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Abstract

In this report, the structural optimization of a three-lvass is considered. We present the detailed
solution of the minimum compliance problem as well as thesstrconstrained minimum weight
design. In both cases the truss is subject to two loadingittond. The compliance minimization
problem is formulated as a multicriterion optimization Iplem, where the compliances of the
different loading conditions are the conflicting criterfeat are minimized simultaneously. We
provide the analytical solution of this formulation as wadl the global optimum of the stress-
constrained minimum weight problem.

1/35



1. Introduction

1 Introduction

In the structural optimization of trusses, three main peabtategories can be identified.daing
optimization, the optimal member profiles are determined for a fixed layehere the coordinates
of the joints as well as the connectivity of the members arergiIngeometry optimization, some
nodes are allowed to move. Finally, in topology optimizatimembers are allowed to vanish.
The combination of geometry and topology optimization imetimes callediayout optimization.
For a thorough review on topology optimization and the aldewas, see [7, 10, 3].

In the present work, the topology optimization of a simplee#iibar truss is considered. The
purpose is to provide the research community a test caseewe analytical solution is known.
This will serve as a reliable benchmark for testing numémgdimization algorithms, and for
studying other phenomenon related to topology optimirabitirusses.

In formulating the optimization problems, tlgeound structure approach [6] is adopted. In this
approach, an initial truss with excessive number of nodesmaembers (the ground structure)
is defined, and during the optimization process memberslneeal to vanish, which leads to
alterations of the topology. As the ground structure of tken@ple problems possesses only three
members, the number of topologies is small, and the probsembe solved analytically.

We consider the same ground structure for two sets of loactinglitions. In the first case, the
allowable stresses in tension and in compression are eghié in the latter case, the allowable
stress in compression is smaller than in tension. For bathszave solve the minimum weight
problem with stress constraints, and the compliance meatian problem. These are arguably
the most studied problems in the literature on topologymiatation. The motivation for consid-
ering these problems is to study their optimal topologiedenmmuiltiple loading conditions. It
is a well-known fact that under a single loading conditidre two problems have an identical
optimum topology [6, 7]. Itis also generally agreed thatsacesult cannot be stated in general,
when multiple loading conditions are involved, but to théhau's knowledge, a rigorous proof of
this statement is still lacking. The computations in thesprg work will help to bridge this gap.

The paper is organized as follows. In Section 2, the geneodl@m formulations are given. The
three-bar truss with equal allowable stresses is solveecati® 3 and with unequal allowable
stresses in Section 4. Finally, the computations are dégcli; Section 5.

2 Problem formulations

In the following, we present the general problem formuladithat are employed in this work. The
stress-constrained minimum weight problem is one of the firsblems ever studied problem
in the structural optimization literature. We give both tieneral nonlinear formulation and a
simplified linear formulation, where the compatibility abtions have been neglected.

For the compliance minimization problem, a multicriteritmmmulation is applied, where the
conflicting criteria are the compliances of the differeradong conditions. Albeit not new, this
formulation has not been thoroughly studied in the literatu
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2.1 Minimum weight problem

2.1 Minimum weight problem

The general problem formulation for finding the minimum weigesign with stress constraints
IS

m|n V(x ZLA

S.t K( ) J:p]7 J:1727"'7n|_ (R/)
g <agjx) <0, ifA>0
A <A <A

In the abovex = {A; Az --- Ay} is the design variable vector of cross-sectional areasef th
ground structure member«K is the stiffness matrixy; andpj are the displacement and load
vectors of thg!" loading condition. The stress of membér the ji" loading condition is denoted
gij. The member stresses are obtained from the equation

0j = Suj (1)

whereS is the stress matrix. During the optimization, the strugtanalysis is performed sepa-
rately for each given design variable vector. Thus, théngtéfs equations are not considered as
equality constraints. For formulating the stiffness amdss matrices, see for example [5].

In problemR,, topology alterations are enabled by setting the lower ddanthe member areas
to zero, i.,e Ay =0foralli=1,2,...,n. As the topology varies during the optimization process,
the stiffness matrix may become singular or nearly singwhich causes numerical difficulties.
However, this issue does not arise in the present work duenalisity of the ground structure.

If the compatibility conditions are neglected, the minimaight problem can be formulated as
the following linear programming problem [6]:

m|n V (x ZLA

st BNj=pj, j=12...,n (ALp)
QiAi SNIJ SAiUiai:]-uZ?"'an
A<A<A,i=12..nj=12...,n

whereB is the statics matrix of the truss, ahy is the vector of member forces ahy is the
normal force of membarin the loading conditiorj, respectively.

For a single loading condition, it has been shown that themysh topology is statically determi-
nate, see [7]. It then follows that the solution of problBm satisfies the compatibility conditions
automatically, and its solution is also the global optimunpmblemR,. When several loading
conditions are involved, the minimum weight structure isgrally not statically determinate, and
the solution of the LP formulation does not necessarilys§athe compatibility conditions. In
this case, problerRA_p yields a lower bound for the optimum of probld®a.
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2.2 Multicriterion compliance minimization

2.2 Multicriterion compliance minimization

Minimizing the compliance under multiple loading conditgrequires the choice of the objective
function. Typically in the literature, either the weightsaim or the maximum of the compliances
of the different loading conditions is minimized. Anothgpaoach, also adopted in the present
work, is to consider the compliances of the different logdionditions as competing and con-
flicting criteria, and to minimize them simultaneously. §keads to the following multicriterion
optimization formulation [8]:

min { c1(x) Ga(x) -+ G () }

s.e. KXuj=pj, j=12,...,n
V(X) < Vimax
A<A,i=12...n

()

wherecj(X) = pjTuj (x), ] =1,2,...,n, are the compliances of the loading conditions. Further-
more, the material volume upper bound can be writte¥},as = kKLAg, wherek > 0.

