
18 6 4 1 4

The posterior distribution for the rate (i.e. number of
moose per 100 km2) is θ |y1:15 ∼ Gamma(110,15.5), for which

E(θ |y1:15) = 7.0968, V(θ |y1:15) = 0.67672, mode(θ |y1:15) = 7.0323

and the 95% credibility interval is [5.83,8.48]. (The normal approximation gives the
interval [5.77,8.42].) The predictive posterior distribution is ỹ |y1:n ∼ NegBin(110,15.5).

0 5 10 15 20
0

0.6

p(θ|y)

θ
0 5 10 15 20

0

0.15

P(ỹ = k|y)

k

Moose counts

for(i IN 1 : n)

ypred

theta

y[i]

A WinBUGS model for this problem is

model {
for (i in 1:n) { y[i]∼ dpois(theta) }
theta ∼ dgamma(4,0.5)
ypred ∼ dpois(theta)

}

The data are entered as

list( y=c(5,7,7,12,2,14,7,8,5,6,18,6,4,1,4), n=15)

The results are
node mean sd 2.5% median 97.5%
theta 7.107 0.6608 5.85 7.101 8.482
ypred 7.098 2.838 2.0 7.0 13.0
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A more general Poisson model can be used for counts of occurrences in intervals of
different sizes. The model is

yi |θ ∼ Poisson(θ ti)

where the ti are known positive values, sometimes called exposures. Assuming as usual
that the counts are mutually independent given θ , the likelihood is

p(y1:n |θ) ∝ θ
se−θT

where s = ∑
n
i=1 yi and T = ∑

n
i=1 ti. With the conjugate prior θ ∼ Gamma(α,β ), the pos-

terior is
θ |y1:n ∼ Gamma(α + s,β +T ),

with
E(θ |y1:n) =

α + s
β +T

, mode(θ |y1:n) =
α + s−1

β +T
.

As n→ ∞, both the posterior mean and posterior mode tend towards s/T .

5.4 Exponential model for lifetime data
Consider a non-negative random variable y used to model intervals such as the time-to-
failure of machine components or a patient’s survival time. In such applications, it is
typical to specify the probability distribution using a hazard function, from which the cdf
and pdf can be deduced (and vice versa).

The hazard function is defined by

h(t)dt = P(t < y≤ t +dt︸ ︷︷ ︸
fail in (t,t+dt]

| t < y︸︷︷︸
OK at t

) =
P(t < y≤ t +dt)

P(t < y)
=

p(t)dt
S(t)

,

where p is the pdf of y and S(t) := P(t < y) is called the reliability function. Now, because
p(t) =−S′(t), we have the differential equation h(t) =−S′(t)

S(t) with initial condition S(0) =
1, which can be solved to give

S(t) = e−
∫ t

0 h(τ)dτ .

In particular, for constant hazard h(t) = θ the reliability is S(t) = e−θ t and the density is
the exponential distribution pdf

p(t) = θe−θ t .

Suppose a component has worked without failure for s time units. Then according to the
constant-hazard model, the probability that it will survive at least t time units more is

P(y > s+ t |y > s) =
P(y > s & y > s+ t)

P(y > s)
=

P(y > s+ t)
P(y > s)

=
e−θ(t+s)

e−θs = e−θ t ,
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which is the same probability as for a new component! This is the “lack-of-memory” or
“no-aging” property of the constant-hazard model.

For an exponentially distributed random variable y |θ ∼ Exp(θ) the mean and vari-
ance are

E(y |θ) =
1
θ

, V(y |θ) =
1

θ 2 .

The exponential distribution also models the durations (waiting times) between consecu-
tive Poisson-distributed occurrences.

For exponentially-distributed samples yi |θ ∼ Exp(θ) that are mutually independent
given θ , the likelihood is

p(y1:n |θ) =
n

∏
i=1

θe−θyi = θ
ne−θs

where s = ∑
n
i=1 yi. Using the conjugate prior θ ∼ Gamma(α,β ), the posterior pdf is

p(θ |y1:n) ∝ θ
α−1e−βθ ·θ ne−θs = θ

α+n−1e−(β+s)θ ,

that is, θ |y1:n ∼ Gamma(α +n,β + s), for which

E(θ |y1:n) =
α +n
β + s

, mode(θ |y1:n) =
α +n−1

β + s
, V(θ |y1:n) =

α +n
(β + s)2 .

It often happens that lifetime or survival studies are ended before all the subjects
have failed or died. Then, in addition to k observations y1, . . . ,yk ∈ [0,L], we have n− k
samples whose lifetimes are known to be y j > L, but are otherwise unknown. This is
called a censored data set. The censored observations can be modelled as Bernoulli trials
with “success” (z j = 1), corresponding to y j > L, having the probability

P(y j > L |θ) = e−θL.

The likelihood of the censored data is

p(y1:k,z1:n−k |θ) =
k

∏
i=1

θe−θyi ·
n−k

∏
j=1

e−θL = θ
ke−θ(sk+(n−k)L),

where sk = ∑
k
i=1 yi. With the conjugate prior θ ∼ Gamma(α,β ), the posterior pdf is

p(θ |y1:k,z1:n−k) ∝ θ
α−1e−βθ ·θ ke−θ(sk+(n−k)L) = θ

α+k−1e−(β+sk+(n−k)L)θ ,

that is, θ |y1:k,z1:n−k ∼ Gamma(α + k,β + sk +(n− k)L).

Example: Censored lifetime data In a two-year survival study of 15 cancer pa-
tients, the lifetimes (in years) are

1.54,0.70,1.23,0.82,0.99,1.33,0.38,0.99,1.97,1.10,0.40

and 4 patients are still alive at the end of the study. Assuming mutually independent
yi |θ ∼ Exp(θ) conditional on θ , and choosing the prior θ ∼Gamma(2,1), we obtain the
posterior

θ |y1:11,z1:4 ∼ Gamma(2+11,1+11.45+4 ·2) = Gamma(13,20.45)

which has mean 0.636, variance (0.176)2, and 95% credibility interval (0.338,1.025).
The normal approximation has 95% credibility interval (0.290,0.981).
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Lifetimes

model {
theta ~ dgamma(2,1)
for( i in 1 : n ) {

y[i] ~ dexp(theta)I(L[i],)
}

}

data
list(y=c(1.54,0.7,1.23,0.82,0.99,1.33,0.38,0.99,1.97,1.10,0.40,NA,NA,NA,NA),n=15,

L=c(0,0,0,0,0,0,0,0,0,0,0,2,2,2,2))

inits
list(theta=0.6)

Note: press "gen inits" to initialise the chain for y[12:15]

node mean sd MC error 2.5% median 97.5% start sample
theta 0.6361 0.1789 0.00437 0.3343 0.6225 1.045 1 2000

for(i IN 1 : n)

L[i]y[i]

theta

theta sample: 2000

    0.0     0.5     1.0

    0.0

    1.0

    2.0

    3.0

A WinBUGS model for this problem is

model {
theta ∼ dgamma(2,1)
for (i in 1:n) {y[i] ∼ dexp(theta)I(L[i],)}

}

Censoring is represented by appending the I(lower,upper) modifier to the distribution
specification. The data is entered as

list(y=c(1.54,0.70,1.23,0.82,0.99,1.33,0.38,0.99,1.97,1.10,0.40,
NA,NA,NA,NA), n=15, L=c(0,0,0,0,0,0,0,0,0,0,0,2,2,2,2))

where the censored observations are represented by NA. The results after 2000 simulation
steps are

node mean sd 2.5% median 97.5%
theta 0.6361 0.1789 0.3343 0.6225 1.045

5.5 Estimating the variance of a normal model
Suppose we have real-valued observations y1, . . . ,yn that are mutually independent given
φ and identically normally distributed with known mean m and unknown variance φ . The
likelihood is then

p(y1:n |φ) =
(

1
2πφ

)n/2

e−
n

2φ
s2

0

where s2
0 := 1

n ∑
n
i=1(yi−m)2.

The conjugate prior for this likelihood is the inverse gamma distribution InvGam(α,β ),
which has the pdf

p(φ) =
β α

Γ(α)
φ
−(α+1)e−β/φ (φ > 0).

The name of this distribution comes from the fact that if τ ∼ Gamma(α,β ) and φ = 1
τ

then φ ∼ InvGam(α,β ), as the reader can (should!) verify. The mean, variance and mode
of φ ∼ InvGam(α,β ) are

E(φ) =
β

α−1
(α > 1); V(φ) =

β 2

(α−1)2(α−2)
(α > 2); mode(φ) =

β

α +1
.
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The inverse gamma distribution parameter β > 0 is a scaling factor; the parameter α > 0
determines the shape:
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 p(φ )

φ

α = 1

α = 2

α = 5 InvGam(α,1)

With the likelihood pdf p(y1:n |φ) ∝ φ−n/2e−
n

2φ
s2

0 and the prior pdf p(φ) ∝ φ−(α+1)e−β/φ ,
Bayes’s formula gives the posterior pdf

p(φ |y1:n) ∝ φ
−(α+ n

2 +1)e−(β+ n
2 s2

0)/φ ,

that is, φ |y1:n ∼ InvGam(α + n
2 ,β + n

2 s2
0). The α and β parameters in the prior’s inverse

gamma distribution are thus updated to α + n
2 and β + n

2 s2
0 in the posterior’s inverse gamma

distribution. The summary statistics are updated similarly, in particular the posterior mean
and posterior mode (MAP estimate) are

E(φ |y1:n) =
β + n

2 s2
0

α + n
2 −1

, mode(φ |y1:n) =
β + n

2 s2
0

α + n
2 +1

.

As n→ ∞, both the posterior mean and posterior mode tend to s2
0 = 1

n ∑
n
i=1(yi−m)2.

An alternative derivation of these results can be obtained by considering the unknown
parameter to be the precision τ = 1

v . Then the likelihood has pdf p(y1:n |τ) ∝ τn/2e−
n
2 τs2

0 ,
the conjugate prior is τ ∼Gamma(α,β ) with pdf p(τ) ∝ τα−1e−βτ , and Bayes’s formula
gives the posterior pdf

p(τ |y1:n) ∝ τ
α−1+ n

2 e−(β+ n
2 s2

0)τ ,

that is, τ |y1:n ∼ Gamma(α + n
2 ,β + n

2 s2
0).

6 Jeffreys’s prior
In their solution for the problem of estimating the “probability of success” θ from a set
of observations of Bernoulli trials, Bayes and Laplace used a uniform distribution as the
prior for θ , that is, θ ∼ Beta(1,1). Intuitively, the uniform distribution appears to be a
natural choice to model a state of complete ignorance: you have no prior preference for
any value of θ because all values are equally likely.

There is, however, a flaw in this way of thinking. If you are completely ignorant about
θ , then clearly you are completely ignorant about any function of θ . But if θ has a uniform
density, the density for ψ = h(θ) is not generally uniform! For example, if ψ = θ 2 and

θ ∝ 1, then p(ψ) ∝ ψ
−1

2 . Using the uniform density as a general ‘ignorance prior’ is
therefore not consistent with the change-of-variables rule for parameter transformations.

Jeffreys proposed the following general rule for selecting a prior pdf to represent
ignorance:

p(θ) ∝
√

J(θ), where J(θ) =−E

(
∂ 2 log p(y |θ)

∂θ 2 |θ
)
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is the Fisher information. This rule is invariant to smooth one-to-one transformations
ψ = h(θ), in the sense that p(ψ) =

√
J(ψ) and p(θ) =

√
J(θ) are consistent with the

change-of-variables rule p(ψ) = p(θ)/h′(θ), because

J(ψ) = −E

(
∂ 2 log p(y |ψ)

∂ψ2 |ψ
)

= −E

(
∂ 2 log p(y |θ)

∂θ 2

(
1
h′

)2

|θ
)

= J(θ)
(

1
h′

)2

.

In the case of the binomial data model we have p(yi |θ)= θ yi(1−θ)1−yi and E(yi |θ)=
θ . Then

log p(yi |θ) = yi logθ +(1− yi) log(1−θ),

∂ log p(yi |θ)
∂θ

=
yi

θ
− 1− yi

1−θ
,

∂ 2 log p(yi |θ)
∂θ 2 = − yi

θ 2 −
1− yi

(1−θ)2 ,

−E

(
∂ 2 log p(yi |θ)

∂θ 2 |θ
)

=
θ

θ 2 +
1−θ

(1−θ)2 =
1

θ(1−θ)
.

0 1
0

3

 p(θ )

θ

The Jeffreys prior pdf for the binomial model is therefore

p(θ) ∝ θ
−1

2 (1−θ)−
1
2 ,

that is, θ ∼ Beta(1
2 , 1

2). The density is higher at the ends of
the interval [0,1] than in the middle, which may come as a
surprise. The corresponding posterior (assuming observa-
tions y1, . . . ,yn to be conditionally independent given θ ) is
Beta(1

2 +∑yi,
1
2 +n−∑yi).

Jeffreys priors for commonly encountered data models are:

yi |θ ∼ p(θ) ∝ θ | y1:n

Normal(θ ,v) 1 Normal(1
n ∑yi,

v
n)

Binomial(1,θ) θ
−1

2 (1−θ)−
1
2 Beta(1

2 +∑yi,
1
2 +n−∑yi)

Poisson(θ) θ
−1

2 Gamma(1
2 +∑yi,n)

Exp(θ) θ−1 Gamma(n,∑yi)

Normal(m,θ) θ−1 InvGam(n
2 , 1

2 ∑(yi−m)2)

Although it has some attractive properties, there are several reasons why Jeffreys’s
rule should not be your default way to choose a prior:

• It is not defined for all data models (the Fisher information expectation integral
may diverge), and often produces improper priors.

• It is difficult to apply in problems with several parameters.

• It is based on the likelihood, rather than being based entirely on prior information.
Thus it is not a Bayesian procedure and it leads to a logical inconsistency called
“violation of the likelihood principle”; this is explained in the next chapter.
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7 Some General Principles

7.1 Ancillarity and Sufficiency
In Frequentist statistics the theory of ancillararity and sufficiency is a tricky but essential
element of inference. In Bayesian inference, this theory is not needed to do inference, so
this section can be skipped without loss of continuity with the rest of the text.

Any data y that is independent of the parameter θ is said to be ancillary. For ancillary
data we have p(θ |y) = p(θ), that is, the posterior probability distribution (state of knowl-
edge) is the same as the prior probability distribution (state of knowledge): ancillary data
tells us nothing (directly) about θ .

Ancillarity might give information indirectly, however. For example, if y = (y1,y2),
then

p(θ |y) = p(θ |y1,y2) ∝ p(θ |y1)p(y2 |y1,θ),

If y1 is ancillary, then this reduces to

p(θ |y) = p(θ)p(y2 |y1,θ).

Thus, if y1 affects the distribution of y2 given θ , then in this indirect way it can have an
influence on the posterior distribution.

Example: Urn and Die An urn contains an unknown number θ of balls, all of them
red. A die is tossed with the result y1 ∈ {1,2, . . . ,6}, and y1 black balls are added to the
urn. Obviously, y1 is ancillary: it does not change our degree of belief (whatever it may
be) about θ (the number of red balls).

Next, the urn is shaken, and a ball is drawn: we set y2 = 1 if the drawn ball is red,
y2 = 0 otherwise. Then we have

P(y2 = 1 |y1,θ) =
θ

θ + y1
.

Inference about θ thus uses the observation y1, but the mechanism that produced y1 can
be ignored: it doesn’t matter, for example, whether the die is loaded. �

In our study of various basic single-parameter models in chapter 5, we found that, in
many cases, the only feature of the observations y1, . . . ,yn that was needed to define the
likelihood was the sum s = ∑i yi. Such a function of the data is called a sufficient statistic.
Let’s explain this concept more precisely.

In general, for data partitioned as y = (x,z), x is said to be sufficient if any of the
following conditions holds:

(a) p(θ |y) does not depend on z;

(b) p(z |x,θ) = p(z |x), that is, z is ancillary given x;

(c) p(y |θ) = q1(x,θ)q2(x,z).

The conditions are equivalent: condition (a) implies p(θ |x,z) = p(θ |x), which means
that z and θ are independent given x, which implies (b); condition (b) implies

p(y |θ) = p(x,z |θ) = p(x |θ)p(z |x,θ) = p(x |θ)︸ ︷︷ ︸
q1(x,θ)

p(z |x)︸ ︷︷ ︸
q2(x,z)
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which is condition (c); and condition (c) implies p(θ |y) ∝ q1(x,θ)p(θ), so (c) implies
(a). If x is sufficient then so is h(x) for any one-to-one function h.

For example, for yi∼ Normal(θ ,v) with y1, . . . ,yn independent given θ , the likelihood
is

p(y1:n |θ) =
(

1
2πv

)n/2

e−
1
2v ∑

n
i=1(yi−θ)2

=
(

1
2πv

)n/2

e−
n
2v (θ−ȳ)2

︸ ︷︷ ︸
q1(θ ,ȳ)

e−
1
2v ∑

n
i=1(yi−ȳ)2︸ ︷︷ ︸

q2(ȳ,y1:n)

and so ȳ is sufficient, and thus so is s = nȳ. The observations yi are ancillary given the
sample mean or given the sum.

Another example is yi ∼ Binomial(1,θ) with y1, . . . ,yn independent given θ ; the like-
lihood is

p(y1:n |θ) =
n

∏
i=1

θ
yi(1−θ)1−yi = θ

s(1−θ)n−s

and so s is sufficient.

7.2 Likelihood Principle and Stopping Rules
The likelihood principle is the precept that all information from observed data y that is
relevant to inferences about θ is found in the likelihood p(y |θ) (up to a multiplicative
factor that does not depend on θ ). This fundamental rule of logical consistency is satis-
fied automatically by Bayesian inference, because proportional likelihoods with the same
priors lead to the same posteriors.

Suppose we conduct an experiment (experiment A) in which we count the number s
of successes in a fixed predetermined number n of Bernoulli trials, with the observations
assumed mutually independent given the probability of success θ . Then, as we saw in
section 5.2, the likelihood pdf is

p(s |θ ,n) =
(

n
s

)
θ

s(1−θ)n−s, (8)

that is, s |θ ,n∼ Binomial(n,θ).
Now consider experiment B, which consists of counting the number of trials n needed

to get a fixed predetermined number s of successes. There are
(n−1

s−1

)
possible sequences

having s successes and n−s failures, because the last observation must be a success. Thus,
the likelihood for the number of trials is

p(n |θ ,s) =
(

n−1
s−1

)
θ

s(1−θ)n−s, (9)

that is, (n− s) |θ ,s∼ NegBin(s, θ

1−θ
).

If the number of successes and failures is the same in both experiments, the likeli-
hood functions (8) and (9) are proportional — their ratio is n/s. Thus, by the likelihood
principle, the influence of the data on inference about θ should be the same for both
experiments.

In Bayesian inference, when we learn the results of experiment A, our state of knowl-
edge about θ gets updated to the posterior distribution with pdf

p(θ |s,n) ∝ p(θ)θ s(1−θ)n−s. (10)
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When we learn the results of experiment B, if our prior state of knowledge about θ is
the same then the posterior is also (10). The Bayesian inferences about θ from the two
experiments are the same, in agreement with the Likelihood Principle.6

A useful consequence of the likelihood principle is the stopping rule principle, which
states that the information gained from a sequential experiment does not depend on the
rule adopted to terminate the data collection, provided only that this stopping rule does
not depend on θ (noninformative stopping). For example, suppose you plan out to carry
out a sequence of N Bernoulli trials, but the experiment is interrupted by some unrelated
unexpected event — say the client calls and demands an interim report — leaving you with
n < N observations. As a Bayesian data analyst, you can proceed to analyse the results
using the likelihood (8), the same as if it had been your intention all along to collect n
observations.

As another example, consider experiment C, which consists of collecting independent
Bernoulli samples, stopping as soon as the number of successes equals the number of
failures, or as soon as N samples have been collected, whichever comes first. N is fixed
to be very large, say N = 106, but finite, to ensure that the experiment can’t run forever.
Given the number of trials n and number of successes s from this experiment, you can
proceed using the likelihood

p(s,n |θ ,N) =
(

n
s

)
θ

s(1−θ)n−s,

and obtain exactly the same inference results about θ as if the data had come from exper-
iment A or B.7

As mentioned earlier, Jeffreys’s rule also conflicts with the likelihood principle. To
illustrate, consider experiment B. From (9) we have

log p(n |θ) = s logθ +(n− s) log(1−θ)+ log
(

n−1
s−1

)
,

∂ log p(n |θ)
∂θ

=
s
θ
− n− s

1−θ
,

∂ 2 log p(n |θ)
∂θ 2 = − s

θ 2 −
n− s

(1−θ)2 ,

−E

(
∂ 2 log p(x |θ)

∂θ 2 |θ
)

=
s

θ 2(1−θ)
[using E(n− s |θ ,s) =

s(1−θ)
θ

],

and so the Jeffreys prior is p(θ) ∝ θ−1(1−θ)−
1
2 , that is, θ ∼Beta(0, 1

2), an improper dis-
tribution. The Jeffreys prior for experiment A (calculated in section 6) is θ ∼ Beta(1

2 , 1
2).

Because the two Jeffreys priors differ and the likelihoods are proportional when both ex-
periments produce the same number of successes and failures, the posterior distributions
will differ.

8 Hypothesis Testing
As pointed out in section 4.1, Bayesian hypothesis testing is straightforward. For a hy-
pothesis of the form Hi : θ ∈ Θi, where Θi is a subset of the parameter space Θ, we can

6 The Frequentist hypothesis tests for the experiments A and B are different and generally give
different inferences — a violation of the likelihood principle.

7 Frequentist statistics does not work this way.
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compute the prior probability

πi = P(Hi) = P(θ ∈Θi)

and the posterior probability

pi = P(Hi |y) = P(θ ∈Θi |y).

Often, there are only two hypotheses, the “null hypothesis” H0 and its logical negation H1 :
θ 6∈ Θ0, called the “alternative hypothesis”. The hypothesis with the highest probability
can be chosen as the “best” hypothesis; a more sophisticated choice can be made using
Decision Theory (to be discussed in section 14).

Two hypotheses can be compared using odds. The posterior odds in favour of H0
against H1 given data y are given by the ratio

p0

p1
=

P(H0 |y)
P(H1 |y)

=
P(H0)
P(H1)︸ ︷︷ ︸
π0/π1

× P(y |H0)
P(y |H1)︸ ︷︷ ︸

B

.

The number B, called the Bayes factor, tells us how much the data alters our prior belief.
In general, the Bayes factor depends on the prior:

B =
P(H0 |y)/π0

P(H1 |y)/π1
=

∫
Θ0

p(θ |y)dθ/π0∫
Θ1

p(θ |y)dθ/π1
=

∫
Θ0

p(y |θ)p(θ)/π0 dθ∫
Θ1

p(y |θ)p(θ)/π1 dθ
.

However, when the parameter space has only two elements, the Bayes factor is the likeli-
hood ratio

B =
p(y |θ0)
p(y |θ1)

.

which does not depend on the choice of the prior. This interpretation applies in the fol-
lowing example.

Example: Transmission of hemophilia The human X chro-
mosome carries a gene that is essential for normal clotting of the
blood. The defect in this gene that is responsible for the blood disease
hemophilia is recessive: no disease develops in a woman at least one of
whose X chromosomes has a normal gene. However, a man whose X
chromosome has the defective gene develops the disease. As a result,
hemophilia occurs almost exclusively in males who inherit the gene
from non-hemophiliac mothers. Great Britain’s Queen Victoria (pic-
tured here) carried the hemophilia gene, and it was transmitted through
her daughters to many of the royal houses of Europe.

Question. Alice has a brother with hemophilia, but neither she, her
parents, nor her two sons (aged 5 and 8) have the disease. What is the probability that she
is carrying the hemophilia gene?

Solution. Let H0 : Alice does not carry the hemophilia gene, and H1: she does. The X
chromosome that Alice inherited from her father does not have the defective gene, because
he’s healthy. We know that Alice’s mother has one X chrosomome with the defective
gene, because Alice’s brother is sick8 and her mother is healthy. The X chromosome
that Alice inherited from her mother could be the good one or the bad one; let’s take

8 For simplicity, we neglect the fact that hemophilia can also develop spontaneously as a result
of a mutation.
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P(H0) = P(H1) = 1
2 as our prior, that is, we assume prior odds to be 1 to 1. Let Y denote

the fact that Alice’s two sons are healthy. Because the sons are not identical twins, we can
assume

P(Y |H1) =
1
2
· 1

2
=

1
4
, P(Y |H0) = 1.

The posterior probability is then

P(H1 |Y ) =
P(Y |H1)P(H1)

P(Y |H1)P(H1)+P(Y |H0)P(H0)
=

1
4 · 1

2
1
4 · 1

2 +1 · 1
2

=
1
5
,

and P(H0 |Y ) = 1− 1
5 = 4

5 . The posterior odds in favour of H0 against H1 are 4 to 1, much
improved (Bayes factor B = 4) compared to the prior odds. �

A one-sided hypothesis for a continuous parameter has a form such as H0 : θ ≤ θ0,
where θ0 is a given constant. This could represent a statement such as “the new fertilizer
doesn’t improve yields”. After you compute the posterior probability

p0 = P(H0 |y) = P(θ ≤ θ0 |y) =
∫

θ0

−∞

p(θ |y)dθ ,

you can make straightforward statements such as “The probability that θ ≤ θ0 is p0”, or
“The probability that θ > θ0 is 1− p0”.

Some practitioners like to mimic Frequentist procedures and choose beforehand a
“significance level” α (say, α = 5%), and then if p0 < α they “reject H0 (and accept H1)
at the α level of significance”. This is all rather convoluted, however, and as we shall
see in section 14, a systematic approach should be based on Decision Theory. Simply
reporting the probability value p0 is more direct and informative, and usually suffices.

A two-sided hypothesis of the form H0 : θ = θ0 might be used to model statements
such as “the new fertilizer doesn’t change yields.” In Bayesian theory, such a “sharp”
hypothesis test with a continuous prior pdf is pointless because it is always false:

P(θ = θ0 |y) =
∫

θ0

θ0

p(θ |y)dθ =
∫

θ0

θ0

p(y |θ)p(θ)dθ = 0.

Thus it would seem that the question is not a sensible one. It nevertheless arises fairly
often, for example when trying to decide whether to add or remove terms to a regression
model. How, then, can one deal with such a hypothesis?

• One could test whether θ0 lies in some credibility interval Cε . However, this isn’t
a Bayesian hypothesis test.

• A Bayesian hypothesis test consists of assigning a prior probability π0 to the hy-
pothesis H0 : θ = θ0, yielding a prior that is a mixture of discrete pmf and contin-
uous pdf.

Hypothesis testing is discussed further in section 13.

9 Simple Multiparameter Models
Often, even though one may need many parameters to define a model, one is only in-
terested in a few of them. For example, in a normal model with unknown mean and
variance yi |µ,σ2 ∼Normal(µ,σ2), one is usually interested only in the mean µ . The un-
interesting parameters are called nuisance parameters, and they can simply be integrated
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out of the posterior to obtain marginal pdfs of the parameters of interest. Thus, denot-
ing θ = (θ1,θ2), where θ1 is the vector of parameters of interest and θ2 is the vector of
‘nuisance’ parameters, we have

p(θ1 |y) =
∫

p(θ |y)dθ2.

This marginalisation integral can also be written as

p(θ1 |y) =
∫

p(θ1 |θ2,y)p(θ2 |y)dθ2, (11)

which expresses θ1 |y as a mixture of conditional posterior distributions given the nui-
sance parameters, weighted by the posterior density of the nuisance parameters. This
explains why the posterior pdf for the parameters of interest is generally more diffuse
than p(θ1 |θ2,y) for any given θ2.

9.1 Two-parameter normal model
Consider a normal model with unknown mean and variance, that is, yi |µ,σ2∼Normal(µ,σ2)
with y = y1, . . . ,yn conditionally independent given µ,σ2. The likelihood is then

p(y |µ,σ2) ∝ σ
−ne−

1
2σ2 ∑

n
i=1(yi−µ)2

= σ
−ne−

n(ȳ−µ)2+∑
n
i=1(yi−ȳ)2

2σ2 = σ
−ne−

n(ȳ−µ)2+(n−1)s2

2σ2 ,

where ȳ = 1
n ∑

n
i=1 yi is the sample mean and s2 = 1

n−1 ∑
n
i=1(yi− ȳ)2 is the sample variance.

We assume the following prior information:

• µ and σ2 are independent.

• p(µ) ∝ 1. This improper distribution expresses indifference about the location of
the mean, because a translation of the origin µ ′ = µ + c gives the same prior.

• p(σ) ∝
1
σ

. This improper distribution expresses indifference about the scale of
the standard deviation, because a scaling σ ′ = cσ gives the same prior p(σ ′) =
p(σ)dσ/dσ ′ ∝

1
σ ′ . Equivalently, we can say that this improper distribution ex-

presses indifference about the location of log(σ), because a flat prior p(log(σ)) ∝ 1
corresponds to p(σ) = dlog(σ)

dσ
p(log(σ)) ∝

1
σ

. The corresponding prior distribution
for the variance is p(σ2) ∝

1
σ2 .

With this prior and likelihood, the joint posterior pdf is

p(µ,σ2 |y) ∝ (σ2)−( n
2 +1)e

−(n−1)s2 +n(ȳ−µ)2

2σ2 , (12)

The posterior mode can be found as follows. The mode’s µ value is ȳ because of the
symmetry about µ = ȳ. Then, denoting v = logσ and A = (n−1)s2 +n(ȳ−µ)2, we have

log p(µ,σ2 |y) =−(n+2)v− 1
2 Ae−2v

Differentiating this with respect to v, equating to zero, and solving gives

e−2v =
n+2

A
.

Substituting ev = σ and µ = ȳ gives

mode(µ,σ2 |y) = (ȳ,
n−1
n+2

s2). (13)
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The marginal posterior pdf of σ2 is obtained by integrating over µ:

p(σ2 |y) =
∫

∞

−∞

p(µ,σ2 |y)dµ

= (σ2)−( n
2 +1)e−

(n−1)s2

2σ2

∫
∞

−∞

e−
n(µ−ȳ)2

2σ2 dµ︸ ︷︷ ︸√
2πσ2/n

∝ (σ2)−( n+1
2 )e−

(n−1)s2

2σ2 ,

that is, σ2 |y∼ InvGam(n−1
2 , n−1

2 s2), for which

E(σ2 |y) =
n−1
n−3

s2, mode(σ2 |y) =
n−1
n+1

s2, V(σ2 |y) =
2(n−1)2s4

(n−3)2(n−5)
.

Notice that the mode of the marginal posterior is different from (a bit larger than) the joint
posterior mode’s σ2 value given in (13).

The following general result will be useful.

Lemma 1 If x |w ∼ Normal(0,w) and w ∼ InvGam(m
2 , m

2 S2) then x
S ∼ tm, a standard

Student-t distribution with m degrees of freedom.

Proof: The marginal pdf is

p(x) =
∫

∞

0
p(x |w)p(w)dw ∝

∫
w−

1
2 e−

x2
2w w−( m

2 +1)e−
mS2
2w dw

=
(

x2 +mS2

2

)−(m+1)/2 ∫
z−(m+3)/2e−1/z dz [ where z =

2w
x2 +mS2

∝ (x2 +mS2)−(m+1)/2 [ integral of an inverse-gamma pdf

∝

(
1+

x2

mS2

)−(m+1)/2

. �

From (12) we have µ |σ2,y ∼ Normal(ȳ, σ2

n ), so that µ−ȳ
1/
√

n |σ2,y ∼ Normal(0,σ2).

Then by Lemma 1 we have µ−ȳ
s/
√

n |y∼ tn−1, that is, µ |y∼ tn−1(ȳ, s2

n ), and

E(µ |y) = ȳ, mode(µ |y) = ȳ, V(µ |y) =
n−1
n−3

s2

n
.

The Student-t distribution roughly resembles a Normal distribution but has heavier tails.
This marginal posterior distribution has the same mean as that of the posterior µ |y ∼
Normal(ȳ, v

n) that we found in section 5.1 for the one-parameter normal model with known
variance v and uniform prior p(µ) ∝ 1.

Next, we find the posterior predictive distribution. The model is ỹ |µ,σ2∼Normal(µ,σ2)
(conditionally independent of y given µ,σ2). Because ỹ− µ |σ2,y ∼ Normal(0,σ2) and
µ |σ2,y∼ Normal(ȳ, σ2

n ) are independent given σ2,y, we have ỹ |σ2,y∼ Normal(ȳ,(1+
1
n)σ2), that is, ỹ−ȳ

(1+ 1
n )1/2 |σ2,y∼ Normal(0,σ2). Then by Lemma 1, we obtain ỹ−ȳ

(1+ 1
n )1/2s

∼
tn−1, that is, ỹ |y∼ tn−1(ȳ,(1+ 1

n)s2), for which

E(ỹ |y) = ȳ, mode(ỹ |y) = ȳ, V(ỹ |y) =
n−1
n−3

(1+
1
n
)s2.

Formulas can also be derived for proper conjugate prior distributions, but we do not
present these here. We proceed instead to look at how a two-parameter normal model can
be analysed using numerical simulation.
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Example: Two-parameter normal model for Cavendish’s data We have n =
23, ȳ = 5.4848, and s2 = (0.1924)2 = 0.0370. With the prior p(µ,σ2) = 1/σ2, the pos-
terior pdf’s are:

5.4 5.5 5.60.04
0.08

300

µ

p(µ, σ
2 | y)

σ
2

5.4 5.5 5.6
µ

p(µ|y)

0 0.04 0.08
σ

2

p(σ2|y)

5 6
ỹ

p(ỹ|y)

mode(µ,σ2 |y) = (5.4848,0.0326),
E(µ |y) = 5.4848, mode(µ |y) = 5.4848, V(µ |y) = 0.0018,

E(σ2 |y) = 0.0407, mode(σ2 |y) = 0.0339, V(σ2 |y) = 1.84 ·10−4,

E(ỹ |y) = 5.4848, mode(ỹ |y) = 5.4848, V(ỹ |y) = 0.0425.

For a WinBUGS model, we assume µ and σ2 to be independent a priori. As in sec-
tion 4.2, we choose µ ∼ Normal(5,0.5). Our prior for σ2 is based on

0 0.04 0.08
0

20

σ
2

p(σ2)

the judgement that σ2 ≈ 0.04± 0.02. Assum-
ing σ2 ∼ InvGam(α,β ) and solving E(σ2) =
0.04 and V(σ2) = 0.022 for α and β , we ob-
tain σ2 ∼ InvGam(6,0.2). The corresponding
prior distribution for the precision τ = 1/σ2 is
τ ∼ Gamma(6,0.2).

for(i IN 1 : n)

ypred

sigma2taumu

y[i]

The WinBUGS model is

model {
for (i in 1:n) { y[i] ∼ dnorm(mu,tau) }
mu ∼ dnorm(5,2)
tau ∼ dgamma(6,0.2)
sigma2 <- 1/tau
ypred ∼ dnorm(mu,tau)

}

The double link in the DAG and the “<-” in the code denote the logical function that
specifies σ2 as a deterministic function of τ . The results after 2000 simulation steps are

node mean sd 2.5% median 97.5%
mu 5.483 0.04028 5.403 5.483 5.56
sigma2 0.03767 0.0097 0.023 0.036 0.060
ypred 5.483 0.195 5.116 5.482 5.869
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Example: Robust Models for Newcomb’s data The American astronomer and
mathematician Simon Newcomb performed experiments in 1882 to measure the speed of
light. He repeatedly measured the travel time t = (24800+ y) ns over a 7442 m distance,
obtaining the following results:

−40 −30 −20 −10 0 10 20 30 40
0

2

4

6

8

10

12 n = 66

ymin = −44

ymax = 40

ȳ = 26.21212

s
2 = 115.4620

28 26 33 24 34 -44 27 16 40 -2
29 22 24 21 25 30 23 29 31 19
24 20 36 32 36 28 25 21 28 29
37 25 28 26 30 32 36 26 30 22
36 23 27 27 28 27 31 27 26 33
26 32 32 24 39 28 24 25 32 25
29 27 28 29 16 23

Assuming yi |µ,σ2 ∼ Normal(µ,σ2) with y = y1, . . . ,yn conditionally independent given
µ,σ2, and the noninformative prior p(µ,σ2) ∝ 1/σ2, the posterior pdf’s are:

22 24 26 28 30
µ

p(µ|y)

50 100 150 200
σ

2

p(σ2|y)

0 10 20 30 40 50
ỹ

p(ỹ|y)

22
30

50
200

µ

p(µ, σ
2 | y)

σ
2

and the summarising statistics are

mode(µ,σ2 |y) = (26.2121,110.3681),
E(µ |y) = 26.2121, mode(µ |y) = 26.2121, V(µ |y) = 1.8050,

E(σ2 |y) = 119.1275, mode(σ2 |y) = 112.0154, V(σ2 |y) = 116.3226,

E(ỹ |y) = 26.2121, mode(ỹ |y) = 26.2121, V(ỹ |y) = 120.9324.
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Because the standard t65 distribution has 95% of its probability in the interval [−1.997,1.997],
a 95% credibility interval for µ is ȳ± 1.997s/

√
66 = [23.57,28.85]. Notice the lack of

resemblance between the predictive posterior density and the histogram of actual mea-
surements. This indicates that the normal model is apparently not a good description of
the variation in this data, which contains two obvious “outliers”.