To allow topology alterations, the lower bounds for membiena are settd; =0,i=1,2,...,n.
Additionally, the cases where the structure is unable tisfyathe equilibrium equations due to
removal of members, must be taken into account. We do thisdlly by defining the domain of
the compliances as

D={x|3uj: Vj=12,...,n. : KX)u; =p;j } (2)

This set is the non-negative orthant of the design spacé, eeittain parts of the boundary re-
moved. It can be proven thBtis a convex set [1]. Also, following the guidelines of [1]can be
shown that the compliances, j = 1,2,...,n., are convex functions in the sbt

Assuming that the member areas are chosen from thg,dbe stiffness equation can be elimi-
nated from Problen®: by inverting the stiffness matrix and substituting the thspments into
the expressions of the compliances. This reduces the pnabie considerably, and the following
form is obtained:

min  { c(x) cz(x) -~ ¢ (X) }
s.e. V(X) < Vinax Py
0<A,i=12...,n
The feasible set is defined by linear constraints. It is eassetify that problenPg satisfies the
Kuhn-Tucker constraint qualification [9, pp.38]:

Lemma 1. Let the feasible set of a multicriterion probleth= {x | g(x) = Ax—b < 0}. Then
the problem satisfies the Kuhn-Tucker constraint qualibcat

Proof. Letx* € Q andJ = {j | gj(x*) = 0}. To show that the constraint qualification holds, we
construct a vector-valued functien [0, 1] — R", satisfyinga(0) = x*, &(0) = ad andg(a(t)) <
Oforallt € [0,1]. Herea > 0O is a constant andlis an arbitrary member of the sg¥ | ngT(x*)v <
0,Vjeld}.
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2.2 Multicriterion compliance minimization

A function satisfying the initial condition ia(t) = x* + atd. Next we define a constant > 0
such thag(a(t)) < 0 holds. Consider the functiagy, whenj € J and whenj ¢ J:

jed: gj(a(t)) = (A(X*+atd)); —bj = (AX")j +at (Ad); —b; <0
=h;j <0
jgd: gj(a(t)) = (AX")j+at(Ad); —bj

=bj+ &+ at(Ad); —b; = & + at(Ad);

wheregj = (A(X* +atd))j —bj <O.

Now &; + at(Ad); <0 for allt € [0,1] at least, wherfAd); < 0. Assume then, thdiAd); > 0.
Sinceg;j is an increasing function with respecttisettingt = 1 yields an upper bound far such
thatg;(a(t)) < 0 holds for allt < [0, 1]:

q< &
~ Og/d

Taking into account all constraints, for whiErngd > 0, the following value fox is obtained

; J
a= min
j:ngTd>0{ ngTd}

Thus, an appropriate functicamhas been constructed, and it can be deduced that the problem
satisfies the constraint qualification.

O

In order to apply the KKT-conditions, we still need to vertfyat the compliance is continuously
differentiable in the séD. Since in the seb, the stiffness matriX is positive definite, we have
detK (x) > 0 for all x € D. The compliance of loading conditiarcan be written as

ci(x) =pl K(x) 'pi = ZKQ 1(x) pispit
S
The inverse of the stiffness matrix can be written as

1 1 :
K™= JoiK adjK
where adK is the adjugate. Since each elemenkois a linear function of the member areas,
detK and the elements of aldj are polynomial functions of the member areas. Then, as all
eIementsKijl, of the inverse matrix are rational functions, they are wdusly differentiable
(detk > 0) with respect to member areas. Thus, since the complianageiar with respect to
the Kijl, it can be deduced that the compliance is continuouslyréiffigable with respect to the
member areas in the st

From the discussion above, it follows that the Pareto ogtsoktions of the compliance mini-
mization problem can be solved from the KKT-conditions.slisidone in the following sections.
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3. Equal allowable stresses

3 Equal allowable stressesin tension and in compression

In this section, we find the stress-constrained minimum tedgsign and the minimum compli-
ance design for a three-bar truss, with equal allowables#®in tension and in compression.

3.1 Ground structure and feasible topologies

We consider the structure shown in Fig. 1. The truss is stigetwo loading conditions. In
loading condition LC1, a horizontal load with magnitudé &cting to the right and a vertical
load with magnitudé-, are applied. In loading condition LC2, only the horizontald acting to

the left with magnitude B is applied.

) L F
1
F
3h

Figure 1: Three-bar truss. The loading conditions are: L&1= 3F, / =0; LC 2: F, =0,
F, = 3F.

The truss has four statically feasible topologies; thraécslly determinate that are obtained by
removing one member from the ground structure, and onealigtindeterminate, corresponding
to the ground structure.

3.2 Minimum weight design

To solve the stress-constrained minimum weight desigrbll@m)Pv is written for the three-bar
truss. The stress bounds for all members@re- —g; = AO, whereAg is a reference member
area.

The stiffness matrix corresponding with the nodal disphaests shown in Fig. 1 is

Aq Az \/§
Iy PR
K —El2v2 78 Z\f (3)
L| A +§A A 3A
N AN

whereE is the Young’s modulus andis the characteristic length appearing in Fig. 1.
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3.2 Minimum weight design

The load vectors are

and the stress matrix is

i L
2
0
V3

4

Ak P NI

:[3(” @)

(5)

The nodal displacements in the two loading conditions atained by solving the stiffness equa-

tion. They have the following expressions:

LCL: Up(x) = ~BV2ALHO(L+ VIASFL
d(Aq, A2, A3) E
Uoa(X) = —8v/2A1 — 48A2 — 2(3+ V3)AsFL
d(A1,A2,Az) E
12v/2A; — 6v/3A3 FL
LC2: Up2(X) = (\j/(;\: Az,;xsf) Sf
o) = 12V2A; +48A; +6Ag FL
d(Aq, A2, Ag) E

where

d(A1, A2, Az) = 4V2A1 A0 + (22 + V6) A1 Az + 6A2A3

Applying Eg. (1) gives the member stresses:

24A5 4+ 2(3+2V/3)A
LC1: o11(X) = Zd (A1< v Jlacfs
Ga1(X) = —8V2A1 +6(1+V3)As_
T d(A A Ag)
Gaa(x) = ~2(V2+V/6)A — 12/3R0
ST d(A1,A2,A3)
24M; +3(1+/3)Ag
LC2: O12(X) = — a( Al( A A3>)
Gaz(X) = 12y/2A; — 6v/3Ag
220 T d (AL, A, Ag)
Gs2(X) = 3V2(1+ V3)A +12V3Ar
32 B d(A17A27A3)

(tension)

(tension or compression)
(compression)
(compression)

(tension or compression)

(tension)

The following observations can be made about the membessstse Since > O for all feasible
cross-sections, in can be seen thatin LC1, member 1 is alwagssion and member 3 is always
in compression. Member 2 can be in tension or in compresspertling on the values &
andAs. In LC2, member 1 is in tension and member 3 is in compressibile member 2 can

again be either in tension or in compression.
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3.2 Minimum weight design

3.2.1 Statically determinate topologies

ProblemR; is non-convex, so it can have local minima. Furthermorefdhsible set contains de-

generate parts that correspond to the removal of a memhegfdpient-based solution methods
are unable to find solutions located in these parts. Thus,onsider each topology separately.
When one of the members is removed, the remaining truss le=cetatically determinate, and

the minimum weight solution can be found by simple hand datens.