One approach to analysing normally-distributed data that is “corrupted” with outliers
is to model the data as being a mixture of “good” and “bad” observations. A good obser-
vation is assumed to be Normal(µ,σ2) and to occur with probability p1 = 1− ε , while a
bad observation is assumed to be Normal(µ,k2σ2) and to occur with probability p2 = ε ,
where k2� 1.

A WinBUGS implementation of a mixture model uses a stochastic index ri, a categor-
ical random variable with prior pmf

P(ri = 1) = 1− ε, P(ri = 2) = ε

The likelihood for the mixture model is

yi |µ,σ2,ri ∼ Normal(µ,kriσ
2)

where k1 = 1 and k2� 1. Here’s a WinBUGS implementation of a mixture model for the
Newcomb data:

newcomb

list(n=66, gamma=c(1,20), p=c(0.95,0.05),
y=c(28,26,33,24,34,-44,27,16,40,-2,

29,22,24,21,25, 30,23,29,31,19,
24,20,36,32,36, 28,25,21,28,29,
37,25,28,26,30, 32,36,26,30,22,
36,23,27,27,28, 27,31,27,26,33,
26,32,32,24,39, 28,24,25,32,25,
29,27,28,29,16, 23) )

list(tau=.01,mu=25)

node mean sd MC error 2.5% median 97.5% start sample
mu 27.64 0.7045 0.009623 26.24 27.64 29.02 1 5000
sigma2 29.2 5.605 0.08932 20.0 28.57 41.94 1 5000

for(i IN 1 : n)

sigma2

gamma[ ]

p[ ]

mu

r[i] prec[i]

tau

y[i]

mu sample: 5000

   24.0    26.0    28.0    30.0

    0.0

    0.2

    0.4

    0.6

sigma2 sample: 5000

    0.0    20.0    40.0

    0.0
  0.025
   0.05
  0.075
    0.1

model {
k[1]<-1; k[2]<-10
p[1]<-0.95; p[2]<-0.05
for( i in 1 : n ) {

y[i] ~ dnorm(mu,prec[i])
r[i] ~ dcat(p[ ])
prec[i] <- tau / k[r[i]]

}
tau ~ dgamma(0.1,0.1)
mu ~ dnorm(25,0.01)
sigma2 <- 1 / tau

}

The Newcomb data are entered as

list(y=c(28,26,33,24,34,-44,27,16,40,-2,29,22,24,21,25, 30,23,29,31,19,
24,20,36,32,36, 28,25,21,28,29,37,25,28,26,30, 32,36,26,30,22,
36,23,27,27,28, 27,31,27,26,33,26,32,32,24,39, 28,24,25,32,25,
29,27,28,29,16, 23), n=66)

The results after 5000 simulation steps are

node mean sd 2.5% median 97.5%
mu 27.64 0.711 26.24 27.64 29.02
sigma2 29.13 5.824 19.94 29.48 41.75

mu sample: 5000

   24.0    26.0    28.0    30.0

    0.0

    0.2

    0.4

    0.6

sigma2 sample: 5000

    0.0    20.0    40.0

    0.0
  0.025
   0.05
  0.075
    0.1
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We see that with this mixture model the effect of the outliers is greatly reduced, compared
to the normal model, and we obtain µ |y with larger mean and less dispersion than the
pure normal model considered earlier. Also, the “good” data’s variance σ2 |y is much
smaller than the variance inferred using the pure normal model.

Another way to deal with outlier-corrupted data is to use a likelihood distribution that
has “heavier” tails, for example a Student-t distribution yi |µ,σ2 ∼ tη(µ,σ2). Here is a
WinBUGS model using η = 4 degrees of freedom and vague priors for µ and τ = 1/σ2:
model {

for (i in 1:n) { y[i] ∼ dt(mu,tau,4) }
mu ∼ dnorm(0,0.001)
tau ∼ dgamma(0.001,0.001)
sigma2 <- 1/tau

}
for(i IN 1 : n)

ypred

sigma2taumu

y[i]

The Monte Carlo simulation starting values are set to

list(mu=0,tau=0.01)

The results after 5000 simulation steps are similar to those of the mixture model:

node mean sd 2.5% median 97.5%
mu 27.48 0.668 26.11 27.48 28.81
sigma2 27.4 4.676 18.09 27.42 33.8

9.2 Comparing two normal populations
Consider two sets of measurements:

xi |λ ,φ ∼ Normal(λ ,φ), yi |µ,ψ ∼ Normal(µ,ψ),

with x1, . . . ,xm,y1, . . . ,yn mutually independent given λ ,µ,φ ,ψ . The parameter of interest
is the difference of the means, δ = λ −µ . We consider three cases, in increasing order of
difficulty.

Variances known

Assuming noninformative “flat” prior p(λ ,µ) ∝ 1, we obtain the posteriors

λ |x,y∼ Normal(x̄,
φ

m
), µ |x,y∼ Normal(ȳ,

ψ

n
),

with λ |x,y and µ |x,y independent given x,y. The posterior for the difference δ = λ −µ

is then
δ |x,y∼ Normal(x̄− ȳ,

φ

m
+

ψ

n
).

This solution can easily be generalised to models with proper conjugate (i.e. normal)
priors, as in section 4.2.

Variances unknown but equal

Assuming φ = ψ and the noninformative prior p(λ ,µ,φ) ∝ 1 ·1 · 1
φ

, we have

p(λ ,µ,φ |x,y) ∝ p(x,y |λ ,µ,φ)p(λ ,µ,φ)

∝ φ
−m/2e−

m(x̄−λ )2+(m−1)s2
x

2φ φ
−n/2e−

n(ȳ−µ)2+(n−1)s2
y

2φ φ
−1

∝ φ
−(m+n)/2e−

(m+n−2)s2
2φ ×φ

−1/2e−
m(x̄−λ )2

2φ ×φ
−1/2e−

n(ȳ−µ)2
2φ ,
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where s2 = (m−1)s2
x+(n−1)s2

y
m+n−2 . Marginalising this over λ ,µ gives

p(φ |x,y) =
∫∫

p(λ ,µ,φ |x,y)dλ dµ ∝ φ
−(m+n)/2e−

(m+n−2)s2
2φ ,

that is, φ |x,y∼ InvGam(m+n−2
2 , m+n−2

2 s2).
Now, because

p(λ ,µ |φ ,x,y) ∝ p(x,y |λ ,µ,φ) p(λ ,µ |φ)︸ ︷︷ ︸
∝1

∝ p(x |λ ,φ)p(y |µ,φ)

∝ φ
−m/2e−

m(x̄−λ )2+(m−1)s2
x

2φ φ
−n/2e−

n(ȳ−µ)2+(n−1)s2
y

2φ .

it follows that λ |φ ,x,y ∼ Normal(x̄, φ

m) and µ |φ ,x,y ∼ Normal(ȳ, φ

n ) are independent
given φ ,x,y, and so δ |φ ,x,y∼Normal(x̄− ȳ,( 1

m + 1
n)φ), that is, δ−(x̄−ȳ)

( 1
m + 1

n )1/2 |φ ,x,y∼Normal(0,φ).

Then, by Lemma 1, we obtain δ−(x̄−ȳ)
( 1

m + 1
n )1/2s

|x,y∼ tm+n−2, that is,

δ |x,y∼ tm+n−2(x̄− ȳ,( 1
m + 1

n)s2).

Variances unknown

In this case δ |x,y cannot be expressed in terms of any of the standard statistical distribu-
tions, but is readily found using numerical simulation.

21 22 23 24 25
0

1

2
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5

x

21 22 23 24 25
0

1

2

3

4

5

y

m = 10

x̄ = 23.1

sx = 1.253

n = 9

ȳ = 22.2

sy = 0.650

Example: Cuckoo eggs Cuckoo (Cuculus canorus) eggs
found in m = 10 dunnock (Prunella modularis) nests have the
following diameters in mm (denoted xi):

22.0, 23.9, 20.9, 23.8, 25.0,
24.0, 21.7, 23.8, 22.8, 23.1

The diameters (yi) of cuckoo eggs found in n = 9 sedge war-
bler (Acrocephalus schoenobaenus) nests are

23.2, 22.0, 22.2, 21.2, 21.6,
21.9, 22.0, 22.9, 22.8

We assume that the data come from normally distributed pop-
ulations with unknown means and variances,

xi |λ ,φ ∼ Normal(λ ,φ), yi |µ,ψ ∼ Normal(µ,ψ),

with x1, . . . ,xm,y1, . . . ,yn mutually independent given λ ,µ,φ ,ψ . The parameter of interest
is the difference of the means, δ = λ−µ . In particular, we are interested in the hypothesis
that the difference is greater than zero, i.e. do cuckoos lay bigger eggs in the nests of
dunnocks than in the nests of sedge warblers?

We assume proper, relatively vague priors

λ ∼ Normal(22,4), µ ∼ Normal(22,4), φ ∼ InvGam(0.1,0.1), ψ ∼ InvGam(0.1,0.1).
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The WinBUGS model is

for(i IN 1 : m)
for(i IN 1 : n)P

delta

invpsimuinvphi lambda

y[i]x[i]

model {
for (i in 1:m) { x[i] ∼ dnorm(lambda,invphi) }
for (i in 1:n) { y[i] ∼ dnorm(mu,invpsi) }
lambda ∼ dnorm(22,0.25)
mu ∼ dnorm(22,0.25)
invphi ∼ dgamma(0.1,0.1)
invpsi ∼ dgamma(0.1,0.1)
delta <- lambda-mu
P <- step(delta-0)

}

Here we use the function step, which equals 1 if its argument is ≥ 0 and which equals 0
otherwise, to compute

P(δ ≥ 0 |x,y) =
∫

∞

0
p(δ ′ |x,y)dδ

′.

Also, because WinBUGS uses the reciprocal of variance to specify the normal distribu-
tion, the model has the variables invphi and invpsi for 1

φ
and 1

ψ
.

The data is entered as

list( x=c(22.0,23.9,20.9,23.8,25.0,24.0,21.7,23.8,22.8,23.1),m=10,
y=c(23.2,22.0,22.2,21.2,21.6,21.9,22.0,22.9,22.8),n=9)

The results after 5000 simulation steps are

node mean sd 2.5% median 97.5%
delta 0.8489 0.5021 -0.1599 0.8584 1.826
P 0.9542

list( x=c(22.0,23.9,20.9,23.8,25.0,24.0,21.7,23.8,22.8,23.1),m=10,
y=c(23.2,22.0,22.2,21.2,21.6,21.9,22.0,22.9,22.8),n=9)

list( lambda=20, mu=20, invphi=1, invpsi=1 )

for(i IN 1 : m) for(i IN 1 : n)P

delta

invpsimuinvphi lambda

y[i]x[i]

delta sample: 5000

   -2.0     0.0     2.0

    0.0
   0.25
    0.5
   0.75
    1.0

P sample: 5000

-1 0 1 2

    0.0
   0.25
    0.5
   0.75
    1.0
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The posterior probability of the hypothesis δ ≥ 0 is over 95%, that is, the odds are over
20 to 1 in favour of the hypothesis against its alternative.

Example: Paired observations The following table is data on the extra hours of
sleep gained by n = 10 insomnia patients who at different times were given treatment A
and treatment B.

patient i 1 2 3 4 5 6 7 8 9 10
gain xi with A 1.9 0.8 1.1 0.1 -0.1 4.4 5.5 1.6 4.6 3.4
gain yi with B 0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0 2.0
wi = xi− yi 1.2 2.4 1.3 1.3 0 1.0 1.8 0.8 4.6 1.4

Suppose we are interested in the difference between the effects of the two treatments.
The model for comparing two normal populations should not be used to analyse this
data, because the measurements are not independent: the responses of a single patient
to different treatments can be expected to be more similar than the responses from two
different patients. In this case, a “paired observations” experimental design is a good way
to detect the difference between the treatment effects.

−1 0 1 2 3 4 5
δ

p(δ | w)

The results can be analysed using a model of the
form wi |δ ,ϕ ∼ Normal(δ ,ϕ), assumed mutually indepen-
dent given δ ,ϕ . The sufficient statistics are w̄ = 1.58 and
s2 = 1

n−1 ∑(wi− w̄)2 = 1.513. Assuming a noninformative
prior p(δ ,ϕ) ∝

1
ϕ

as in section 9.1, we obtain the marginal
posterior

δ |w∼ tn−1(w̄,s2/n) = t9(1.58,0.1513).

In particular, the posterior probability for the hypothesis that treatment A is more effective
than treatment B is

P(δ > 0 |w) =
∫

∞

0
p(δ ′ |w)dδ

′ = 0.9986,

that is, the odds are over 700 to 1 in favour of the hypothesis against the alternative.

9.3 Multinomial model
The multinomial model is a generalisation of the binomial model (section 5.2): instead of
two possible results, an observation can have k possible outcomes, xi ∈ {X1,X2, . . . ,Xk},
with corresponding probabilities θ = [θ1, . . . ,θk], ∑

k
j=1 θ j = 1. The pmf for a single ob-

servation xi is
p(xi |θ) = P(xi = X j |θ) = θ j ( j ∈ {1, . . . ,k}).

The likelihood pmf of a sequence x1, . . . ,xn whose elements are assumed to be mutually
independent given θ is then

p(x1:n |θ) = θ
y1
1 . . .θ yk

k ,

where y j is the number of elements of x whose value is X j. (Note that y j ∈ {0, . . . ,n} and
∑

k
j=1 y j = n.) The likelihood pmf for the sequence y = y1, . . . ,yk (a sufficient statistic) is

p(y |θ) =
n!

y1!y2! · · ·yk!
θ

y1
1 . . .θ yk

k ∝

k

∏
j=1

θ
y j
j ,

and the distribution is denoted y |θ ∼Multinomial(θ1, · · · ,θn). In the case k = 2 this is
the binomial distribution.
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The conjugate prior for the multinomial likelihood is the Dirichlet distribution θ ∼
Dirichlet(α1, . . . ,αk) with positive parameters α1, . . . ,αk, whose density is

p(θ) ∝ θ
α1−1
1 · · ·θ αk−1

k (θ j ≥ 0,
k

∑
j=1

θ j = 1).

Summarising statistics of the Dirichlet distribution are

E(θ j) =
α j

A
, mode(θ j) =

α j−1
A− k

,

V(θ j) =
α j(A−α j)
A2(A+1)

, cov(θ j,θl) =
−α jαl

A2(A+1)
( j 6= l)

where A = ∑α j. A small value of A corresponds to a prior that is relatively “noninfor-
mative”. Note that θ ∼ Dirichlet(α1,α2) implies θ1 ∼ Beta(α1,α2), that the marginal
distributions of θ ∼ Dirichlet(α1, . . . ,αk) are θ j ∼ Beta(α j,A−α j), and that a density
that is uniform over the simplex {θ : θ1, . . . ,θk ≥ 0,∑k

j=1 θ j = 1} is obtained with α1 =
· · ·= αk = 1.

With likelihood y |θ ∼Multinomial(θ1, · · · ,θk) and prior θ ∼Dirichlet(α1:k), the pos-
terior pdf is

p(θ |y) ∝

k

∏
j=1

θ
y j
j ·

k

∏
j=1

θ
α j−1
j =

k

∏
j=1

θ
α j+y j−1
j ,

that is, θ |y∼ Dirichlet(α1 + y1, . . . ,αk + yk). Summarising statistics of the posterior dis-
tribution are

E(θ j |y) =
α j + y j

A+n
, mode(θ j |y) =

α j + y j−1
A+n− k

,

V(θ j) =
(α j + y j)(A+n−α j− y j)

(A+n)2(A+n+1)
, cov(θ j,θl) =

−(α j + y j)(αl + yl)
(A+n)2(A+n+1)

( j 6= l)

Example: opinion survey with six choices In September 2001, 1962 Finnish
adults were interviewed and reported their support for political parties as follows:

party SDP Kesk Kok Vihr Vas other
# 471 453 396 243 177 222
% 24.0 23.1 20.2 12.4 9.0 11.2

With the uniform prior θ ∼ Dirichlet(1,1,1,1,1,1), we obtain the posterior

θ |y∼ Dirichlet(472,454,397,244,178,223).

The marginals have the following summaries.

SDP Kesk Kok Vihr Vas other
E(θi |y) 0.240 0.231 0.202 0.124 0.090 0.113

1.96
√

V(θi |y) 0.019 0.019 0.018 0.015 0.013 0.014

Thus, for example, the 95% credibility interval for SDP support (using the normal ap-
proximation) is (24.0±1.9)% = [22.1,25.9]%.

The hypothesis that SDP support is higher than Keskusta support can be investigated
with the following WinBUGS model.
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Opinion survey, six outcomes

data
list(k=6,alpha=c(1,1,1,1,1,1),y=c(471,453,396,243,177,222),n=1962)

inits
list(theta=c(0.2,0.2,0.2,0.15,0.15,0.1))

P

delta alpha[1:k]

n

theta[1:k]

y[1:k]

delta sample: 5000

   -0.1   -0.05     0.0    0.05

    0.0

   10.0

   20.0

   30.0

P sample: 5000

-1 0 1 2

    0.0
    0.2
    0.4
    0.6
    0.8

model {
y[1:k] ∼ dmulti(theta[1:k],n)
theta[1:k] ∼ ddirch(alpha[1:k])
delta <- theta[1]-theta[2]
P <- step(delta)

}

The input data is

list(k=6,alpha=c(1,1,1,1,1,1),y=c(471,453,396,243,177,222),n=1962)

The simulation results are
node mean sd 2.5% median 97.5%
delta 0.008791 0.01529 -0.02177 0.008713 0.03855
P 0.7164

Opinion survey, six outcomes

data
list(k=6,alpha=c(1,1,1,1,1,1),y=c(471,453,396,243,177,222),n=1962)

inits
list(theta=c(0.2,0.2,0.2,0.15,0.15,0.1))

P

delta alpha[1:k]

n

theta[1:k]

y[1:k]

delta sample: 5000

   -0.1   -0.05     0.0    0.05

    0.0

   10.0

   20.0

   30.0

P sample: 5000

-1 0 1 2

    0.0
    0.2
    0.4
    0.6
    0.8

The results indicate that P(θsdp > θkesk |y)≈ 0.72, that is, the posterior odds that SDP has
more support than Keskusta are roughly 5 to 2.

10 The modal approximation and Laplace’s method
In many of the examples presented earlier in these notes, we have indicated how a poste-
rior distribution can be approximated by a normal distribution that is based on matching
the moments (mean and variance), that is,

θ |y .∼ Normal(E(θ |y),V(θ |y)). (14)

This approximation gives the convenient formula E(θ |y)± 1.96
√

V(θ |y) for the 95%
credibility interval, which was used in the following examples:

• opinion survey (binomial model, §5.2)

• moose counts (Poisson model, §5.3)

• lifetime data (Exponential model, §5.4)

The normal approximation can be expected to be accurate if the distribution has a single
sharp peak and is not too skewed.

Moment-matching requires integrals (mean and variance); here’s an alternative ap-
proximation that is based on derivatives. Let f (θ) be a nonnegative unimodal function
with mode θ̂ . The quadratic Taylor approximation of log f (θ) about θ̂ is

log f (θ)≈ log f (θ̂)− 1
2(θ − θ̂)T Q(θ − θ̂),

where

Qi j =−
[

∂ 2

∂θi∂θ j
log f (θ)

]
θ=θ̂

.
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Taking exponentials of both sides gives

f (θ)≈ f (θ̂)e−
1
2 (θ−θ̂)T Q(θ−θ̂). (15)

Integrating (15) gives

∫
f (θ)dθ ≈ f (θ̂)

∫
e−

1
2 (θ−θ̂)T Q(θ−θ̂) dθ =

f (θ̂)√
det(Q/(2π))

. (16)

This approximate integration formula for unimodal sharp-peaked nonnegative functions
is known as Laplace’s method.

In the case where f (θ) = p(θ)p(y |θ) is an unnormalised posterior density, (15) gives
the modal approximation of the posterior as

θ |y .∼ Normal(θ̂ ,Q−1). (17)

The Laplace approximation of the normalising constant
∫

p(θ)p(y |θ)dθ of the unnor-
malised posterior (called the evidence of the statistical model) is given by (16).

Example: Approximating a gamma distribution For θ ∼ Gamma(α,β ), we
have

p(θ) ∝ θ
α−1e−βθ︸ ︷︷ ︸

f (θ)

.

Using the tabulated formulas for the mean and variance of a gamma distribution, we obtain
the moment-matching normal approximation θ

.∼ Normal(α

β
, α

β 2 ).
To find the modal approximation, we compute

log f = (α−1) logθ −βθ

d
dθ

log f =
α−1

θ
−β

d2

dθ 2 log f = −α−1
θ 2

The mode is found by solving d
dθ

log f (θ) = 0, yielding θ̂ = α−1
β

. Then Q = α−1
θ̂ 2 =

β 2

α−1 . The modal approximation (17) is thus θ
.∼Normal(α−1

β
, α−1

β 2 ), which is close to the
moment-matching approximation when β � 1.

Laplace’s approximation of the normalisation factor is

∫
∞

0
θ

α−1e−βθ dθ ≈ θ̂ α−1e−β θ̂√
Q/(2π)

=

√
2π(α−1)

β 2

(
α−1

β

)α−1

e−α+1

1 2 3 40

2

4

6

α

approxexact

Γ(α)

Using the fact that the exact normalisation factor is Γ(α)/β α ,
we arrive at the following approximation formula for the
Gamma function:

Γ(α)≈
√

2π(α−1)α−1
2 e−α+1.

This approximation is reasonably accurate for α > 2.
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Example: Two-parameter normal model In §9.1, the posterior for a normal model
with unknown mean and variance and flat prior on µ and logσ was derived as

p(µ,σ2 |y) ∝ (σ2)
−(

n
2

+1)
e
−(n−1)s2 +n(ȳ−µ)2

2σ2 ,

where ȳ = 1
n ∑

n
i=1 yi and s2 = 1

n−1 ∑
n
i=1(yi − ȳ)2. Denoting v = logσ , the density as a

function of (µ,v) is

p(µ,v |y) ∝ e
−nv− (n−1)s2 +n(ȳ−µ)2

2e2v︸ ︷︷ ︸
f (µ,v)

,

We have

log f =−nv− (n−1)s2 +n(ȳ−µ)2

2e2v

The first-order derivatives (i.e. components of the gradient vector) are

∂

∂ µ
log f =

n(ȳ−µ)
e2v

∂

∂v
log f = −n+

(n−1)s2 +n(ȳ−µ)2

e2v .

Equating the gradient to zero and solving gives the mode9

(µ̂, v̂) = mode(µ,v |y) =
(

ȳ, 1
2 log(

n−1
n

s2)
)

.

The second-order derivatives are

∂ 2

∂ µ2 log f = − n
e2v

∂ 2

∂ µ∂v
log f = −2n(ȳ−µ)

e2v

∂ 2

∂v2 log f = −2
(n−1)s2 +n(ȳ−µ)2

e2v ,

so that Q =

(
n2

(n−1)s2 0
0 2n

)
, and the modal approximation of the distribution is

µ, logσ |y .∼ Normal
((

ȳ, 1
2 log(

n−1
n

s2)
)

,

(
(n−1)s2/n2 0

0 1/(2n)

))
.

Note that µ and logσ are not conditionally independent given y, but in the modal approx-
imation they are. The approximate marginal posterior distribution of µ is

µ |y .∼ Normal(ȳ,(n−1)s2/n2).

For large n this agrees well with the exact marginal posterior µ |y ∼ tn−1(ȳ, s2

n ) found in
§9.1, for which

E(µ |y) = ȳ, mode(µ |y) = ȳ, V(µ |y) =
(n−1)s2

n(n−3)
.

9 This mode differs from mode(µ,σ2 |y) = (ȳ, n−1
n+2 s2) derived in §9.1 because of the change of

variables v = logσ .
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11 Hierarchical Models and Regression Models

11.1 DAGs
So far we have seen relatively simple statistical models, in which a few quantities of in-
terest are described by standard probability distributions having one or two parameters.
More realistic models of complex phenomena will naturally involve many quantities, and
the distributions’ parameters can themselves be treated as unknown quantities with distri-
butions that have their own parameters, called hyperparameters. Models with hyperpa-
rameters (and hyperhyperparameters and . . . ) are called hierarchical models.

Directed acyclic graphs (DAGs) are useful for representing Bayesian models,

µ !

"

y

#

especially complex hierarchical models. The DAG shows how the joint
probability distribution can be factored into a product of conditional dis-
tributions, because the absence of an arrow between two nodes implies that
they are conditionally independent given all other nodes that precede ei-
ther of them in the graph. For example, the DAG on the right corresponds
to a joint density of the form

p(y,θ ,µ,κ,τ) = p(y |θ ,τ)p(θ |µ,κ)p(τ)p(µ)p(κ)

11.2 Hierarchical normal model
Suppose we have data from K groups, with ni independent observations from each group.
Assume the observations are conditionally independent given θi, normally distributed
with mean θi and known variance v, that is,

yi j |θi ∼ Normal(θi,v) j ∈ {1, . . . ,ni}, i ∈ {1, . . . ,K}

These might for example be

• the responses of patients to K treatments,

• national matriculation exam grades obtained by students from K schools,

• points scored in games played by K baseball teams. . .

A simple nonhierarchical approach would be to model each group separately, each with
their own a-priori independent parameters θi. Then the likelihood for each θi is

ȳi |θi ∼ Normal(θi,s2
i ),

where ȳi = 1
ni

∑
ni
j=1 yi j and s2

i = v/ni.
An alternative approach would be to consider that all the observations are estimating a

common effect. Then we would pool all the measurements into a single set of observations
assumed to come from the same distribution with common parameter θ .

Both approaches have drawbacks: the first neglects the effect that is common to all
groups, while the second neglects the effects that are specific to each group. The following
hierarchical model allows us to combine information without assuming that all the θi are
equal. Assume the θi are normally distributed with common mean µ and precision κ:

θi |θ ,κ ∼ Normal(µ,κ−1)

The θi are assumed to be conditionally independent given the hyperparameters µ and κ .
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Example: baseball scores The average number of runs (i.e. points) per game scored
by 7 American Baseball League teams in the 1993 season are listed as follows.

i 1 2 3 4 5 6 7
ȳi 5.549 5.228 5.154 5.068 4.877 4.852 4.79
si 0.266 0.257 0.254 0.252 0.246 0.245 0.243

What is the probability that team 1 is better than team 2?
A nonhierarchical model with a-priori independent parameters would give

θ1−θ2 |data∼ Normal(ȳ1− ȳ2,s2
1 + s2

2) = Normal(0.321,0.37)

from which we compute P(θ1 > θ2 |data) = 0.807.
A hierarchical model is

model {
for( i in 1 : n ) {

theta[i] ~ dnorm(mu,kappa)
y[i] ~ dnorm(theta[i],tau[i])
tau[i] <- 1 / (s[i] * s[i])

}
mu ~ dnorm(0,0.001)
kappa ~ dgamma( 0.1, 0.1)
P <- step(theta[1] - theta[2])

}

Baseball

Example 5.10 from Congdon, Bayesian Statistical Modelling (2001)

model {
for( i in 1 : n ) {

theta[i] ~ dnorm(mu,kappa)
y[i] ~ dnorm(theta[i],tau[i])
tau[i] <- 1 / (s[i] * s[i])

}
mu ~ dnorm(0,0.001)
kappa ~ dgamma( 0.1, 0.1)
P <- step(theta[1] - theta[2])

}

list(n=7,y=c(5.549,5.228,5.154,5.068,4.877,4.852,4.79),

s=c(0.266,0.257,0.254,0.252,0.246,0.245,0.243))

node mean sd MC error 2.5% median 97.5% start sample
theta[1] 5.349 0.2257 0.004104 4.936 5.341 5.829 1 5000
theta[2] 5.16 0.2121 0.003183 4.746 5.158 5.585 1 5000
theta[3] 5.119 0.2031 0.003263 4.735 5.113 5.524 1 5000
theta[4] 5.064 0.2024 0.002972 4.662 5.066 5.462 1 5000
theta[5] 4.95 0.2027 0.002992 4.541 4.955 5.34 1 5000
theta[6] 4.933 0.2033 0.003512 4.526 4.93 5.325 1 5000
theta[7] 4.893 0.2042 0.003987 4.479 4.897 5.278 1 5000
P 0.7376 0.4399 0.006178 0.0 1.0 1.0 1 5000

for(i IN 1 : n)

P s[i]

kappamu

tau[i]y[i]

theta[i]

The data are entered as

list(n=7,y=c(5.549,5.228,5.154,5.068,4.877,4.852,4.79),
s=c(0.266,0.257,0.254,0.252,0.246,0.245,0.243))

The results after 5000 simulation steps are

node mean sd 2.5% median 97.5%
theta[1] 5.349 0.2257 4.936 5.341 5.829
theta[2] 5.16 0.2121 4.746 5.158 5.585
theta[3] 5.119 0.2031 4.735 5.113 5.524
theta[4] 5.064 0.2024 4.662 5.066 5.462
theta[5] 4.95 0.2027 4.541 4.955 5.34
theta[6] 4.933 0.2033 4.526 4.93 5.325
theta[7] 4.893 0.2042 4.479 4.897 5.278
P 0.7376

Notice that the posterior means are more closely grouped together than the observations:
E(θ1 |data) = 5.349 is lower than ȳ1 = 5.549 and E(θ7 |data) = 4.893 is higher than ȳ1 =
4.79. The posterior probability that θ1 > θ2 is 0.7376, less than what was obtained with
the non-hierarchical model.

11.3 Linear regression
The linear regression model

yi = c1 + c2xi + εi, εi |σ2 ∼ Normal(0,σ2), i ∈ {1, . . . ,n}
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can also be written as

yi |c1,c2,σ
2 ∼ Normal(c1 + c2xi,σ

2)

There are three unknown parameters: the noise variance σ2 and the regression coefficients
c1,c2. Just like for the two-parameter normal model, a closed-form solution is possible
when conjugate priors are chosen. We won’t present this solution here; instead, we go
directly to WinBUGS for the solution.

Example: grades We are interested in seeing how well the number of points xi that
a student earns by doing weekly homework problems will predict the student’s exam
grade yi. Here is a WinBUGS model for fitting a linear regression model for data from a
Bayesian statistics course.

model {
for( i in 1 : n ) {
mu[i] <- c[1] + c[2] * x[i]
y[i] ~ dnorm(mu[i],tau)

}
c[1] ~ dnorm(5,0.1)
c[2] ~ dnorm(2,0.1)
tau ~ dgamma( 0.1, 0.1)

}

Grades

model {
for( i in 1 : n ) {

mu[i] <- c[1] + c[2] * x[i]
y[i] ~ dnorm(mu[i],tau)
ypred[i] ~ dnorm(mu[i],tau)

}
c[1] ~ dnorm(5,0.1)
c[2] ~ dnorm(2,0.1)
tau ~ dgamma( 0.1, 0.1)

}

list(n=23,x=c( 6, 5, 6,5.5,5.5, 6, 6, 6, 0, 6, 3, 5, 4, 6, 4,5,5.5,5.5,2.5,4,0, 6,0),
y=c(15,20,16, 15,14, 21,24,17, 7, 17,13,19,14,19,11,8, 11, 14, 12,6,5,20,4))

node mean sd MC error 2.5% median 97.5% start sample
c[1] 4.966 1.635 0.02389 1.764 4.96 8.257 1 5000
c[2] 2.027 0.3437 0.005196 1.355 2.026 2.711 1 5000

Make sure mu and ypred are selected as nodes in the Sample Monitor Tool (Inference > Samples menu). Then after running the
simulation go to the Comparison tool (Inference > Compare menu) and enter node=mu (or ypred), other=y, axis=x and press the
"model fit" button.

for(i IN 1 : n)

tau

c[1]

c[2]

x[i]

y[i]

mu[i]

The data are entered as

list(n=23,x=c( 6,5,6,5.5,5.5,6,6,6,0,6,3,5,
4,6,4,5,5.5,5.5,2.5,4,0,6,0),

y=c(15,20,16,15,14,21,24,17,7,17,13,19,
14,19,11,8,11,14,12,6,5,20,4) )

The results after 5000 simulation steps are

node mean sd 2.5% median 97.5%
c[1] 4.966 1.635 1.764 4.96 8.257
c[2] 2.027 0.3437 1.355 2.026 2.711

Here are plots of the data and of the means and 95% confidence intervals of c1 + c2x |y
and of the predictive posterior ỹ |y.
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Dbar Dhat pD DIC
y 125.140 122.306 2.834 127.974

#####################################################################
Quadratic model

model {
for( i in 1 : n ) {

mu[i] <- c[1] + c[2] * x[i] + c[3] * x[i]*x[i]
y[i] ~ dnorm(mu[i],tau)

}
c[1] ~ dnorm(5,0.1)
c[2] ~ dnorm(2,0.1)
c[3] ~ dnorm(0,0.1)
tau ~ dgamma( 0.1, 0.1)
for( i in 1 : npred ) {

mupred[i] <- c[1] + c[2] * xpred[i] + c[3]*xpred[i]*xpred[i]
ypred[i] ~ dnorm(mupred[i],tau)

}
}

node mean sd MC error 2.5% median 97.5% start sample
c[1] 5.389 1.692 0.02041 1.969 5.402 8.729 1 5000
c[2] 1.058 1.284 0.0178 -1.449 1.049 3.611 1 5000
c[3] 0.163 0.2081 0.00297 -0.2466 0.1641 0.5663 1 5000

Dbar Dhat pD DIC
y 125.285 121.521 3.764 129.049

model fit: mu
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model fit: ypred
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To produce the above plots, make sure mu and ypred are selected as nodes in the Sam-
ple Monitor Tool; this tool’s window is opened by selecting menu item Inference/Samples.
After running the simulation, open the Comparison Tool window (menu item Inference/Compare)
and enter mu or ypred in the node space, y in the other space, and x in the axis space.
Finally, press the model fit button.

11.4 Autoregressive model of time series
The 1-state autoregressive model of a time series is

yi−m = a · (yi−1−m)+ ei (i = 1,2, . . . ,N)

where the ei ∼ Normal(0,σ2) are independent. The parameter a ∈ (−1,1) specifies how
strongly the consecutive mean-centred observations yi−m are correlated. The other un-
known parameters in the model are m (the mean), y0 (the initial state), and σ2 (the noise
variance). The AR(1) model can also be written

yi |a,m,y0,σ
2 ∼ Normal(m+a · (yi−1−m)︸ ︷︷ ︸

µi

,σ2)

Here µi represents the model’s “one-step” forecast of yi, given y0,a,m, and the past ob-
servations y1, . . . ,yi−1.