Member 1removed. When member 1 is removed from the ground structure, the ndorces
in the remaining members 2 and 3 can be solved from the equiibequations of the loaded
node. The normal forces are:

LC1: Npi=(14+v3)F Nay=-2V3F
LC2: Npp»= —V3F N33 = 2V/3F

The cross-sectional area of member 2 is determined by LCéreals LC2 determines the cross-
section of member 3. Setting the members to the stress livas ghe following optimal member
areas and the minimum material volume of this topology:

Al=0 A=(1+V3)Ay A3=2V3A; V= (5V3+1)LAy~ 9.66023 A

Member 2removed. When member 2 is removed from the ground structure, the ndomcas
of members 1 and 3 are

V2@+2v3) . —2(14V3)
2+/3 T 243
_ O 3V2(1+VB3) _3(1+3)

This time LC1 determines the optimum cross-sectional araehber 1 and LC2 determines the
optimum value forAs. The stress bounds are reached by the following member.areas

LC1: Np= =

F

V2(3+2/3) 3(1+/3)
— YT T VY AN~ 2.449 A>=0 A= —"—"Ap~ 2196
A 2 V3 Ao Ao 2 3 2 /3 Ao Ao
v =265V ) esean,

2443

It can be seen that this topology gives a better value for thterial volume than the previous
topology.

Member 3removed. In this case, the normal forces of members 1 and 2 are

LC1: Nj1=3V2F Npi=-2F
LC2: Nip=—-3V2F Npp=3F
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3.2 Minimum weight design

The optimum member areas and the minimum material volume are

A = 3V2A ~ 4.2426A A, = 3Ag A3 =0 V = 9LA,

From the statically determinate topologies, the one whesmber 2 is removed gives the lowest
material volume. We denote this value by

v, _ 2A6+5V3)

=—— ‘| Ay~ 7.8564
() 2 V3 Ao Ao

3.2.2 Statically indeter minate topology

When the sign of the member stresses are taken into accbanadterial volume minimization
problem can be written in the following standard form:

min f(x) = L(v/2A1 + A+ 2A3)

91(X) = 011(x) —0 <0
02(X) = 021(x) -0 <0
g3(X) = -0 —021(x) <0
94(X) = -0 —031(X) <0
O5(X) = 022(X) =0 <0 6)
6(X) = 032(x) —0 <0
g7(x) = -0 —012(X) <0
gs(X) = —0 —022(x) <0
Jo(X) =A—A1 <0
dio(X) =A—-A <0
011(X) =A—-A3<0

To fix the topology, we set a lower bouAd= 0.01A, for the member areas. Applying a sequential
guadratic programming method gives the following solution

A1 =2.409100 Ay =0.1961F Az =2.11116 V*=7.82542A (7)

At the optimum, the stresseg; and g3, reach the tensile limit. Thus, the solution is not a fully
stressed design. It can be seen ¥ak Vp, so the global optimum is attained by the statically
indeterminate topology. Note that the solution of Eq. (7has necessarily a global optimum.
However, the statically determinate topologies canna gmtter solutions than the one above.
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3.3 Compliance minimization

3.3 Compliance minimization

3.3.1 Problem formulation

The multicriterion formulation for the three-bar trussrasponding td% is
min {cy(x) Ca(x)}
st K(Xuj=pj, j=12

V (X) < Vimax
0<A,i=123

(8)

The material volume upper bound is expressed,as = kLAg, wherek > 0. The domairD is as
in Eq. (2).

In order to apply the KKT-conditions, we solve the nodal thspments from the stiffness equa-
tion and substitute them into the expressions of the compd#is. Then the following analytical
expressions are obtained:

_ 16V2A1 + 1448+ 4(6+3V3)As  FAL
AV2A A+ (2v2+VB) AlAs + 6AAs E
B 18(2v/2A; +8Az + Ag) F2L
 4V2A A+ (2v2+ VB)ALAs + 6AAs E

LC 1: c1(x) 9)

LC 2: C2(X) (10)

The problem formulation can be tidied up by scaling the \@és and the criteria. Furthermore,
since the material volume constraint is active at all Paogtomal solutions, one variable can be
solved from the equatio¥f (X) = Vimax-

The variables are scaled by the fack#y, which leads to dimensionless design variabies
Ai/(kAg). Then, the compliances are scaled by the fagttlr/(KEAp). Variablex, is solved
from the active material volume constraint:

1
X1 = 72(1—X2—2X3)

Substituting this and the other scalings to the expressibtie compliances, Eq. (9) and Eq. (10)
yields

f1(X2 X3) _ 4(—4+ (2 — 3\/§)X3 — 32(2)

’ A5+ (4+ 2V3)X5+ (4+ V3)XoXa — (2+ V/3)Xa — 4%
B 18(—6x2 +3x3 — 2)
A+ (4+2V3)E+ (4+V3)xoxg — (2+V/3)xa — 4%

f2(X2, X3)

The remaining constraints are the non-negativity conagiof the variables. Thus, the following
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3.3

Compliance minimization

standard form is obtained for the minimum compliance pnable

rig (00 1)
( ) (X2—|—2X3—1)§0

(X) —X2 <0

g3(X) = —x3 <0

Here, the seb’ is

D' ={x>0]g1g >0V g193 >0V gogs >0}

(Ps)

which is equivalent to stating that only one member can beweh from the ground structure in

order to keep the truss statically feasible.

3.3.2 Pareto optimal solutions
The KKT-conditions of ProblenRy are

a1 0f1(x) + o200 f2(x) + palga (x) + p20g2(x) 4 paliga(x) =
Higi(X) =

gi(x) <

aj >0, >0, (a,u)#0

(11)
(12)
(13)
(14)

In solving the KKT-conditions, the matter of active consita is important, since for inactive
constraintsg; (x) < 0), the Lagrange multiplier is zero, thafis= 0, which simplifies the solution

of the gradient equation, Eq. (11).

Finding solutions of the KKT-conditions involves the folling steps. First, the active constraints
are chosen and the Lagrange multipliers of the inactivetcaings are set to zero. Then, the gradi-
ent equation Eqg. (11) is considered. In this equation, sdrtteeademaining Lagrange multipliers
may be zero, so each combination of multiplier values mustHaezked separately. Assuming
some Lagrange multipliers to be zero and the others positieggradient equation can be solved
for the non-zero multipliers or their ratio. Finally, enéorg the non-negativity or positivity con-
dition of the Lagrange multipliers, valuesxfandxs can be found such that the KKT-conditions
are satisfied. This procedure is repeated for all feasibigbomations of active constraints.

For the three-bar truss problem, there are four cases tormdaved: one of the constraints is
active (3 cases) or all are inactive (1 case). Note that tvnsttaints cannot be active simultane-
ously, since this would lead to a truss with only a single mermwhich cannot support either of

the loading conditions.

01=0,02<0,03<0. Nowx,+2x3—1=0. From the positivity ok, andxs it follows that

1
O<x3<§, Xo=1—-2x3 and O<xx <1
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3.3 Compliance minimization

Sinceu = Uz = 0, the KKT-conditions reduce to
a10f1(X) + o200 f2(x) 4+ pabga (x) =0

Since botha; anda, cannot be zero, all possible combinations of zero Lagranggphers need
to be considered separately.

1.y =0,a1 >0andasz > 0.

Now the KKT-conditions reduce to a pair of linear equationithwespect toor; and ao.
This system of linear equations has a non-trivial solutionly if the determinant of the
matrix, whose columns are the gradients of the criteriagis.ZThis leads to the following
equations

f1,2f2,3—f1,3f2,2=0
Xo =1—2X3
where the conditiolg; = 0 has been employed.
This pair of equations has no real-valued solutions.
2.01=0,u1 >0,0,>0.
The KKT-conditions reduce to

o2 5 | [ o :{o]
fo,3 V2 H 0

The values ok leading to non-trivial solutions are

2 2
X3:§ or X3:§

of which the latter is feasible. Thea = % The KKT-conditions are satisfied, jif; /as =
—V/2f3,2> 0. Whenx, = 1/5 andxs = 2/5 are substituted, we get

M 5945144651< 0
az

Thus, the poin(%, %) does not satisfy the KKT-conditions.

3. 02:0,u1>0,01>0.
The gradient equation becomes

fle &5 [[a2] [ 0 ]
f1,3 V2 H 0
Non-trivial solutions with respect tg; anda; are obtained when
3-9 15 3
o Y379 03586 or x—_2TV3 L0855
V3-22 —22++/3

12/35



3.3 Compliance minimization

The first solution is feasible. The ratio of the Lagrange ipliérs is

Bt 3664565<0
ai

so this solution does not satisfy the KKT-conditions.

4. a1 > 0,02 >0, ug > 0.

In this case there are three unknowns and two equations.effiney only the ratiog; =
a1/H1 andzy = o,/ of the Lagrange multipliers can be solved from

1
fio fo2 || zn | 2
fi3 fa3 | [ 2 /2
With the conditiornx, = 1 — 2x3, the solutions of this equation are

a1 (s) = 3(—14v/2+3v/6)%3(30S — 47x3 + 24x3 — 4)
m - PV T T 10148 — (9974 64v/3)xs + 264+ 40V/3)

He o 2T T 962(1014E — (997+ 64v/3)xg + 264+ 40y/3)
where
C, = 1537+ 48V3 C, = 792+ 36V/3 Cs = 132+6V/3

Since all Lagrange multipliers have to be positive, the doms p; > 0, p2 > 0 must hold.
The simplest way of examining this is to plpt and p; in the interval 0< x3 < 1/2 as
shown in Fig. 2. From the figure it can be seen that the ratiesnaver simultaneously
positive, which means that all Lagrange multipliers careopositive. Thusg; = 0 yields
no Pareto optimal solutions.

02=0,01<0,03<0. Nowxp=0,and0< x3 < % The gradient equation becomes

a10f1(X) + a20f2(x) 4+ p20g2(x) =0
Again, the combinations of the Lagrange multipliers needeg@onsidered.

1. u2=0,a1>0,a2>0.

The KKT-conditions reduce to a pair of linear equations wéspect tax; anda». Requir-
ing a non-trivial solution and substituting = 0O, it can be shown that the equation

f1,2f2,3—f1,3f2,2=0

has no real-valued solutions.
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3.3 Compliance minimization

0.015

0.01

0.005

—0.005

-0.01

~0.015 i i i i
0 0.1 0.2 0.3 0.4 0.5

%3

Figure 2. Ratios of the Lagrange multipliers, wigan= 0.

2.01=0,u>0,0,>0.
Now the gradient equation is

foo —1 [az
fz O Hz

Requiring non-trivial solutions gives

gt

1
x3=1 or x3=x5 ==
3
of which the latter is feasible. Theq = %. The KKT-conditions are satisfied, ib /a2 =

f2,2> 0. Whenx, = 0 andxz = 1/3 are substituted, we get

H2 _ 41737621750

az

Thus, the solution, = 0, x3 = 3 satisfies the KKT-conditions.
The Pareto optimal solution found is

x—ﬁ X =0 x—:—L
1= 6 2 = 3= 3
~ 0.2357 ~ 0.3333

The values of the scaled compliances are

_ 12(1043V3) _ 4086156123 A
2+/3 2+v3

The solution is the minimum of the compliance of LC2.

f1 ~ 4340776917
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3.3 Compliance minimization

.a2=0,u>0,0a1 >0.
The gradient equation becomes

fio -1 [ az | [ 0 }
fiz O H2 0
Non-trivial solutions fora, and i, are obtained, when

> 4/3+5

~ 0.2290412693 OF X3 = — <9\/§+ 17)

4\/3+5

The first solution is feasible. The ratio of the Lagrange ipliérs is

H2 _ 39289381100

az

so the point is Pareto optimal. The values of the design bisaare

(3+2V3)Vv2 V3-1
=" Xo =0 Xg= ———
2(4v/3+5) 4y/3+5
~ 0.38319 ~ 0.22904
The scaled values of the compliances are
[ _AGHAVIRTHITI) 0 eeis6103
(3+2v3)(v3+1)(2+V3)
,— _186H4VI(TH5V3) o) 1546433
(3+2v3)(v3+1)(2+V/3)

This solution is the minimizer of the compliance of LC1.