Example: earthquakes Here is a WinBUGS model to fit an AR(1) model to the time
series of the number of earthquakes of intensity ≥ 7 Richter in the years 1900–1998.

model {
m ~ dnorm(0,0.01)
y0 ~ dnorm(m,0.01)
mu[1] <- a*(y0-m) + m
y[1] ~ dnorm(mu[1],tau)
t[1] <- 1900
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for (i in 2:N) {
mu[i] <- a*(y[i-1]-m) + m
y[i] ~ dnorm(mu[i],tau)
t[i] <- 1899 + i
ypred[i] ~ dnorm(mu[i],tau)

}
tau ~ dgamma(0.01,0.01)
a ~ dnorm(0.5,5)
sigma2 <- 1/tau

}

The data is

list(y=c(13,14,8,10,16,26,32,27,18,32,36,24,22,23,22,18,25,21,21,14,
8,11,14,23,18,17,19,20,22,19,13,26,13,14,22,24,21,22,26,21,
23,24,27,41,31,27,35,26,28,36,39,21,17,22,17,19,15,34,10,15,
22,18,15,20,15,22,19,16,30,27,29,23,20,16,21,21,25,16,18,15,
18,14,10,15,8,15, 6,11, 8, 7,13,10,23,16,15,25,22,20,16),N=99)

Because the priors are so vague, WinBUGS does not generate suitable starting values for
the Monte Carlo simulation, so these must be provided, as follows. Add a line

list(a=0.5,y0=13,m=20,tau=0.03)

to the model file, double-click the word list, and press load inits after you’ve
compiled the model. Then press gen inits to generate initial values for the predictive
posteriors ypred.

Results after 5000 simulation steps are

node mean sd 2.5% median 97.5%
a 0.5583 0.08629 0.3933 0.5557 0.7274
m 19.46 1.509 16.23 19.53 22.21
y0 14.39 7.481 -0.2498 14.39 28.91
sigma2 38.34 5.464 28.88 37.85 50.23

The one-step forecasts µi |y1:n and predictive posteriors ỹi |y1:n can be plotted using the
Comparison Tool.

model {
m ~ dnorm(0,0.01)
y0 ~ dnorm(m,0.01)
mu[1] <- a*(y0-m) + m
y[1] ~ dnorm(mu[1],tau)
t[1] <- 1900
for (i in 2:N) {
mu[i] <- a*(y[i-1]-m) + m
y[i] ~ dnorm(mu[i],tau)
t[i] <- 1899 + i
ypred[i] ~ dnorm(mu[i],tau)

}
tau ~ dgamma(0.01,0.01)
a ~ dnorm(0.5,5)
sigma2 <- 1/tau

}

# data
list(y=c(13,14,8,10,16,26,32,27,18,32,
36,24,22,23,22,18,25,21,21,14,
8,11,14,23,18,17,19,20,22,19,
13,26,13,14,22,24,21,22,26,21,
23,24,27,41,31,27,35,26,28,36,
39,21,17,22,17,19,15,34,10,15,
22,18,15,20,15,22,19,16,30,27,
29,23,20,16,21,21,25,16,18,15,
18,14,10,15,8,15, 6,11, 8, 7,
13,10,23,16,15,25,22,20,16),N=99)

# simulation initial values
list(a=0.5,y0=13,m=20,tau=0.03)

node mean sd MC error 2.5% median 97.5% start sample
a 0.5593 0.08629 0.001469 0.3933 0.5587 0.7274 1 5000
m 19.46 1.509 0.02452 16.23 19.53 22.21 1 5000
sigma2 38.34 5.464 0.07437 28.88 37.85 50.23
y0 14.39 7.481 0.09876 -0.2498 14.39 28.91 1 5000

model fit: mu
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model fit: ypred
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11.5 Logistic regression

xi ni yi

-0.863 5 0
-0.296 5 1
-0.053 5 3
0.727 5 5

Example: rats In a series of experiments, ni lab rats are
each given an injection of a substance at concentration Xi (in
g/ml); shortly afterwards, yi rats die. Letting θi be the mortal-
ity rate for xi = log(Xi), the number of deaths can be modelled
as

yi |θi ∼ Binomial(ni,θi).

The relation between mortality rate and log-dosage is modelled as

logit(θi)︸ ︷︷ ︸
log θi

1−θi

= α +βxi

In this kind of study, a parameter of interest is xLD50 =−α/β , the log-dosage correspond-
ing to 50% mortality rate, that is, logit(0.5) = α +βxLD50.

Here’s a WinBUGS model.

Rats

model {
for( i in 1 : nx ) {

logit(theta[i]) <- alpha + beta * x[i]
y[i] ~ dbin(theta[i],n[i])

}
alpha ~ dnorm( 0.0,0.001)
beta ~ dnorm( 0.0,0.001)
LD50 <- -alpha / beta

}

list( y=c(0,1,3,5), n=c(5,5,5,5), x=c(-0.863,-0.296,-0.053, 0.727), nx=4)

list(alpha=0,beta=1)

node mean sd MC error 2.5% median 97.5% start sample
alpha 1.274 1.067 0.02369 -0.6333 1.193 3.607 1 5000
beta 11.38 5.56 0.1284 3.463 10.44 24.78 1 5000
LD50 -0.1052 0.09512 0.001331 -0.2738 -0.1109 0.1196 1 5000

for(i IN 1 : nx)

LD50

betaalpha

n[i] y[i]

theta[i]x[i]

model {
for (i in 1:nx) {

logit(theta[i]) <- alpha + beta*x[i]
y[i] ~ dbin(theta[i],n[i])

}
alpha ~ dnorm(0.0,0.001)
beta ~ dnorm(0.0,0.001)
LD50 <- -alpha/beta
for ( i in 1:21 ) {

xx[i] <- -1+2*(i-1)/20
logit(tt[i]) <- alpha + beta*xx[i]

}
}

The last few lines of the code (not shown in the DAG) compute θ |y on grid of equally
spaced x values, in order to produce a smooth plot.

The data are entered as

list(y=c(0,1,3,5), n=c(5,5,5,5),
x=c(-0.863,-0.296,-0.053,0.727), nx=4)

and the simulation initial values are set as
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list(alpha=0,beta=1)

The results after 5000 simulation steps are

node mean sd 2.5% median 97.5%
alpha 1.274 1.067 -0.6333 1.193 3.607
beta 11.38 5.56 3.463 10.44 24.78
LD50 -0.1052 0.09512 -0.2738 -0.1109 0.1196

The Comparison Tool is used to plot tt vs. xx. The plot shows the mortality rate θ as a
function of the log-dosage x, with 95% credibility intervals.

Rats

model {

for ( i in 1 : nx ) {

logit(theta[i]) <- alpha + beta * x[i]

y[i] ~ dbin(theta[i],n[i])

}

alpha ~ dnorm( 0.0,0.001)

beta ~ dnorm( 0.0,0.001)

LD50 <- -alpha / beta

for ( i in 1:21 ) {

xx[i] <- -1 + 2*(i-1)/20

logit(tt[i]) <- alpha + beta * xx[i]

}

}

list( y=c(0,1,3,5), n=c(5,5,5,5), x=c(-0.863,-0.296,-0.053, 0.727), nx=4)

list(alpha=0,beta=1)

node mean sd MC error 2.5% median 97.5% start sample

alpha 1.274 1.067 0.02369 -0.6333 1.193 3.607 1 5000

beta 11.38 5.56 0.1284 3.463 10.44 24.78 1 5000

LD50 -0.1052 0.09512 0.001331 -0.2738 -0.1109 0.1196 1 5000

for(i IN 1 : nx)

LD50

betaalpha

n[i] y[i]

theta[i]x[i]

model fit: tt
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11.6 Change point detection
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A production unit produces items at a rate of λ1 units
per hour. At time k a component is replaced and the
production changes to λ2 units per hour. Given a se-
quence of n hourly production counts, we wish to de-
termine the production rates and the change point k.

We model the production counts as yi |λ1,λ2,k ∼
Poisson(ri) with

ri =
{

λ1 i ∈ {1,2, . . . ,k}
λ2 i ∈ {k +1, . . . ,n}

and assume the counts to be conditionally mutually independent given λ1,λ2,k. We as-
sume prior distributions λ1 ∼ Gamma(α1,β1), λ2 ∼ Gamma(α2,β2), and a uniform
prior pmf for k.

Here’s a WinBUGS model.

Changepoint

model {
k ~ dcat(p[])
for( i in 1 : n ) {

J[i] <- 1 + step(i - k - 0.5)
r[i] <- lambda[J[i]]
y[i] ~ dpois(r[i])

}
lambda[1] ~ dgamma( 0.1, 0.1)
lambda[2] ~ dgamma( 0.1, 0.1)

}

list(p=c(0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.
02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.0
2,0.02),
y=c(12,8,14,16,6,9,12,3,12,10,9,13,12,11,9,12,17,8,14,19,18,14,9,18,15,12,9,17,8,7,2,5,7,9,6,4,7,5,7,1,5,7,5,6,7,8,6,5),n=48)

list(k=24,lambda=c(10,10))

node mean sd MC error 2.5% median 97.5% start sample
lambda[1] 11.94 0.6642 0.01398 10.67 11.92 13.29 1 2000
lambda[2] 5.78 0.5549 0.01257 4.722 5.761 6.915 1 2000

for(i IN 1 : n)

p[ ]

r[i]

lambda[2]

lambda[1]

y[i]

J[i]

k

k sample: 2000
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model {
for( i in 1 : n ) {
J[i] <- 1 + step(i - k - 0.5)
r[i] <- lambda[J[i]]
y[i] ~ dpois(r[i])
p[i] <- 1/n

}
k ~ dcat(p[ ])
lambda[1] ~ dgamma(alpha[1],beta[1])
lambda[2] ~ dgamma(alpha[2],beta[2])

}

The data are entered as

list(y=c(12,8,14,16,6,9,12,3,12,10,9,13,12,11,9,12,17,8,14,19,18,
14,9,18,15,12,9,17,8,7,2,5,7,9,6,4,7,5,7,1,5,7,5,6,7,8,6,5), n=48,
alpha=c(0.1,0.1),beta=c(0.1,0.1))
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The simulation initial values are set as

list(k=24,lambda=c(10,10))

The results after 2000 simulation steps are

node mean sd 2.5% median 97.5%
lambda[1] 11.94 0.6642 10.67 11.92 13.29
lambda[2] 5.78 0.5549 4.722 5.761 6.915

Changepoint

model {
k ~ dcat(p[])
for( i in 1 : n ) {

J[i] <- 1 + step(i - k - 0.5)
r[i] <- lambda[J[i]]
y[i] ~ dpois(r[i])

}
lambda[1] ~ dgamma( 0.1, 0.1)
lambda[2] ~ dgamma( 0.1, 0.1)

}

list(p=c(0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.
02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.0
2,0.02),
y=c(12,8,14,16,6,9,12,3,12,10,9,13,12,11,9,12,17,8,14,19,18,14,9,18,15,12,9,17,8,7,2,5,7,9,6,4,7,5,7,1,5,7,5,6,7,8,6,5),n=48)

list(k=24,lambda=c(10,10))

node mean sd MC error 2.5% median 97.5% start sample
lambda[1] 11.94 0.6642 0.01398 10.67 11.92 13.29 1 2000
lambda[2] 5.78 0.5549 0.01257 4.722 5.761 6.915 1 2000

for(i IN 1 : n)

p[ ]

r[i]

lambda[2]

lambda[1]

y[i]

J[i]

k

J[i]

name: J[i] type: logical link: identity

value: 1+step(i-k-0.5)

k sample: 2000
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lambda[2] sample: 2000
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    0.6
    0.8

12 MCMC
As we have seen, a formula for the posterior density, up to a scaling factor, is relatively
easy to obtain via Bayes’s rule

p(θ |y) ∝ p(θ)p(y |θ).

With the formula one can compute the value of the unscaled density at any point in the
parameter space. To make useful inferences, however, one needs to do things like find
summary statistics (mean, median, variance, credibility regions) and compute hypothesis
probabilities. For simple models with conjugate priors these results can be obtained using
algebraic manipulations with standard statistical functions, as we did in §5. If such closed-
form solutions are not possible, then in one-dimensional or two-dimensional parameter
spaces the unscaled posterior density can be plotted and standard numerical quadrature
algorithms can be used to compute means, variances, and other expectation integrals.
For high-dimensional parameter spaces, however, such computations are challenging and
require specialised algorithms.

In this section, we look at algorithms that produce sets of random samples from the
posterior distribution. From a set {θ 1, . . . ,θ N} of such samples, it is straightforward to
compute expectations using the (frequentist!) estimator

E(h(θ) |y) =
∫

h(θ)p(θ |y)dθ ≈ 1
N

N

∑
t=1

h(θ t). (18)

Other summary statistics, such as the median and credibility intervals, can similarly be
estimated directly from the samples.

Numerical algorithms that use random samples are known as Monte Carlo methods.
Monte Carlo methods that generate samples using a Markov chain are called MCMC
methods. In these notes we focus on the MCMC method called the Gibbs sampler, the
main method used by WinBUGS (Windows program for Bayesian analysis Using Gibbs
Sampling).

12.1 Markov chains
Consider a sequence θ t , t ∈ {0,1,2, . . .} of random variables that can take on a finite
number of values, say θ t ∈ {1, . . . , p}. The sequence is a (homogenous) Markov chain
if, for all t ≥ 1, the pmf of the tth state conditional on past states depends only on the
previous state and not on the index t or on older states. In other words, there exists a
function T (·, ·) (the transition probability) such that

P(θ t = xt |θ 0 = x0,θ
1 = x1, . . . ,θ

t−1 = xt−1) = P(θ t = xt |θ t−1 = xt−1) = T (xt ,xt−1).
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The transitional probability and the initial distribution π0(x) := P(θ 0 = x) suffice to define
the joint distribution of all the variables in a Markov chain:

P(θ 0 = x0, θ
1 = x1) = P(θ 1 = x1 |θ 0 = x0)P(θ 0 = x0)

= T (x1,x0)π0(x0)
P(θ 0 = x0, θ

1 = x1, θ
2 = x2) = P(θ 2 = x2 |θ 0 = x0, θ

1 = x1)P(θ 0 = x0, θ
1 = x1)

= T (x2,x1)T (x1,x0)π0(x0)
...

...

P(θ 0 = x0, . . . ,θ
t = xt) = T (xt ,xt−1) · · ·T (x1,x0)π0(x0)

A probability distribution π is said to be a stationary (or invariant or equilibrium) distri-
bution of a Markov chain if it satisfies the equation

π(x′) =
p

∑
x=1

T (x′,x)π(x). (19)

The name comes from the fact that if θ t−1 has the distribution π , then

P(θ t = x′) =
p

∑
x=1

P(θ t = x′,θ t−1 = x) =
p

∑
x=1

T (x′,x)P(θ t−1 = x)︸ ︷︷ ︸
=π(x)

= π(x′),

that is, θ t has the same distribution, and thus, so does every subsequent state θ t+1,θ t+2, . . ..
Under mild conditions, it can be shown that the stationary distribution is unique and

that, for any initial π0, the sequence of marginal distributions P(θ t = x) converges to π(x)
as t→ ∞.

Example: a one-dimensional random walk Consider a 6-valued Markov chain
whose transition probability is described by the matrix

[T (·, ·)] = 1
2



1 1
1 0 1

1 0 1
1 0 1

1 0 1
1 1

 .

This chain can be described in terms of a random walk:

• If the state at some time is θ ∈ {2,3,4,5}, then the subsequent state is θ + 1 or
θ −1 with equal probability.

• If the state is θ = 1 then the subsequent state is 1 or 2 with equal probability.

• If the state is θ = 6 then the subsequent state is 5 or 6 with equal probability.

Suppose the initial state is θ 0 = 3, so that the initial pmf is

p(θ 0) = [0, 0, 1, 0, 0, 0 ]

Then the pmf’s of the subsequent states are

p(θ 1) = [0, 1
2 , 0, 1

2 , 0, 0 ]

p(θ 2) = [ 1
4 , 0, 1

2 , 0, 1
4 , 0 ]
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and so on. If the initial state is θ 0 = 1, then the sequence of pmf’s of the subsequent states
are

p(θ 0) = [1, 0, 0,0, 0, 0 ]
p(θ 1) = [ 1

2 , 1
2 , 0, 0, 0, 0 ]

p(θ 2) = [ 1
2 , 1

4 , 1
4 , 0, 0, 0 ],

and so on. These sequences are illustrated below:

t = 0

t = 1

t = 2

t = 10

1 2 3 4 5 6

t = 100
1 2 3 4 5 6

We see that both sequences converge towards the pmf π = [1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6 ], which is the
stationary distribution of this chain, as can be verified by substitution into (19).

An MCMC algorithm to sample from the equilibrium distribution π consists of simu-
lating a random walk: starting from some arbitrary state, choose the next state at random
according to the transition probability. Continue to move in this way from state to state for
a large number of steps. After a sufficient number of “warmup” simulation steps (which
are usually discarded), the sequence of states {θ 1, . . . ,θ N} of this random walk can be
considered as samples from (approximately) the stationary distribution π . One can then
compute expectations for the distribution π using sums:

E(h(θ)) =
∫

h(θ)π(θ)dθ ≈ 1
N

N

∑
t=1

h(θ t).

Here is pseudocode for an MCMC algorithm that finds N samples from the equilib-
rium distribution of the Markov chain introduced at the beginning of this example. The
first t0 states in the random walk are discarded.

initialise θ to some arbitrary value in {1, . . . ,6}, say θ ← 3
for i from 1 to t0 +N do

with equal probability, either:
if θ > 1, decrement θ by 1

or
if θ < 6, increment θ by 1

end choice
if i > t0, θ i−t0 ← θ

end do
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12.2 Gibbs sampler
The Gibbs sampler is used to produce samples from a posterior distribution p(θ |y) with
multidimensional parameter vector θ . The samples are produced by a random walk in
a Markov chain that has stationary distribution p(θ |y). In each step of this algorithm,
only one component of θ t is changed: it is replaced by a draw from the one-dimensional
distribution that is obtained when all the other components are kept fixed.

In the following pseudocode of the algorithm, the notation θ−i denotes the vector θ

with the ith component removed, that is, θ−i = [θ1, . . . ,θi−1,θi+1, . . . ,θd ].

θ 0← some vector in the parameter space
for t from 1 to N do

choose a dimension it ∈ {1, . . . ,d} at random (with pmf [r1, . . . ,rd ], say)
θ t

it ← a sample drawn from p(θit |θ t−1
−it ,y)

θ t
−it ← θ

t−1
−it

end do

Often, the algorithm is implemented with the updates performed by cycling through
the indices i, instead of choosing indices in random order. However, the proof that p(θ |y)
is a stationary distribution of the Gibbs sampler’s Markov chain is simpler when the in-
dices are chosen in random order. Here’s the proof.

Consider what happens when θ t−1 is drawn from the distribution p(θ |y). The prob-
ability of transition from θ to θ ′ via an update of the ith component is

P(θ t−1 = θ ,θ t = θ
′, it = i |y) = P(θ t = θ

′ |θ t−1 = θ , it = i,y)P(θ t−1 = θ , it = i |y)

=
{

ri p(θ |y)p(θ ′i |θ−i,y) if θ−i = θ ′−i
0 otherwise

Thus, the probability of transition from θ to θ ′ is

P(θ t−1 = θ ,θ t = θ
′ |y) =

d

∑
i=1

ri p(θ |y)p(θ ′i |θ−i,y)χ(θ−i = θ
′
−i),

where χ(FALSE) = 0 and χ(TRUE) = 1. Similarly, the probability of transition from θ ′

to θ is

P(θ t−1 = θ
′,θ t = θ |y) =

d

∑
i=1

ri p(θ ′ |y)p(θi |θ ′−i,y)χ(θ−i = θ
′
−i)

These transition probabilities are equal, because

p(θ ′i |θ−i,y) = p(θ ′i |θ ′−i,y) =
p(θ ′ |y)
p(θ ′−i |y)

and

p(θi |θ ′−i,y) = p(θi |θ−i,y) =
p(θ |y)

p(θ−i |y)
=

p(θ |y)
p(θ ′−i |y)

when θ−i = θ ′−i. Because their joint distribution is symmetric, θ t−1 |y and θ t |y have
the same marginal distributions. It follows that the distribution of θ |y is a stationary
distribution of this Markov chain.
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Example: Uniformly distributed points inside a polygon Here’s a Gibbs algo-
rithm to sample from this distribution:

1. Choose a point inside the polygon and draw a horizontal
line through it.

2. Choose a new point uniformly at random along the portion
of the horizontal line that lies inside the polygon.

3. Draw a vertical line through the new point and choose a
new point uniformly at random along the portion of the
line that lies inside the polygon.

4. Draw a horizontal line through the new point and choose
a new point uniformly at random along the portion of the
line that lies inside the polygon.

5. Repeat steps 3 and 4 as many times as desired. Retain every
second point.

Example: Two-parameter normal model We saw in §5.1 that the posterior for a
normal model with known variance σ2 and unknown mean µ with flat prior is

µ |y,σ2 ∼ Normal(ȳ,
σ2

n
)

In §5.5 we saw that the posterior for known mean µ and unknown variance σ2 with prior
p(σ2) ∝ σ−2 is

σ
2 |y,µ ∼ InvGam(n

2 , 1
2 ∑

n
i=1(yi−µ)2)

Thus, a (cyclic-order) Gibbs sampler to generate samples from the normal model with
unknown mean and variance and prior p(µ,σ2) ∝ σ−2 is

initialise µ0 and σ2
0

for t from 1 to N do

µt ← a sample drawn from Normal(ȳ, σ2
t−1
n )

σ2
t ← a sample drawn from InvGam(n

2 , 1
2 ∑

n
i=1(yi−µt)2)

end do

Here’s a Matlab script that uses the above algorithm to generate 200 samples for a two-
parameter normal model of Cavendish’s data.

% data
y = 5+[36 29 58 65 57 53 62 29 44 34 79 10 ...

27 39 42 47 63 34 46 30 78 68 85]/100;
n = length(y); ybar = mean(y);

% number of MCMC samples to generate
N = 200;
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% initial values of mu and sigma2
mu = 0; sigma2 = 1;

% set the random number generator seeds (for repeatability)
randn(’state’,0); rand(’state’,0);

% allocate memory for the MCMC samples
mu = repmat(mu,1,N);
sigma2 = repmat(sigma2,1,N);

% simulation loop
for t = 2:N

mu(t) = normrnd(ybar,sqrt(sigma2(t-1)/n));
tau = gamrnd(n/2,2/sum((y-mu(t)).^2));
sigma2(t) = 1/tau;

end

% look at the results
t0=1;
ii = t0+1:N; % discard t0 samples
stats = [mean(mu(ii)), var(mu(ii)), mean(sigma2(ii)), var(sigma2(ii))];
plot(mu,sigma2,’.’)

The sample means and variances provide the following estimates of the summary statistics
of the posterior marginals:

E(µ |y)≈ 5.485, V(µ |y)≈ 1.55 ·10−3, E(σ2 |y)≈ 0.0415, V(σ2 |y)≈ 1.58 ·10−4

These values are in good agreement with the exact values given in §9.1.

5.4 5.6
0

0.4

0.8

µt

σ 2
t

Example: Change point detection The posterior density for the change-point de-
tection example presented in §11.5 is

p(λ1,λ2,k |y) ∝

n

∏
i=1

p(λ1)p(λ2)p(k)p(yi |λ1,λ2,k)

∝ λ
α1−1
1 e−β1λ1 ·λ α2−1

2 e−β2λ2 ·1 ·λ sk
1 e−kλ1 ·λ sn−sk

2 e−(n−k)λ2
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where sk = ∑
k
i=1 yi. The update probability densities for the rates λ1 and λ2 are therefore

p(λ1 |λ2,k,y) ∝ λ
α1−1+sk
1 e−(β1+k)λ1

p(λ2 |λ1,k,y) ∝ λ
α2−1+sn−sk
2 e−(β1+n−k)λ2

that is, λ1 |λ2,k,y∼Gamma(α1 + sk,β1 +k) and λ2 |λ1,k,y∼Gamma(α2 + sn− sk,β2 +
n− k). The update distribution for the change point k has the pmf

P(kt = k |λ1 = x1,λ2 = x2,y = y1:n) ∝ (x1/x2)sk e−k(x1−x2)

Here’s a Matlab script that generates 1000 samples from the posterior distribution using a
Gibbs sampler, and plots the histogram of change-point values k.

% Data
y=[12,8,14,16,6,9,12,3,12,10,9,13,12,11,9,12,17,8,14,19,18,14,...

9,18,15,12,9,17,8,7,2,5,7,9,6,4,7,5,7,1,5,7,5,6,7,8,6,5];
n=length(y);
alpha=[0.1,0.1]; beta=[0.1,0.1]; % parameters of lambda prior
k=24; lambda=[10;10]; % initial values of stoch. variables
rand(’state’,0); randn(’state’,0); % random generator seeds
N=1000; % number of update steps
s=cumsum(y); % vector of cumulative sums

% allocate memory for the samples
k=repmat(k,1,N); lambda=repmat(lambda,1,N); r=zeros(n,N);

% simulation loop
for t=2:N

% draw lambda(1) and lambda(2) from gamma pdf’s
A=[alpha(1)+s(k(t-1)); alpha(2)+s(n)-s(k(t-1))];
B=1./[beta(1)+k(t-1);beta(2)+n-k(t-1)];
lambda(:,t)=gamrnd(A,B);
% construct the pmf for k
% using logs to avoid overflow/underflow
kk=1:n-1;
logp = s(kk)*log(lambda(1,t)/lambda(2,t)) ...

- kk*(lambda(1,t)-lambda(2,t));
p=exp(logp-max(logp));
p=p/norm(p,1);
% draw k ~ categorical(p)
[notused,k(t)]=histc(rand,[0 cumsum(p)]);
% rate parameters of y(i) ~ Pois(r(i))
r(1:k(t),t)=lambda(1,t);
r(k(t)+1:n,t)=lambda(2,t);

end

% plot a histogram of the k values
figure(1), hist(k,24:34)

% plot the mean rate
figure(2), plot(24:34,mean(r(24:34,:),2),’.-’)
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13 Model comparison
The Bayesian data analysis technique requires that you model the statistical data analysis
problem by specifying a prior distribution and a likelihood distribution. However, any
model is an approximation:

Essentially, all models are wrong, but some are useful. G. E. P. Box

Thus, any statistical data analysis includes consideration of model adequacy, model sen-
sitivity, and alternative models. The development of practical tools for these tasks is a
very active research area in Bayesian statistics. In this section we only scratch the surface
of this aspect of modelling, and present two widely-used model comparison approaches:
Bayes factors and DIC.

13.1 Bayes factors
Suppose you have two alternative models,

model M1: likelihood p1(y |θ1), prior p1(θ1)
model M2: likelihood p2(y |θ2), prior p2(θ2)

where the parameter vectors θ1 and θ2 may have different numbers of components. A fully
Bayesian approach to coping with your uncertainty about which model produced the data
is to construct a single all-encompassing “supermodel” with a model index m ∈ {1,2}
as one of the parameters to be inferred from the data. Let π1 = P(model = M1) and
π2 = P(model = M2) denote your prior probabilities (degrees of belief) in the models,
with π1 +π2 = 1. Then Bayes’s rule gives

P(model = Mm |y) ∝ P(data = y |model = Mm)πm

where
P(data = y |model = Mm) =

∫
pm(y |θm)pm(θm) dθm

is called the evidence for model Mm. Note that this is the normalizing constant in Bayes’s
formula when doing inference about θm using the mth model alone.

The posterior odds in favour of model M1 against model M2 given the data y are
given by the ratio

P(model = M1 |y)
P(model = M2 |y)

=
π1

π2
×
∫

p1(y |θ1)p1(θ1)dθ1∫
p2(y |θ2)p2(θ2)dθ2︸ ︷︷ ︸

B12

where the number B12 (the ratio of evidences) is called the Bayes factor for model M1
against model M2. Recall that the Bayes factor was discussed earlier in §8 in the context
of hypothesis testing.

It is straightforward to generalise the above-described technique to compare any finite
set of models. Because Bi j = BikBk j, models can be ordered consistently based on pairwise
comparisons using Bayes factors.

Example: density estimation Consider independent real-valued samples y1:5 = [0.3,0.6,0.7,0.8,0.9]
drawn from some pdf. According to model M1, yi ∼ Uniform(0,1); this model has no
parameters. The evidence for M1 is

P(data = y |model = M1) = p1(y1)p1(y2) · · · p1(y5) = 1 ·1 · · ·1 = 1.
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According to model M2, the density is piecewise constant with two pieces,

p2(yi |θ1:2) =


2θ1 0≤ yi < 1

2
2θ2

1
2 ≤ yi < 1

0 otherwise
y

0 1

2
1

2θ1

2θ2

This model has effectively one parameter, because θ1 + θ2 = 1. The prior distribution is
taken to be θ ∼Dirichlet(1,1), so that p2(θ) = 1 (uniform on the θ -simplex 0≤ θ1,θ2 ≤
1, θ1 +θ2 = 1). The posterior is

p2(θ |y) ∝ p2(θ)p2(y |θ) ∝ θ1θ
4
2

so that θ |y ∼ Dirichlet(2,5), for which E(θ1 |y) = 2
7 ≈ 0.29, E(θ2 |y) = 5

7 ≈ 0.71. The
evidence for M2 is∫

p2(θ)p2(y |θ)dθ =
∫

1 · (2θ1)(2θ2)4 dθ = 32
Γ(2)Γ(5)

Γ(7)
=

16
15

.

If the prior beliefs in the two models M2 and M3 are equal (i.e. π1 = π2), then the Bayes
factor is B21 = 16

15 ≈ 1.07, that is, the odds are only very slightly in favour of the more
complex model.

Consider a more complex model M3, in which the density is piecewise constant with
three pieces,

p2(yi |θ1:3) =


3θ1 0≤ yi < 1

3

3θ2
1
3 ≤ yi < 2

3

3θ3
2
3 ≤ yi < 1

0 otherwise

y
0 1

3

2

3
1

3θ1
3θ2

3θ3

This model has effectively two parameters, because θ1 +θ2 +θ3 = 1. The prior distribu-
tion is taken to be θ ∼ Dirichlet(1,1,1), so that p3(θ) = 2 (uniform on the θ -simplex).
The posterior is

p3(θ |y) ∝ p3(θ)p3(y |θ) ∝ θ1θ2θ
3
3

so that θ |y∼ Dirichlet(2,2,4), for which E(θ1 |y) = 2
8 = 0.25, E(θ2 |y) = 2

8 = 0.25, and
E(θ3 |y) = 4

8 = 0.5. The evidence for M3 is∫
p3(θ)p3(y |θ)dθ =

∫
2(3θ1)(3θ2)(3θ3)3 dθ = 2 ·35 · Γ(2)Γ(2)Γ(4)

Γ(8)
=

81
140

.

If the prior beliefs in the two models M2 and M3 are equal (i.e. π2 = π3), then the Bayes
factor is B23 = 16/15

81/140 ≈ 1.8436, that is, the odds somewhat favour the simpler model. �

Often, model comparison indicators are used to guide model choice: the best model
is retained, and the poorer models are thrown out. Model choice is a decision, and a
Bayesian framework for making decisions will be presented in section 14. Note, however,
that throwing out alternative models is not a strictly Bayesian approach to inference and
prediction. In situations where are M alternative models, a fully Bayesian approach would
be to use the full posterior distribution p(m,θM1 , . . .θMM |y). This approach, called model
averaging, is advanced by its proponents as a “robust” (with respect to model uncertainty)
statistical technique.

We have seen in earlier examples that, especially when there is a lot of data, the
choice of different vague priors has almost no influence on the results of an inference
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analysis, and that one can often use an improper prior. In the model comparison context,
however, the situation is different. The evidence decreases when priors are made more
vague; improper (“infinitely vague”) priors have zero evidence. The Bayes factor thus
tends to favour models with less vague priors: ignorance is penalized. This is illustrated
in the following example.

Example: evidence for a normal model Suppose yi |µ,v ∼ Normal(µ,v) (nor-
mally conditionally independently distributed given µ and v), with i ∈ {1,2, . . . ,n}, µ ∼
Uniform(a,b) and v known. The evidence for this model is

∫
p(µ)p(y1:n |µ)dµ =

∫ b

a

1
(b−a)(2πv)n/2 e

−
S2 +n(ȳ−µ)2

2v dµ

=
e
−

S2

2v

(b−a)(2πv)(n−1)/2n1/2

∫ b

a

e
−

(ȳ−µ)2

2v/n√
2πv/n

dµ,

where S2 = ∑
n
i=1(yi− ȳ)2 and ȳ = 1

n ∑
n
i=1 yi. As b→ ∞ and a→−∞, the integral is ≈ 1,

and so the evidence for the model→ 0. Thus, a vague prior (= large value of b−a) tends
to be penalised in a Bayesian model comparison, and the evidence for the normal model
with the improper prior p(µ) ∝ 1 is zero — according to the Bayes factor, any model with
proper prior is infinitely better! �

The following examples illustrate how the Bayes fac-
tor penalises models with too many parameters. Because
of this property, Bayesian model comparison is a concrete
implementation of the precept known as Occam’s razor,
named after the 13th century philosopher William of Ock-
ham, whereby simple models that fit the data should be pre-
ferred over more complicated models that fit the data equally
well. This precept appears in Machine Learning textbooks as
the warning to avoid overfitting: overly-complex models gen-
eralize poorly (i.e. they have poor fit to out-of-sample data).

Example: density estimation (continued) The more complex model M3 fits better
than M2, in the sense that the maximum likelihood value is greater. Here are the calcu-
lations. Because the prior is flat, the maximum likelihood for M2 occurs at the posterior
mode θ̂ = mode(θ |y) = (1

5 , 4
5), at which the likelihood is

p(y1:5 | θ̂) = 25 · (1
5
)(

4
5
)4 ≈ 2.62.

Similarly, the posterior mode of M3 is θ̂ = mode(θ |y) = (1
5 , 1

5 , 3
5), at which the likelihood

is

p(y1:5 | θ̂) = 35 · (1
5
)(

1
5
)(

3
5
)3 ≈ 4.98.

However, as we saw earlier, model M3 has a somewhat smaller evidence value than model
M2, and the model comparison based on the Bayes factor favours the simpler model. �
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Example10: The next integer in a sequence. Consider the task of predicting the
next integer y4 in the sequence

y0 =−1, y1 = 3, y2 = 7, y3 = 11

Two alternative models are
M1: the sequence is an arithmetic progression, that is, y0 = a1, yn+1 = yn +b
M2: the sequence is generated by y0 = a2, yn+1 = cy3

n +dy2
n + e

0 1 2 3 4
−20

−10

0

10
   model 1

   model 2  

Fitting the data to the first model gives the
parameters (a1,b) = (−1,4) and the predic-
tion y4 = 15. The second model is fit by
(a2,c,d,e) = (−1, −1

11 , 9
11 , 23

11), and the predic-
tion is y4 = −19.9. Both models fit the data
equally well (i.e. perfectly). Which model is
more plausible?

For the model M1, because the parameter pair (a1,b) = (−1,4) is the only one that
fits the data, the likelihood pmf is

p1(y0:3 |a1,b) =
{

1 if a1 =−1,b = 4
0 otherwise

If we assume a-priori that a1 and b can be integers between−50 and 50, then the evidence
for model M1 is

∑
a1,b

p1(y |a1,b)p(a1,b) =
1

101
× 1

101
≈ 0.0001.

For the model M2, the likelihood pmf is p(y0:3 |a2,c,d,e) = 1 if

(a2,c,d,e) ∈ {−1}×
{−1

11
,
−2
22

,
−3
33

,
−4
44

}
×
{

9
11

,
18
22

,
27
33

,
36
44

}
×
{

23
11

,
46
22

}
,

and zero otherwise. We assume that the initial value of the sequence (denoted here as
a2) can be an integer between −50 and 50, and assume that the parameters c, d, e can be
rational numbers with numerator between −50 and 50 and denominator between 1 and
50; for simplicity we assume that all (unsimplified) rational numbers in this range are
equally likely. Then the evidence for model M2 is

∑
a2,c,d,e

p2(y |a2,c,d,e)p(a2,c,d,e) =
1×4×4×2

101× (101 ·50)3 ≈ 2.5 ·10−12.