.01>0,02>0, > 0.
Again, only the ratios of the Lagrange multipliess,= a1/, andz, = az/» can be

solved from
[fl,z fm][h]:[l
f1,3 f2,3 2 0

oy (19+8v/3)(3%% — 4x3 + 1) (1 — 2x3)X3

pp Pibe) = 4(10142 + (332,/3— 11555 + 408— 184//3)
(344 41v/3) (4653 + D1x3 — Dox3 + D3)x3

© 414(10148 + (332,/3— 1155x3 + 408— 184,/3)

Substitutingk, = 0, we get

ar o
H2

P2(X3) =
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3.3 Compliance minimization

where

D; =9+48/3 D, = 24+ 36V3 D3 =4+6V3

p1 and p, are plotted in Fig. 3. It can be seen, that bgthand p, are positive in the
intervalx§ < xs < x§. Since the end points of this interval are also Pareto opfiitnean
be deduced, that the following points are Pareto optimag&rvga = O:

X1 =

(1—2%3) Xo =0 X3 € [7_\@’ }]

23 '3

N

0.03 T T T T

0.025

0.02

0.015

o 0.01p

0.005

—0.005

-0.01 : : : :
0 0.1 0.2 0.3 0.4 05

%3

Figure 3: Ratios of the Lagrange multipliers, wigen= 0.

03=0,01<0,092<0. Nowxz=0, and O< x» < 1. The gradient equation of the KKT-
conditions becomes

a10f1(X) + a2l f2(x) 4+ pzbgs(x) =0

Again, the combinations of the Lagrange multipliers havedaonsidered.

1. u3=0,a; >0, anda; > 0.
As in the previous cases, the equation

f1,2f2,3—f1,3f2,2=0

has no real-valued solutions.
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3.3 Compliance minimization

2. a01=0,u3>0,0,>0.
The gradient equation becomes

foo O [az
fo3 —1 H3

Non-trivial solutions are obtained, when

1t

1
Xo=-1 or x2:§

of which the latter is feasible. The ratio of the Lagrangetipliérs is

s 5567220866< 0

az
so the KKT-conditions are not satisfied.

3.0,=0,u; >0,0a1 >0.
The gradient equation becomes

f172 O |: a]_
f173 -1 I13

Requiring non-trivial solutions foer, andus gives

gt

1 1
Xo=—= 0I Xo=-—

2 4
of which the latter is feasible. The ratio of the Lagrangetipliers is
K3 _ 1791384388<0
ax

so the KKT-conditions are not satisfied.

4. a1 > 0,02 >0, uz > 0.
Solving the ratios of the Lagrange multipliees,= a1/ 3 andz; = a»/us from the equa-

tion
[fl,z fz,zllzllzlo}
f1,3 f2,3 2 1

with x3 = 0, gives the following:

ay (3v3—14) (3 +2x2 — 1) (%2 — L)%z

g e = 507 + (50v/3— 177)xz + 66+ 10v/3
az 4(14—3/3)(8%3 — 6x5 — 3%z + 1)xo
e P2l = (5072 + (50v3— 177)%p + 66-+ 10V/3)

The solutionsp; and p, are plotted in Fig. 4. It can be seen, that both solutions ate n
positive simultaneously. Therefore, no positive Lagrangétipliers can be found, and
there are no Pareto optimal solutions for this combinationutipliers.
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3.3 Compliance minimization

0.015

0.01

0.005

—0.005

-0.01

~0.015 i i i i
0 0.1 0.2 0.3 0.4 0.5

Figure 4. Ratios of the Lagrange multipliers, wiggn= 0.

01 <0,020<0,03<0. Nowp =0foralli=1,2 3. The gradient equation reduces to

a10f1(X) + ax0f2(x) =0
This equation has a non-trivial solution, if and only if
f1,2 f2,3—f1,3f2,2=0

This equation has four solutions, which are denoteokiapy fi(x2), 1 =1,2,3,4. Eachrj has to
satisfy the following conditions:

) %;>0 (i.e.x3 > 0)
i) g1(x2,ri(x2)) <0 (i.e.xy > 0)

i) —f2,2(ri(Xx2),%2)/ f1,2(ri(x2), %2) >0

1 1
1. r1(x2) = Axp + 277 /BX3 +Cxz + 1, where

2v/3-5

T ~0.3840 B=12/3-27~ -6.2154 C=54—23v/3~ 55026

A=

This solution is positive, so the condition i) is satisfiedwéver,g,; > 0forall0< x, < 1,
sorj gives no feasible solutions.

1 1
2. I'2(X2) :AX2+Z—|—Z\/BX%+CX2—|—1.

This solution does not satisfy condition i).
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4. Unequal allowable stresses

3.
1155-332y3 1 \/2—
s(xe) =Mt =558 2008V D2t BT
1155-332y3 1 5
ra(xo) = Axo + 5028 —2028\/Dx2+Ex2+F
where

D = 3084588/3— 6940323 E =301158-468468/3 F =9849-20616/3

These solutions are not real-valued for: G, < 1.

3.3.3 Summary

The Pareto optimal solutions are

X1:%2(1—2X3) X2 =0 X3 € [7_\/§ 1']

This means that only the statically determinate topolodyer® member 2 is removed, produces
Pareto optimal designs.

4 Unequal allowable stressesin tension and in compression

In the previous section, there was only a single Pareto @btiopology. In order to study the
more common case, where several Pareto optimal topologpesag consider the truss depicted
in Fig. 5. The ground structure is subject to two loading ¢bos. In loading condition LC1, a
vertical load with magnitude and a horizontal load acting to the right with magnitédelO are
applied. In loading condition LC2, only the horizontal locacting to the left with magnitude is
applied.

Except for the loading conditions, the structure is ideaitio the one in the previous section. In
the following, the minimum weight and minimum compliancesid@s are solved.

4.1 Minimum weight design
The stiffness and stress matrices are identical to the onéfgiprevious section in Eq. (3) and

Eq. (5), respectively. In this case, however, the stresad®ior all members arg; = AEO and
0= —6|/10
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4.1 Minimum weight design

F

Figure 5. Three-bar truss. The loading conditions are: L&1=F, F, =0; LC 2: F, =0,
Fo=F.

The nodal displacements are

LcL () = 18v/2A1 + (30+ V3)Ag FL
' WA= 5d(Aq, A, Ag) E
oa(x) = 18v2A; — 8A2 — (10v/3+ 1)AgFL
213 = 5d(Aq, Az, As) E
_ 4\/2A1 — 2+/3A3 FL
LC2: U12(X) = d(Al,Az,A;g) E
4v/2A1 + 16A, + 2A3 FL
U22(X) _ 1 2 3_

d(Ag, A2, Az) E

where
d(A]_, Ao, Ag) = 4\/_2A1A2 + (2\/2 + \/é)AlAg + 6AxA3

The member stresses are

8Ax+ (31+11V3)A3 .
LC1: = F tension
011(X) 1m<Al7A27A3> ( . )

18v2A A :
Oo1(X) = 8v/2A +(30+ v3) 3k (tension)

5d(A1, A2, Az)
(9V2+9vB)A — 4v3hs

931X) = i (Ag. Ao Pg)
LC2: O12(X) = — SAS (J;il;; \ZSAS (compression)
T2a(X) = 4y/2A1 — 2V/3A3 F
d(A1,A2,A3)
032(X) = vai ;r(fr;l X;\/"E’Az F (tension)
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4.1 Minimum weight design

The minimum material volume can be found by solving the lin@@gramming problenfd p,
where member normal forces and areas are the variables datleguilibrium equations are the
constraints. This formulation, where the compatibilityddions have been neglected, is
min c'z
Z
s.e. Cz=p
Rz<O0
0<A

(R)

where

z={ A A2 A3 N1z Nog N3z Nip Noa N3p } € R
c={+v212000000LcR®

1 3
0B O -— 0 g
C= eRY® B=| V2 € R*<3
1 1
0 0 B — 1 -
i V2 2
1
ol 1 0 S
10
g -1 0 1
R = E]R12><9 p=F €R4
—ol 0 | 1
al 0 -l 0

The matrixB is obtained from the force equilibrium equations of the kdadode. The rows of
matrix R are obtained from the stress constraints as follows:

N..
Gj<T = ﬁs& = Nij <TA = —TA+N;j<0

pd

Gj>0 = >0 = Nj>0A = A —N; <0

The solution of problen®_ is

10 2 14
AL =0 Azz\—ﬁ3 AG:ﬁAO VZ\—@LAO
~ 5.773% ~ 1.1547Ag ~ 8.0829.A¢
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4.1 Minimum weight design

Figure 6: Minimum weight design.

At the optimum, the member stresses are

71/3+33F 10V/3+1F 1F
LCl. oy1=——F—+—— O)yy=—"F"7"F"— 31 = ——=—
600 Ag 100 Ag 10Ag
F F
~ 0.2600— ~0.1832—
Ao Ao
3+41/3F 1F F
LC2: Oop=——"—"——"—"""— Op=——— Oxo — —
12 60 Ao 22 10A, 32 A
F
~ —1.2334—
Ao

The stresses indicate, that the area of member 2 is detadrbjneC1 and the area of member 3
by LC2. There seems to be non-zero stress in the removed mdmfais false result is due to
the discontinuity of the stress function at zero crossigeat area [4].

Since the optimum solution is statically determinate, iis$@s the compatibility conditions and
it is therefore also the global optimum of Probl&n However, it is still possible that the other
topologies could give the same minimum material volume.

The uniqueness of the solution of an LP problem in standamt ftan be investigated by the
following test [2]. Let

rr}(in c'x
such that Ax =b (Po)
x>0

and letx* be the solution, witlz* = c'x*. Denote byT the indices of the non-basic variables at
x*. We solve the following problem:

n}(in d™x
such that Ax=Db (Pé)
c'x =7
x>0

whered; = —1, if j € T andd; = 0 otherwise. The maximum of Problgpjis 0, and it is obtained
atx*. All other basic feasible solutions haxg> 0 for somej € T, and in this case the objective
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4.2 Compliance minimization

function value decreases. Hence, if the minimum of Proldgraquals 0, thex* is the unique
optimum of Problen®,. Otherwise there exist multiple global optima.

When the LP-formulatiorR_ is transferred into standard form and problBfis solved, it can
be seen that the solution is unique. Therefore, we can cdachat a unique globally optimal
minimum weight design has been found.

4.2 Compliance minimization

The compliance minimization problem in standard form isreB4i. Only the expressions of the
compliances need to be refined to match the loadings of tleeptease. The expressions of the
compliances are

Lc 1 c1(x) = 162\/2A1 + 8A, + (301+20v/3)A3  F2L
50(4v2A1A2 + (2V2+V6)A1As + 6AAs) E

B 4y/2Aq + 16A2 4 2A3 F2L

AV2A A+ (2V2+VB) AlAs + 6AAs E

LC 2: C2(X)

When the design variables are scaledkBy and the compliances By?L/(KEAp), and the scaled
variablex; is solved from the active material volume constraint, théoWaing expressions are
obtained:
1624 (—23+20v/3)x3 — 154,
50(—4E + (—4—2/3)X& + (—4— v/3)XoXa + (2+ v/3) X3 + 4x2)
12, — 6x3+4
f2(X27X3> = 2 2
—4x3 + (—4—2v/3)x%+ (—4—V3)xXa + (2+V3) X3 + 4%

Solving the KKT-conditions follows the same steps as in tte¥jpus section.

f1(X2,X3) =

421 ¢91=0,02<0,03<0
Now X2 + 2x3 — 1 = 0. Fromx, > 0 andxz > 0 it follows that
1
0<x3< > Xo =1—2X3
Furthermorep, = Uz = 0, so the gradient equation becomes
a1 0f1(X) + a20f2(X) + pu10g1(x) =0
We investigate all possible values of the Lagrange mudipli

1. ;11 =0,0a0;>0.
Now the equations to be solved are

f1,2f2,3—f1,3f2,2=0
Xo = 1-— 2X3

23/35



4.2 Compliance minimization

The solutions are
x3=1.2159 or x3=-05293

Neither of these is feasible.

.a1=0,u; >0,a0 >0.
The gradient equation becomes

2 5 | [ o :[o]
fo3 V2 Ha 0

Non-trivial solutions are obtained, when

2 2

The latter of these is feasible. Thepn—= % The KKT-conditions require that /o, =

—v/2f,,2> 0. Substitutinge; = 1/5 andxs = 2/5, we get

1 _ 3572382945 0
az

Therefore the KKT-conditions are not satisfied.