The Bayes factor is thus B12 ≈ 0.0001/2.5 · 10−12 = 40 · 106, so that, even if our prior
probabilities π1 and π2 were equal, the odds in favour of M1 against M2 are about forty
million to one. �

The Bayes factor is a sound approach to model comparison, but it is difficult to com-
pute, and many statisticians are not happy with its heavy penalization of vague priors
and its total rejection of models with improper priors. The following section presents a
popular alternative (albeit heuristic) approach to model comparison.

10 from Information Theory, Inference, and Learning Algorithms by David J. C. MacKay, Cam-
bridge University Press, 2003, full text at http://www.inference.phy.cam.ac.uk/mackay/
itila/
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13.2 Deviance Information Criterion (DIC)
The deviance is defined as

D(θ) =−2log p(y1:n |θ).

In the case of conditionally independent data with yi |θ ∼ Normal(θi,v), the deviance is

D(θ) = −2log
(
(2πv)−n/2e−

1
2v ∑

n
i=1(yi−θ)2

)
= n log(2πv)+

1
v

n

∑
i=1

(yi−E(yi |θ))2 ,

that is, the sum of squares of standardized residuals plus a constant. Deviance can thus be
considered to be a measure of poorness of fit (i.e. larger values indicate poorer fit).

The posterior mean deviance

D̄ = E(D(θ) |y) =
∫

D(θ)p(θ |y)dθ

has been suggested as a criterion for comparing models, but it has generally been judged
to insufficiently penalize model complexity. The Deviance Information Criterion (DIC)
is a modification proposed by Spiegelhalter et al. in 2002 that adds a term that penalizes
complexity. It is defined by the formula

DIC = D̄+ D̄− D̂︸ ︷︷ ︸
pD

,

where D̂ = D(E(θ |y)). The number pD is called the ‘effective number of parameters’,
although it is not an integer and in some models does not correspond at all to the number
of parameters, and can even be negative. The DIC is easy to compute in MCMC models,
and WinBUGS has menu items for DIC computation.

In contrast to the Bayes factor, the absolute size of DIC is not relevant: only differ-
ences in DIC are important. However, as the WinBUGS documentation says,

It is difficult to say what would constitute an important difference in
DIC. Very roughly, differences of more than 10 might definitely rule out the
model with the higher DIC, differences between 5 and 10 are substantial,
but if the difference in DIC is, say, less than 5, and the models make very
different inferences, then it could be misleading just to report the model with
the lowest DIC.

Example: density estimation (continued) A WinBUGS model for M2 is

model {
for (i in 1:n) {

z[i] <- trunc(np*y[i]+1)
z[i] ~ dcat(theta[ ])

}
for (j in 1:np) { a[j] <- 1 }
theta[ 1:np ] ~ ddirch(a[1:np])

}

The data are entered as

list(y=c(0.3,0.6,0.7,0.8,0.9),n=5,np=2)
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The model for M3 is the same, but with the data value np=3. The DIC values for the
two models, based on 5000 simulations each, are

model D̄ D̂ pD DIC
M2 5.854 5.203 0.651 6.505
M3 10.918 9.705 1.214 12.132

The DIC difference is DIC2 −DIC3 ≈ 5.6, which indicates that the simpler model is
“substantially” better than the more complex model. This is in agreement with the model
comparison result found earlier using Bayes factors. �

Example: Homework and exam grades (revisited) This example from §11.3
presented a regression model of exam grades yi with homework grades xi as the explana-
tory factor. An alternative to the linear regression model is the second-order polynomial
model

yi = c1 + c2xi + c3x2
i + εi, εi |σ2 ∼ Normal(0,σ2), i ∈ {1, . . . ,n}

A WinBUGS model of the alternative model is

model {
for( i in 1 : n ) {

mu[i] <- c[1] + c[2]*x[i] + c[3]*x[i]*x[i]
y[i] ~ dnorm(mu[i],tau)

}
c[1] ~ dnorm(12,0.01)
c[2] ~ dnorm(2,0.01)
c[3] ~ dnorm(0,0.01)
tau ~ dgamma( 0.1, 0.1)

}

The data are the same as in §11.3. After 5000 simulation steps the results are

node mean sd 2.5% median 97.5%
c[1] 5.426 1.734 2.035 5.427 8.831
c[2] 1.032 1.278 -1.419 1.04 3.568
c[3] 0.1662 0.2065 -0.2388 0.165 0.5774
tau 0.07803 0.02422 0.03746 0.07619 0.1312

0 1 2 3 4 5 60
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15

20

assignment grade

exam
grade

The dashed curve shows E(c1 |y)+E(c2 |y)x +E(c3 |y)x2; the solid line is the linear re-
gression model computed earlier. The DIC values for the two models are

µi = D̄ D̂ pD DIC
c1 + c2xi 125.071 122.284 2.787 127.858
c1 + c2xi + c3x2

i 125.176 121.516 3.660 128.836

Observe that the pD values are roughly equal to the numbers of model parameters (3 and 4,
respectively), and that the linear regression model is “better” than the quadratic regression
model, albeit only by a small margin (DIC2−DIC1 ≈ 1).
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14 Decision Theory

14.1 The Bayesian choice
The basic idea of decision theory is simple: you have to choose an action a from a set
of alternatives A . You have a real-valued loss function L(a,θ) that specifies the cost
incurred; it is a function of your choice a and of the “state of nature” θ , a quantity or
quantities about which you have some uncertainly. The best choice is the action that
minimizes the expected loss

E(L(a,θ)).

Equivalently, you could define a utility (gain, reward, preference) function U = −L and
choose the action that maximises the expected utility E(U(a,θ)).

When you receive new information y, the best choice is then the action that minimizes
the posterior mean loss E(L(a,θ) |y). The following examples illustrate how the posterior
best choice can differ from the prior best choice.

Example: What if it rains? You are thinking of going out for a walk, and you need
to decide whether to go and whether to take your umbrella. Suppose your cost function is

θ1 θ2
(rain) (no rain)

a1 (stay home) 4 4
a2 (go out, don’t take umbrella) 5 0
a3 (go out, take umbrella) 2 5

and that your state of belief about the weather for the rest of the day is modelled by the
probability mass function

P(θ = θ1) =
1
2
, P(θ = θ2) =

1
2
.

What do you decide?
Suppose you then read the newspaper’s weather forecast (y), which promises rain

(y = y1) for today. Your model for the accuracy of newspaper’s weather forecast is

P(y = y1 |θ = θ1) = 0.8, P(y 6= y1 |θ = θ2) = 0.9.

What do you decide now?

Solution. Before you read the weather forecast, your expected loss for choice a3 is

E(L(a3,θ)) =
2

∑
i=1

L(a3,θi)P(θ = θi) = 2 · 1
2

+5 · 1
2

= 3.5,

and similarly E(L(a1,θ)) = 4 and E(L(a2,θ)) = 2.5. Then, the decision that minimizes
the expected loss is to choose a2 (i.e., go out without your umbrella).

After reading the forecast, your state of belief about the weather for the rest of the day
is updated by Bayes’s formula:

P(θ = θ1 |y = y1) ∝ P(θ = θ1)P(y = y1 |θ = θ1) = 0.5 ·0.8 = 0.4,

P(θ = θ2 |y = y1) ∝ P(θ = θ2)P(y = y1 |θ = θ2) = 0.5 ·0.1 = 0.05,

where the proportionality factor is 1/P(y = y1). The expected losses are now

E(L(a1,θ) |y1) ∝ 4 ·0.4+4 ·0.05 = 1.8

E(L(a2,θ) |y1) ∝ 5 ·0.4+0 ·0.05 = 2.0

E(L(a3,θ) |y1) ∝ 2 ·0.4+5 ·0.05 = 1.05
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and so now the best decision is a3 (go out with your umbrella).
In the case the newspaper had instead forecast “no rain” (y2), your updated state of

belief would have been

P(θ = θ1 |y = y2) ∝ 0.5 ·0.2 = 0.1, P(θ = θ2 |y = y2) ∝ 0.5 ·0.9 = 0.45

and the expected losses would have been

E(L(a1,θ) |y2) ∝ 4 ·0.1+4 ·0.45 = 2.2

E(L(a2,θ) |y2) ∝ 5 ·0.1+0 ·0.45 = 0.5

E(L(a3,θ) |y2) ∝ 2 ·0.1+5 ·0.45 = 2.45,

and the best decision, based on this information, would have been a2.

Example: Monty Hall and the three doors You are a
contestant in the TV game show Let’s Make a Deal hosted by
Monty Hall. After successfully completing various tasks, you
arrive at the part of the show where he offers you a choice: “Door
number one, door number two, or door number three?” You
know that there is a valuable prize behind one door, and no prize
behind the other doors, but of course you don’t know which door
has the prize. Which door should you choose?

After you’ve chosen a door, and as he always does at this
stage of the show, Monty does not yet open your door. Instead, he opens one of the re-
maining doors to reveal that it does not have the prize behind it. He then offers you a new
choice: do you stick with your initial choice, or do you switch to the other closed door?

Solution. Let θi denote “the prize is behind door i” and ai denote “choose door i”. When
you are shown three closed doors, by symmetry (i.e. you have no reason to prefer any
door over another), your prior pmf is uniform:

p(θ1) = p(θ2) = p(θ3) =
1
3
.

With the utility function

U(a,θi) = χ(a = ai) =
{

1 a = ai

0 a 6= ai
,

the expected utility for a1 is

E(U(a1,θ)) =
3

∑
i=1

U(a1,θi)p(θi) = 1 · 1
3

+0 · 1
3

+0 · 1
3

=
1
3
,

and similarly E(U(a2,θ)) = 1
3 and E(U(a3,θ)) = 1

3 . Thus, all three options are a-priori
equally good.

Let’s say you chose door 1. If the prize is behind door 1 then, according to the rules of
the game, Monty could have chosen either of the other doors y ∈ {y2,y3} to open before
offering you the stick-or-switch option. By symmetry, your knowledge of which door he
would choose in this case is

p(y2 |θ1) =
1
2
, p(y3 |θ1) =

1
2
.
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If the prize is not behind door 1, then Monty was obliged to open the remaining door that
does not have the prize:

p(y2 |θ2) = 0, p(y3 |θ2) = 1
p(y2 |θ3) = 1, p(y3 |θ3) = 0.

Suppose Monty opened door 3. Then, by Bayes’s theorem, your state of belief about the
location of the prize is

p(θ1 |y3) ∝ p(y3 |θ1)p(θ1) =
1
2
· 1

3
=

1
6

p(θ2 |y3) ∝ p(y3 |θ2)p(θ2) = 1 · 1
3

=
1
3

p(θ3 |y3) ∝ p(y3 |θ3)p(θ3) = 0 · 1
3

= 0,

where the normalising constant is 1/p(y3). The expected utilities are now

E(U(a1,θ) |y3) ∝
1
6
, E(U(a2,θ) |y3) ∝

1
3
, E(U(a3,θ) |y3) = 0,

and so you should choose to switch to door number 2. Similarly, if Monty had opened
door 2, you should switch to door 3.

µ0 µ1

p(y|no signal) p(y|signal)

y

Example: Signal detection A transmitter either
emits a signal (θ = 1) or does not (θ = 0). A receiver
measures a corresponding voltage level µ1 or µ0 with
µ0 < µ1. The measurement is corrupted by zero-mean
gaussian noise:

y = µθ + ε, ε ∼ Normal(0,σ2),

that is, y |θ ∼ Normal(µθ ,σ2). The decision is whether to report a = 1: the signal is
present, or a = 0: the signal is absent.

Solution. To solve this problem you need the prior probabilities π1 := P(θ = 1) and
π0 := P(θ = 0) = 1−π1, and a loss function L(a,θ), which for this problem is specified
by four constants:

θ = 0 θ = 1
a = 0 L00 L01
a = 1 L10 L11

Here L01 is the penalty for a miss (you fail to report a signal that is sent) and L10 is the
penalty for a false alarm (you report a signal when none is sent). Normally, one has
L10 > L00 and L01 > L11, that is, the penalties for making erroneous decisions are greater
than the penalties for being correct.

Before the receiver voltage measurement value is available, the expected losses cor-
responding to the two options are

E(L(0,θ)) = L00π0 +L01π1, E(L(1,θ)) = L10π0 +L11π1.

The best no-data decision is to choose a = 1 if E(L(0,θ)) > E(L(1,θ)), that is, if

(L01−L11)π1

(L10−L00)π0
> 1,
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and choose a = 0 otherwise; the corresponding loss is min(L00π0 +L01π1,L10π0 +L11π1).
Now consider the decision when the measurement y is available. By Bayes’s rule, we

have

P(θ = 0 |y) ∝ P(θ = 0)p(y |θ = 0) ∝ π0e−(y−µ0)2/(2σ2)

P(θ = 1 |y) ∝ P(θ = 1)p(y |θ = 1) ∝ π0e−(y−µ1)2/(2σ2)

The expected loss for decisions a = 0 and a = 1 are

E(L(0,θ) |y) = L00P(θ = 0 |y)+L01P(θ = 1 |y) ∝ L00π0e−
(y−µ0)2

2σ2 +L01π1e−
(y−µ1)2

2σ2 ,

E(L(1,θ) |y) = L10P(θ = 0 |y)+L11P(θ = 1 |y) ∝ L10π0e−
(y−µ0)2

2σ2 +L11π1e−
(y−µ1)2

2σ2 .

The best decision is to choose a = 1 whenever E(L(0,θ) |y) > E(L(1,θ) |y). This condi-
tion is equivalent to

y >
µ1 + µ0

2
−

ln(π1(L01−L11)
π0(L10−L00)

)

(µ1−µ0)/σ2 .

The quantity on the right of the inequality is called the threshold level: the optimal deci-
sion is to report the presence of a signal if the voltage exceeds this value, and to report the
absence of a signal if the voltage is below it.

14.2 Loss functions for point estimation
Point estimation means choosing a real value a that is in some sense a good approximation
of θ . (To keep notation simple, the discussion here is based on θ , but all the results apply
equally well to θ |y.) The task of making the choice can be formulated as a decision
problem. We now show that the familiar summary statistics mean, median, and mode are
optimal decisions that correspond to certain loss functions.

Quadratic-error loss This is L(a,θ) = (θ −a)2, for which the expected loss is

E(L(a,θ)) =
∫

(θ −a)2 p(θ)dθ =
∫

(θ −E(θ)+E(θ)−a)2 p(θ)dθ

=
∫

(θ −E(θ))2 p(θ)dθ +(E(θ)−a)2

+2(E(θ)−a)
∫

(θ −E(θ)) p(θ)dθ

= V(θ)+(E(θ)−a)2 ,

which is minimized when a = E(θ). Thus the mean is the point estimate corre-
sponding to a quadratic loss function.

Absolute-error loss This is L(a,θ) = |θ−a|, for which the point estimate is median(θ).
To show this, let m denote median(θ), assumed for simplicity to be unique. Then
P(θ ≤ m) = P(θ ≥ m) = 1

2 , and for any a > m, we have

L(m,θ)−L(a,θ) = |θ −m|− |θ −a|=


m−a if θ ≤ m
2θ − (m+a) if m < θ < a
a−m if θ ≥ a

Now, because m < θ < a⇒ 2θ < 2a⇒ 2θ −a < a⇒ 2θ − (m + a) < a−m, we
obtain

L(m,θ)−L(a,θ)≤
{

m−a if θ ≤ m
a−m if m < θ
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Taking expectations gives

E(L(m,θ))−E(L(a,θ))≤ (m−a)
∫ m

−∞

p(θ)dθ︸ ︷︷ ︸
1/2

+(a−m)
∫

∞

m
p(θ)dθ︸ ︷︷ ︸
1/2

= 0.

Similarly, one can show that E(L(m,θ))−E(L(a,θ))≤ 0 also when a < m. Thus,
m minimises the absolute-error loss.

Perfectionist’s loss The loss function

L(a,θ) =−δ (a−θ)

considers perfect, error-free estimates to be infinitely more valuable than erroneous
estimates. The expected loss is

E(L(a,θ)) =
∫
−δ (θ −a)p(θ)dθ =−p(a),

which is minimized by the point estimate a = mode(θ). The perfectionist’s loss
function thus corresponds to the decision to choose the most probable value.

Although it is gratifying to have decision-theoretical derivations for familiar summary
statistics, keep the following cautions in mind:

• The quadratic-error, absolute-error, or perfectionist’s loss functions may not be
appropriate models for your specific decision problem.

• If one is mainly interested in inference, without any clear need for decision, then
the decision theory machinery is superfluous: the posterior distribution is itself a
complete description of the state of belief.

14.3 Decision Rules and the Value of an Observation
To simplify notation in the following, we suppress the conditioning on y, writing simply
θ in place of θ |y, and focus on how the Bayesian choice depends on a potential or future
observation ỹ.

A decision rule is a function d : Y →A , that is, it is a strategy for choosing an action
a given some ỹ. The Bayes risk of a decision rule is determined by taking expectation of
the loss over both θ and ỹ:

r(d) =
∫∫

L(d(ỹ),θ)p(ỹ,θ)dỹdθ

If you are working with utilities rather than losses, you can use instead the Bayes “safety”

s(d) =
∫∫

U(d(ỹ),θ)p(ỹ,θ)dỹdθ .

The Bayes decision rule (denoted d∗) corresponds to making the Bayesian choice

d∗(ỹ) = argmin
a

E(L(a,θ) | ỹ)

for every ỹ ∈ Y . No other decision rule gives a smaller Bayes risk, because

r(d)− r(d∗) =
∫∫ (

L(d(ỹ),θ)−L(d∗(ỹ),θ)
)

p(ỹ,θ)dỹdθ

=
∫ (∫

L(d(ỹ),θ)p(θ | ỹ)dθ −
∫

L(d∗(ỹ),θ)p(θ | ỹ)dθ

)
p(ỹ)dỹ

=
∫ (

E(L(d(ỹ),θ) | ỹ)−E(L(d∗(ỹ),θ) | ỹ)
)︸ ︷︷ ︸

≥0

p(ỹ)dỹ≥ 0.
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The prior value of a potential observation is the difference between the minimum Bayes
risk r(d∗) and the expected loss mina E(L(a,θ)) of the best “no-data” decision.