. 0220,[11>0,611>0.
The gradient equation becomes

fla 5 [[a2] _ { 0 }
f1,3 V2 Ha 0
Requiring non-trivial solutions with respect ta anda1 gives
4y/3—-2 20v/3+6
X3 = =5 ~0.0896 or xz3=— <7291 )

The former is feasible. The ratio of the Lagrange multigisrthen

M1 _ 65212712320

ai

Thus, the KKT-conditions are not satisfied.

.a1>0,a2,>0,u; >0.
In this case we can solve the ratns= a1 /1 andz, = a2/ g from

1
[ f1,0 fa,2 ] [ 4] ] _| 2
f1,3 f2,3 2 2
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4.2 Compliance minimization

Employing the conditiorx, = 1 — 2x3, we get

M _ () = 45\/2(5+ v/3)%3 (3063 — 47x3 + 24x3 — 4)
w1631 33-99& 1 (42-+ 16v/3%)
ar (xg) = —3v2(27+ 7v/3)x3(—320103 + A xg + Apxg — 228+ 161/3)
LG 15520(16v/3 + 33— 99 + (42+ 15v/3x3)

where

A; = 14181+ 128V/3
A, = 1368— 96v/3

The ratios are plotted in Fig. 7, from which it can be seen #tlat agrange multipliers
cannot be positive for feasible valuesxaf Therefore, no Pareto optimal solutions are
obtained.

0.02

-0.02

-0.04

-0.06

-0.08

-0.12

-0.14

-0.16
0

%3

Figure 7. Ratios of the Lagrange multipliers, wigan= 0.

4272 02=0,01<0,03<0
Now x2 =0, and O< x3 < % The gradient equation reduces to

a10f1(X) + a20f2(x) 4+ p20g2(x) =0
Again, we investigate the combinations of Lagrange mudrgl

1. tp =0, aj > 0.
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4.2 Compliance minimization

The gradient equation has a non-trivial solution if and ahly
f1,2f2,3—f1,3f2,2=0

The solutions of this equation are

X3=B+CvD~7.20 or x3=B-—CvD~0.3232

where

139 23V3 1
B= 22" a5 © 3.7627 C= EZNo.007576

D = 123213+ 47868/3 ~ 2.0612- 10°

The latter is in the intervalo, %). The ratio of the Lagrange multipliers is0822, so the
KKT-conditions are satisfied.

We denote this Pareto optimum as pdsnt

1
x?:ﬁ—\@(B—C\/ﬁ) x5 =0 ¥ =B-CVD
~ 0.2500 ~ 0.3232
The compliances at this point are
B —=7.773619182 {2 = 4.831695915

.a1=0,u>0,0a0 >0.
The gradient equation becomes

fo —1 [az
fz O Hz

Non-trivial solutions are obtained by

gt

1
x3=1 or X3:§

The latter is feasible. Theq = V2, Substituting these values tp/a, = fa,2, we get

6
H2 _ 4637513528 0
az

so another KKT-point has been found.
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4.2 Compliance minimization

This Pareto optimum is denote poiat

A_ V2 A Al
=2 -0 _ =
X1 =% X2 3 =73
~ 0.2357 ~ 0.3333
The values of the compliances at this point are
f* = 8.000550504 f3 = 4.823085463

This is the minimum of the compliance of LC2.

.02=0,u>0,01 >0.
The gradient equation becomes

fio -1 [ a | [ 0}
fiz3 O K2 0
Non-trivial solutions fora, andu, are obtained, when

— 7171_6?0\/@ ~0.2478 oOr xz= _71534130\/?3

X3

The first solution is feasible. The ratio of the Lagrange ipliéirs is

H2 _  4569771162< 0

az
so the KKT-conditions are not satisfied.

.a1>0,a2>0, up > 0.
Now we solve the ratiog = a1/, andz, = az/p» from

[f172 f2,2] [21]_{1}
fis 23 | | 2 0

Substitutingk, = 0, we get

oy 5(134 7v/3)x3(6x3 — 11X3 4 6x3 — 1)

— = p1(Xa) = >

H2 4(216— 36v/3+ 66x3 — (417+ 46V/3)x3)
a_ (5) = (11+9v/3)x3(2x3 — 1) (671x3 + B1xg — Bp))
H2 2T 4880(216— 36y/3+ 66 — (417+ 46v/3)xq)

where

B, = 7452+ 6480/3
B, = 1863+ 1620/3
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4.2 Compliance minimization

-14r

16 i i i i i i
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

%3

Figure 8: Ratios of the Lagrange multipliers, whgen= 0, in the interval0,B—C+/D).

30

25¢

201

101
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Figure 9: Ratios of the Lagrange multipliers, whgn= 0, in the intervalB —C+/D, 1/3).
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4.2 Compliance minimization

These solutions are plotted in Fig. 8 and Fig. 9. It can be feemthese figures, that the
ratios are positive at the same time in the open intgiBal Cv/D, 1/3).

Thus, for the topology, where member 2 is removed, the follgwoints are Pareto opti-
mal:

xlz\ifz(l—zxg) Xo =0 X3 € {B—C\/B,,ﬂ

423 03=0,01<0,0,<0
Now x3 = 0, and O< X2 < 1. The gradient equation becomes
a10f1(X) + o200 f2(x) 4+ pzbgs(x) =0
In the following, we investigate the combinations of the taagye multipliers.

1. u3=0,q;>0.
The gradient equation has a non-trivial solution if and ahly
f1,2f2,3—f1,32,2=0
with x3 = 0. The solutions are
%o =Q+RVS~6.62 or X =Q-RVS~0.6564

where

75+ 26v/3 2
— VY 36374 R= — ~ 0.06061
Q 33 33

S=1245+ 6783 ~ 24193304

The latter is in the interval0,1). The ratio of the Lagrange multipliers is 20, so the
KKT-conditions are satisfied.

We denote this Pareto optimal solution as pdint

§=51-@-RVS)  §-Q-RS -0

~ 0.2423 ~ 0.6564

The values of the scaled compliances are

f< = 1.350476870 f§ =1316370143
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4.2 Compliance minimization

2. a01=0,u3>0,0,>0.
The gradient equation becomes

fa2 0 {az _{O}
faz —1|LHs 0

Non-trivial solutions with respect ta, andus are obtained, when

1
Xo=-—1 and x2:§

The latter is feasible. Then

s _ 5519134295 0

az
so the KKT-conditions are not satisfied.

3. 0220,[11>0,611>0.
The gradient equation is

1

X—9 or X—9
2= 7 2711

fio O {al
fi3 —1 H3

Requiring non-trivial solutions yields

The latter is feasible. The ratio of the Lagrange multigslisr

H3 _ 5 338945369- 0

a
so the KKT-conditions are satisfied.
This Pareto optimal solution is denoted pdnt

V2 9
X = I X5 = o x5 =0
~ 0.1286 ~ 0.8182

The scaled compliances at this point are

121 209
fP-"""~121 iD= 272232222
1 7100 00 2 9 3

This point gives the minimum of the compliance of LC1.
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4.2 Compliance minimization

4. a1 > 0,02 >0, u3 > 0.
The ratioszy = a1/ 3 andz, = ay/ s of the Lagrange multipliers are solved from

[f172 f2,2] [21]_{0}
fi,3 f2,3 2 1

Substitutingks = 0 gives

a_, (x0) = 5(5+v/3)%a(x2 — 1)(3%3 + 22 — 1)

Hs 1T 33& — (150+52y/3)x; + 81+ 3613

as (5+V3)%(77S — 2393 + 243, — 81)
— = p2(Xe) = 5

U3 20(33%5 — (150+521/3)%, + 81+ 36v/3)

This time we investigate the positivity @ andp, algebraically in the open intervéd, 1).
First, note that the nominators have zeros in this inters&btows

1 9
p1—0:> X2_§ p2—02> Xz—ﬁ

Furthermore, both have a singularityxat= Q — RS~ 0.6564.

Since the functions are continuous everywhere except ainigelarity, it suffices to calcu-
late their signs at three points, namely between their z@ndsthe singularity. We choose
X2 = 0.2, X2 = 0.5 andx, = 0.9. In the table below, the first row indicates the interval and
the second and third rows are the valuegofand p, at the chosen points in the corre-
sponding intervals. The sign @h and p» in each given interval is determined by the sign
at the chosen point.

(0,1/3) | (1/3,Q0-RVS) | (Q-RVS9/11) | (9/11,1)
p2(0.2) = 0.02674 | p1(0.5) = —0.200| p1(0.8) = 0.492 | p1(0.9) = 0.213
p2(0.2) = —0.02879| p,(0.5) = —0.051‘ P2(0.8) = 0.0013‘ p2(0.9) = —0.0016

The only interval, where botp; and p, are positive i§Q — RS, 9/11). In this interval,
all Lagrange multipliers can take positive values. Tharefthe following points are Pareto
optimal for this topology:

X1 =

(1—x2) X2 € {Q—R\@s%} x3=0

Nia

424 01<0,02<0,03<0

Now all Lagrange multipliers corresponding to the constisaare zero, and the gradient equation
becomes

a10f1(X) + ax0f2(x) =0
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4.2 Compliance minimization

Requiring a non-trivial solutions leads to the equation

f1,2f2,3—f1,3f2,2=0

This equation has four solutions, that we den@t&?i(xz), i =1,2,3,4. The following condi-
tions must be met:

) %;>0

i) Xp(x2,ri(x2)) >0

i) —f1,1(ri(x2),%2)/ f1.2(ri(x2), %2) > 0

The first and second condition ensure tkigandx; are positive, and the third condition enforces
the Lagrange multipliers to be positive.

1. ri(x) = Ao+ Bk+C\/Dk2 + Ekxo + Fx%, where the constan® C, andD are as earlier.
The other constants are

A= ? — Z ~ —0.3840 E = 32670 8712/3~ 175803734

F = 13068/3 — 29403~ —67685600

In the interval(0,1), the condition ii) ¢1 < 0) is not satisfied. Therefore, this solution
yields no feasible points.

. Ta(xp) = A%+ Bk—C\/Dk2+ Ekxo + Fx2.

This solution provides feasible points in the inter¢@B — C+/D). In this interval, there
are no zeros or singularities in the ratio of the Lagrangdipligdrs. Furthermore, the ratio
in this interval is positive, so in this interval, the poilti® Pareto optimal.

r3(0) = A+ +3\/1+ (54-28V3)xp + (12v/3— 273

Nowrs > 0is satisfied if0,1/2), butx; (r3(x2),x2) > 0 forallx, € (0,1/2), so this solution
is not feasible.

ra(x) = A+ 31\ /1+ (54-28V3)xp + (12V/3— 273

Sincer, < 0 at all points of the interval0, 1), so this solution gives no Pareto optimal
points.

The following points are Pareto optimal for this topology:

1
X1 = ﬁ(l—xz—2X3)

Xo € (o,Q— R\/é)

X3=Axy+B—Cy/D+Exy+Fx3
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5. Conclusions

425 Summary

The Pareto optimal solutions and the corresponding minpuoalts are depicted in Fig. 10 and
Fig. 11, respectively. In both figures, scaled variables@mdpliances are shown.

It is worth noting that the set of Pareto optimal points isreected, which means that the change
of optimal topology happens continuously. However, to shioat this property holds in general
would require a more thorough study.

Finally, the compliances of the stress-constrained mininaeight designx*, are computed, and
the resulting point is shown is Fig. 11 as pdmiThe scaled values of the compliances are

2387 73 287
X )=—+4+ —— ~1.7530 fo(x™) = — ~19.1333
1) = T500 " 75 2(X) =75
This point is clearly dominated.
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Figure 10: Pareto optimal points of the three-bar truss witbqual allowable stresses in tension
and in compression. The labels of the points correspondtivgtabels in Fig. 11.

5 Conclusions

In this study, a three-bar truss test problem was solved fommum weight and minimum com-
pliance under multiple loading conditions. In the first cake allowable stresses in tension and
in compression were equal, and in the second case they weggiain In both cases the stress-
constrained minimum weight topology did not coincide whie Pareto optimal topologies of the
compliance minimization problem.
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Figure 11: Minimal points of the three-bar truss with undclwable stresses in tension and
in compression. The optimal topology changes in pdh&dC. The minimum weight solution
(pointP) is clearly dominated.

Since all the problems have been solved in detail using &inalyexpressions, they provide re-
liable test cases for future research, where different@sps truss topology optimization are
studied.
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