Example: What if it rains? (continued) We found earlier that the expected loss of
the optimal decision that is taken before reading the weather forecast (that is, the decision
a2) is 2.5.

The Bayes decision rule was found to be

d∗(ỹ) =
{

a3 if ỹ = y1
a2 if ỹ = y2

The corresponding Bayes risk is

r(d∗) = ∑
i

E(L(d∗(yi),θ) |yi)P(ỹ = yi)

= E(L(a3,θ) |y1)︸ ︷︷ ︸
=1.05/P(ỹ=y1)

P(ỹ = y1)+E(L(a2,θ) |y2)︸ ︷︷ ︸
=0.5/P(ỹ=y2)

P(ỹ = y2)

= 1.55

Thus, the prior value of the weather forecast’s information to you is 2.5−1.55 = 0.95.

Example: Monty Hall and the three doors (continued) We found earlier that
the expected utility for the optimal decision (which is to choose any one of the doors)
before Monty opens a door is 1

3 .
If 1 denotes the door you initially choose and ỹ ∈ {2,3} denotes the door that Monty

opens, the Bayes decision rule is

d∗(ỹ) =
{

a2 if ỹ = 3
a3 if ỹ = 2

The corresponding Bayes safety is

s(d∗) = ∑E(U(d∗(yi),θ) |yi)p(yi)

= E(U(d∗(y2),θ) |y2)︸ ︷︷ ︸
=(1/3)/p(y2)

p(y2)+E(U(d∗(y3),θ) |y3)︸ ︷︷ ︸
=(1/3)/p(y3)

p(y3) =
2
3

Thus, the prior value of the information that can be obtained by the opening of a non-
winning door is 2

3 − 1
3 = 1

3 .

Example: Signal detection (continued) We found earlier that the expected loss for
the optimal decision in the absence of a voltage observation is min(L00π0 +L01π1,L10π0 +
L11π1). In particular, for perfectionist’s loss and equal priors π0 = π1 = 1

2 , the expected
loss is 1

2 .
We also found that the Bayes decision rule is d∗(ỹ) = χ(ỹ > T ), where the threshold

level is

T =
µ1 + µ0

2
−

ln(π1(L01−L11)
π0(L10−L00)

)

(µ1−µ0)/σ2 .
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The corresponding Bayes risk is

r(d∗) =
∫ T

−∞

E(L(0,θ) | ỹ)p(ỹ)dỹ+
∫

∞

T
E(L(1,θ) | ỹ)p(ỹ)dỹ

=
1√

2πσ2

∫ T

−∞

(
L00π0e−

(ỹ−µ0)2

2σ2 +L01π1e−
(ỹ−µ1)2

2σ2
)

dỹ

+
1√

2πσ2

∫
∞

T

(
L10π0e−

(ỹ−µ0)2

2σ2 +L11π1e−
(ỹ−µ1)2

2σ2
)

dỹ

= L00π0Φ

(
T −µ0

σ

)
+L01π1Φ

(
T −µ1

σ

)
+L10π0

(
1−Φ

(
T −µ0

σ

))
+L11π1

(
1−Φ

(
T −µ1

σ

))
,

where Φ(x) = 1√
2π

∫ x
−∞

e−t2/2 dt is the standard normal cdf. In particular, in the case of

perfectionist’s loss and equal priors, the threshold is T = µ0+µ1
2 and the Bayes risk is

r(d∗) =
1
2

Φ

(
µ0−µ1

2σ

)
+

1
2

(
1−Φ

(
µ1−µ0

2σ

))
= 1−Φ

(
µ1−µ0

2σ

)
.

The prior value of the voltage observation is then Φ
(

µ1−µ0
2σ

)
− 1

2 :

value of ỹ

0 1 2 3
0

0.5

µ1−µ0

2σ

15 Exact marginalisation
Recall that the marginal posterior distribution of some parameter of interest can always be
obtained by integrating out the remaining parameters. In this section we show how these
integrals can sometimes be done in closed form, yielding expressions for the pdf of the
parameter of interest.

This section requires knowledge of matrix algebra.

15.1 Change Point Detection
Consider the change point detection problem from §11.5. Denoting sk = ∑

k
i=1 yi, the pos-

terior is
p(λ1,λ2,k |y) ∝ λ

α1−1+sk
1 e−(β1+k)λ1 ·λ α2−1+sn−sk

2 e−(β2+n−k)λ2

The rate parameter λ1 is eliminated using the Gamma distribution’s normalisation:∫
∞

0
λ

α1−1+sk
1 e−(β1+k)λ1 dλ1 =

Γ(α1 + sk)
(β1 + k)α1+sk

and similarly for λ2, leaving

p(k |y) ∝
Γ(α1 + sk)

(β1 + k)α1+sk
· Γ(α2 + sn− sk)
(β1 +n− k)α2+sn−sk
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Dividing the the expression on the right by its sum over k = 1,2, . . . ,48 gives p(k |y), the
exact marginal posterior pmf of the change point k.

Here is Matlab code to compute and plot p(k |y) for the example’s data.

alpha=[.1 .1]; beta=[.1 .1]; % parameters of prior
y=[12,8,14,16,6,9,12,3,12,10,9,13,12,11,9,12,17,8,14,19,18,...
14,9,18,15,12,9,17,8,7,2,5,7,9,6,4,7,5,7,1,5,7,5,6,7,8,6,5];
n=length(y);
sk=cumsum(y); % vector of cumulative sums
sn=sum(y);
k=1:n; % vector 1,2,...,n
logp=gammaln(alpha(1)+sk) + gammaln(alpha(2)+sn-sk) ...

- (alpha(1)+sk).*log(beta(1)+k) - (alpha(2)+sn-sk).*log(beta(2)+n-k);
logp=logp-max(logp); % rescale p to avoid overflow or underflow
p=exp(logp); p=p/sum(p); % normalise the pmf
stem(k,p) % plot the pmf

0 12 24 36 48
0

0.2

0.4

0.6

k

p(k |y)

The above model assumes that there is one change point. A competing, simpler model
assumes that there is no change point:

yi |λ ∼ Poisson(λ ), λ ∼ Gamma(α,β )

Denoting this simpler model M0 and the original model M1, the Bayes factor for M1
against M0 is

B10 =
48

∑
k=1

1
48
· β

α1
1 β

α2
2

β α
· Γ(α1 + sk)Γ(α2 + sn− sk)

Γ(α + sn)
· (β +n)α+sn

(β1 + k)α1+sk(β2 +n− k)α2+sn−sk

which for this data is B10 = 4.5 ·107. Thus, there is very strong evidence for the existence
of a change point.

15.2 Multivariate normal linear model with a parameter
Consider the observation model

y |a,b,σ2 ∼ Normal(Xb,σ2P−1),

where X is an n× k matrix with n > k, P is an n× n symmetric positive definite matrix,
and the multivariate normal distribution’s density is

p(y |a,b,σ2) = (2πσ
2)−n/2(detP)1/2e−

1
2σ2 (y−Xb)T P(y−Xb)

.

This model says that observations are equal to a linear function of the unknown parameters
b1, . . . ,bk, to which is added a zero-mean gaussian noise with covariance σ2P−1. Here we
consider the case when one or both of X and P contain an unknown parameter a.
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With the prior
p(a,b,σ2) ∝ p(a)σ−2

the posterior is

p(a,b,σ2 |y) ∝ p(a)(detP)1/2(σ2)−1− n
2 e−

1
2σ2 Q

where

Q = (y−Xb)T P(y−Xb)
= yT Py− b̂T XT PXb̂+(b− b̂)T XT PX(b− b̂)

with b̂ = (XT PX)−1XT Py.
Eliminate b via the marginalisation integral

p(a,σ2 |y) =
∫

p(a,b,σ2 |y)db

∝ p(a)
(

detP
detXT PX

)1/2

(σ2)−1− n
2 + k

2 e−
1

2σ2 (yT Py−b̂T XT PXb̂)

Eliminate σ2 via the marginalisation integral

p(a |y) =
∫

p(a,σ2 |y)dσ
2

∝ p(a)
(

detP
detXT PX

)1/2 (
yT Py− b̂T XT PXb̂

) k−n
2 (20)

The MAP estimate of a,
â = argmax

a
p(a |y),

can be found by plotting the logarithm of the expression in (20). If a |y has small disper-
sion, i.e. if its pdf is a narrow spike, then we can approximate the distributions of the other
parameters by taking a = â. In this way we obtain the approximation

p(b,σ2 |y) .
∝ (σ2)−1− n

2 e
−(y− X̃b)T P̃(y− X̃b)

2σ2

where X̃ = X(â) and P̃ = P(â). Marginalising out σ2 gives

p(b |y) .
∝

(
(y− X̃b)T P̃(y− X̃b)

)n/2

=
(

yT P̃y− ˜̂bT X̃T P̃X̃ ˜̂b+(b− ˜̂b)T X̃T P̃X̃(b− ˜̂b)
)−n/2

with ˜̂b = (X̃T P̃X̃)−1X̃T P̃y. This is a multivariate Student-t distribution; ˜̂b is its mean and
its mode.

15.3 Spectrum Analysis
A well-established heuristic technique for detecting periodicity and estimating its fre-
quency is to find the maximum of the periodogram. The following presentation, based on
Bretthorst’s book11, shows that this procedure can be given a Bayesian interpretation.

11 G. Larry Bretthorst, Bayesian Spectrum Analysis and Parameter Estimation, 1988, full text
at http://bayes.wustl.edu/glb/book.pdf
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Here the objective is to identify the frequency of a single stationary harmonic signal
given a noisy time series. Assume the model

yi |ω,b1,b2,σ
2 ∼ Normal( f (ti),σ2)

where the signal is
f (t) = b1 cos(ωt)+b2 sin(ωt)

and the n sampling instants are equally-spaced in t ∈ [−1
2 T, 1

2 T ] with sampling period
∆ = T/(n−1):

ti =
(i−1)T

n−1
− T

2
(i ∈ {1,2, . . . ,n})

Assuming conditionally independent samples, the observation model is

y |ω,b,σ2 ∼ Normal(Xb,σ2I)

where

X = [cos(ωt) sin(ωt)] =


cos(ωt1) sin(ωt1)
cos(ωt2) sin(ωt2)

...
...

cos(ωtn) sin(ωtn)


This is a special case of the model in §15.1, so the marginal posterior is given by (20) with
a→ ω and P→ I. Using the fact that

XT X =
[

c 0
0 s

]
with

c =
n
2

+
sin(nω∆)
2sin(ω∆)

, s =
n
2
− sin(nω∆)

2sin(ω∆)
,

and denoting

R =
n

∑
i=1

yi cos(ωti), I =
n

∑
i=1

yi sin(ωti),

formula (20) can be written as

p(ω |y) ∝
p(ω)√

cs

(
‖y‖2− R2

c
− I2

s

)1− n
2

.

Assuming a flat prior p(ω) ∝ 1, and noting that c ≈ n
2 and s ≈ n

2 for large n, the MAP
estimate of the frequency is approximately

ω̂ = argmax
ω

R2

n
+

I2

n︸ ︷︷ ︸
periodogram

.

Thus the estimate obtained by the periodogram method is pretty much the same as the
posterior mode ω̂ found by the Bayesian method. However, in addition to a point estimate
of the frequency, the Bayesian method provides the posterior distribution p(ω |y), from
which information about the accuracy of the estimate, such as credibility intervals, can be
obtained.
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Example: Sunspots We analyse the famous time series12 of 288 “Wolf numbers”,
which are measures of annual sunspot activity. Assuming a flat prior p(ω) ∝ 1, and us-
ing numerical quadrature to determine the normalisation constant, the pdf for ω |y can be
plotted to scale. The pdf has a maximum of 208.2 at ω̂ ≈ 0.5684, which corresponds to a
period of 11.05 years. A normal pdf with the same maximum value has standard devia-
tion 1

208.2
√

2π
= 0.0019, so a 95% credibility interval of ω |y is 0.5684± 1.95 · 0.0019 =

[0.5647,0.5722]. Thus, the period is determined to within about ±27 days.
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15.4 Autoregressive model of time series
Consider the first-order autoregressive model for a zero-mean time series

yi = ayi−1 + ei, ei ∼ Normal(0,σ2)

Denoting

u =


1
0
0
...
0

 , D =


0
1 0

1 0
. . . . . .

1 0


the AR(1) model can be written in the form

y |a,y0,σ
2 ∼ Normal(Xy0,σ

2P−1)

with
P = (I−aD)T (I−aD), X = a(I−aD)−1u.

It follows that
det P = 1, XT PX = a2, ŷ0 =

y1

a
,

12The data can be loaded into your Matlab session using load sunspot.dat
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and so, for this problem, formula (20) can be written as

p(a |y) ∝
p(a)

a

(
‖y−aDy‖2− y2

1
) 1−n

2

Example: earthquakes Consider the earthquake data in §11.4, from which ȳ has
been subtracted to make it zero-mean. Assuming a flat prior p(a) ∝ 1, and using numer-
ical quadrature to determine the normalisation constant, the pdf for a |y can be plotted to
scale:

0.4 0.6 0.8
0

2

4

a

The maximum pdf value is 4.63 and occurs at â = 0.53. A normal pdf with the same max-
imum value has standard deviation 1

4.63
√

2π
= 0.086, so an approximate 95% credibility

interval of a |y is 0.53±1.95 ·0.086 = [0.36,0.70].

15.5 Regularisation
The least-squares method has been successfully used for hundreds of years in a wide
variety of applications. There are, however, many applications where the method fails
miserably because the estimate is too sensitive to noise in the data. Such difficulties
typically arise in problems where b is high-dimensional, such as image restoration and
tomography. Tikhonov regularisation (also called Ridge Regression) is a technique that
has been introduced to cope with ill-conditioned least squares problems. Here we present
a Bayesian derivation of this technique, together with a Bayesian approach (due to S.
Gull) to estimating the “regularisation parameter”.

Our starting point is the linear gaussian observation model from §15.2,

y |b,σ2 ∼ Normal(Xb,σ2P−1) (21)

Now we assume that X and P are known, so that the likelihood pdf may be written as

p(y |b,σ2) ∝ (σ2)−
n
2 e−

1
2σ2 bT XT PXb

.

We saw in §15.2 that if we assume a flat prior for b and a Jeffreys prior for σ2, we obtain
the MAP estimate b̂ = (XT PX)−1XT Py, which coincides with the classic weighted least-
squares estimate. Here is a simple example where the least squares method doesn’t work.

Curve-fitting Suppose we want to construct a polynomial approximation ∑
k
j=1 b jtk− j

of a smooth function f (t), given noisy samples yi = f (ti)+ ei at t1, . . . , tn. Assuming the
noises ei are mutually independent and gaussian with zero mean and variance σ2, the
model is given by (21) with P = I and

X =


tk−1
1 · · · t2

1 t1 1
tk−1
2 · · · t2

2 t2 1
...

...
...

...
tk−1
n · · · t2

n tn 1

 .
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Here we consider the function f (t) = 10sin((1 + 11t)π/10) and yi = round( f (ti)), that
is, the “noise” is actually caused by rounding the real values to integers. Taking n = 23
equally spaced points in the interval [−1,1] and k = n− 1, we obtain the least-squares
fitted polynomial’s coefficients

b1 = 8.6895 ·106, b2 = 9.1934 ·104, . . . , b22 = 3.0819
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regularised polynomialThe singular values of X span a wide range of values: the ratio of the largest to the smallest
is about 109. This indicates that X is ill-conditioned, and that the least-squares solution
will be sensitive to noise. Indeed, the coefficients found using the clean (i.e. not rounded)
data are

b1 = 6.2767 ·10−8, b2 = 6.1664 ·10−8, . . . , b22 = 3.0902

that is, the coefficients of the high-degree terms are quite different from those found with
the noisy data! We also see that the polynomial fits the observations very well, but that it
oscillates wildly, especially near the ends of the interval. �

In order to cope with ill-conditioned X, we use the conjugate prior

p(b |λ ,σ2) ∝ (λ/σ
2)

r
2 e−

λ

2σ2 ‖Lb‖2
.

where L has rank r. This prior is improper if r < k; components of b that are in the null
space of L have a flat prior, while other components are “penalised”, in the sense that large
values are less probable than small values. The hyperparameter λ , which is sometimes
called the regularisation parameter, determines the strength of the penalisation.

The posterior is then

p(b,λ ,σ2 |y) ∝ p(λ ,σ2)λ
r
2 (σ2)−

n+r
2 e−

1
2σ2 Q

where

Q = (y−Xb)T P(y−Xb)+λbT LT Lb

= yT Py− b̂T (XT PX+λLT L)b̂+(b− b̂)T (XT PX+λLT L)(b− b̂)

with
b̂ = (XT PX+λLT L)−1XT Py.

Eliminating b by marginalisation gives

p(λ ,σ2 |y) =
∫

p(b,λ ,σ2 |y)db

∝
p(λ ,σ2)λ

r
2 (σ2)

k−n−r
2√

det(XT PX+λLT L)
e
−yT Py− b̂T (XT PX+λLT L)b̂

2σ2
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Assuming now a flat prior p(λ ,σ2) ∝ 1, we eliminate σ2 by marginalisation and obtain
the posterior distribution

p(λ |y) =
∫

p(λ ,σ2 |y)dσ
2

∝ λ
r
2
(
det(XT PX+λLT L)

)−1/2 (yT Py− b̂T (XT PX+λLT L)b̂
)1+ k−n−r

2

The MAP estimate of λ ,
λ̂ = argmax

λ

p(λ |y),

can be found by plotting. We can then approximate the distributions of the other parame-
ters by taking λ = λ̂ . In this way we obtain the approximate MAP estimate

b̂ .= (XT PX+ λ̂LT L)−1XT Py

Curve-fitting (continued) Applying the above results to the curve-fitting problem
with L = I, we find the MAP estimate of the regularisation parameter to be λ̂ = 0.0017.
The coefficients corresponding to this value of λ are

b1 = 4.4431, b2 = 1.1616, . . . , b22 = 3.0897

We see that regularisation has considerably reduced the amplitudes of the higher-degree
terms’ coefficients, and that the oscillation between data points has been eliminated:
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