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Abstract

In this report, the structural optimization of a three-bar truss is considered. We present the detailed
solution of the minimum compliance problem as well as the stress-constrained minimum weight
design. In both cases the truss is subject to two loading conditions. The compliance minimization
problem is formulated as a multicriterion optimization problem, where the compliances of the
different loading conditions are the conflicting criteria that are minimized simultaneously. We
provide the analytical solution of this formulation as wellas the global optimum of the stress-
constrained minimum weight problem.
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1. Introduction

1 Introduction

In the structural optimization of trusses, three main problem categories can be identified. Insizing
optimization, the optimal member profiles are determined for a fixed layout, where the coordinates
of the joints as well as the connectivity of the members are given. Ingeometry optimization, some
nodes are allowed to move. Finally, in topology optimization, members are allowed to vanish.
The combination of geometry and topology optimization is sometimes calledlayout optimization.
For a thorough review on topology optimization and the aboveterms, see [7, 10, 3].

In the present work, the topology optimization of a simple three-bar truss is considered. The
purpose is to provide the research community a test case, where the analytical solution is known.
This will serve as a reliable benchmark for testing numerical optimization algorithms, and for
studying other phenomenon related to topology optimization of trusses.

In formulating the optimization problems, theground structure approach [6] is adopted. In this
approach, an initial truss with excessive number of nodes and members (the ground structure)
is defined, and during the optimization process members are allowed to vanish, which leads to
alterations of the topology. As the ground structure of the example problems possesses only three
members, the number of topologies is small, and the problem can be solved analytically.

We consider the same ground structure for two sets of loadingconditions. In the first case, the
allowable stresses in tension and in compression are equal,while in the latter case, the allowable
stress in compression is smaller than in tension. For both cases, we solve the minimum weight
problem with stress constraints, and the compliance minimization problem. These are arguably
the most studied problems in the literature on topology optimization. The motivation for consid-
ering these problems is to study their optimal topologies under multiple loading conditions. It
is a well-known fact that under a single loading condition, the two problems have an identical
optimum topology [6, 7]. It is also generally agreed that such a result cannot be stated in general,
when multiple loading conditions are involved, but to the author’s knowledge, a rigorous proof of
this statement is still lacking. The computations in the present work will help to bridge this gap.

The paper is organized as follows. In Section 2, the general problem formulations are given. The
three-bar truss with equal allowable stresses is solved in Section 3 and with unequal allowable
stresses in Section 4. Finally, the computations are discussed in Section 5.

2 Problem formulations

In the following, we present the general problem formulations that are employed in this work. The
stress-constrained minimum weight problem is one of the first problems ever studied problem
in the structural optimization literature. We give both thegeneral nonlinear formulation and a
simplified linear formulation, where the compatibility conditions have been neglected.

For the compliance minimization problem, a multicriterionformulation is applied, where the
conflicting criteria are the compliances of the different loading conditions. Albeit not new, this
formulation has not been thoroughly studied in the literature.
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2.1 Minimum weight problem

2.1 Minimum weight problem

The general problem formulation for finding the minimum weight design with stress constraints
is

min
Ai

V (x) =
n

∑
i=1

LiAi

s.t K(x)u j = p j, j = 1,2, . . . ,nL

σ i ≤ σi j(x)≤ σ i, if Ai > 0

Ai ≤ Ai ≤ Ai

(PV )

In the above,x = {A1 A2 · · · An } is the design variable vector of cross-sectional areas of the
ground structure members.K is the stiffness matrix,u j andp j are the displacement and load
vectors of thejth loading condition. The stress of memberi in the jth loading condition is denoted
σi j. The member stresses are obtained from the equation

σ j = Su j (1)

whereS is the stress matrix. During the optimization, the structural analysis is performed sepa-
rately for each given design variable vector. Thus, the stiffness equations are not considered as
equality constraints. For formulating the stiffness and stress matrices, see for example [5].

In problemPV , topology alterations are enabled by setting the lower bound for the member areas
to zero, i.e.Ai = 0 for all i = 1,2, . . . ,n. As the topology varies during the optimization process,
the stiffness matrix may become singular or nearly singular, which causes numerical difficulties.
However, this issue does not arise in the present work due to simplicity of the ground structure.

If the compatibility conditions are neglected, the minimumweight problem can be formulated as
the following linear programming problem [6]:

min
Ai,Ni j

V (x) =
n

∑
i=1

LiAi

s.t BN j = p j, j = 1,2, . . . ,nL

σ iAi ≤ Ni j ≤ Aiσ i, i = 1,2, . . . ,n

Ai ≤ Ai ≤ Ai, i = 1,2, . . . ,n, j = 1,2, . . . ,nL

(PLP)

whereB is the statics matrix of the truss, andN j is the vector of member forces andNi j is the
normal force of memberi in the loading conditionj, respectively.

For a single loading condition, it has been shown that the optimum topology is statically determi-
nate, see [7]. It then follows that the solution of problemPLP satisfies the compatibility conditions
automatically, and its solution is also the global optimum of problemPV . When several loading
conditions are involved, the minimum weight structure is generally not statically determinate, and
the solution of the LP formulation does not necessarily satisfy the compatibility conditions. In
this case, problemPLP yields a lower bound for the optimum of problemPV .
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2.2 Multicriterion compliance minimization

2.2 Multicriterion compliance minimization

Minimizing the compliance under multiple loading conditions requires the choice of the objective
function. Typically in the literature, either the weightedsum or the maximum of the compliances
of the different loading conditions is minimized. Another approach, also adopted in the present
work, is to consider the compliances of the different loading conditions as competing and con-
flicting criteria, and to minimize them simultaneously. This leads to the following multicriterion
optimization formulation [8]:

min
x

{ c1(x) c2(x) · · · cnL(x) }
s.e. K(x)u j = p j, j = 1,2, . . . ,nL

V (x)≤Vmax

Ai ≤ Ai, i = 1,2, . . . ,n

(PC)

wherec j(x) = pT
j u j(x), j = 1,2, . . . ,nL, are the compliances of the loading conditions. Further-

more, the material volume upper bound can be written asVmax= kLA0, wherek > 0.

To allow topology alterations, the lower bounds for member areas are set toAi = 0, i = 1,2, . . . ,n.
Additionally, the cases where the structure is unable to satisfy the equilibrium equations due to
removal of members, must be taken into account. We do this formally by defining the domain of
the compliances as

D = {x | ∃u j : ∀ j = 1,2, . . . ,nL : K(x)u j = p j } (2)

This set is the non-negative orthant of the design space, with certain parts of the boundary re-
moved. It can be proven thatD is a convex set [1]. Also, following the guidelines of [1], itcan be
shown that the compliancesc j, j = 1,2, . . . ,nL, are convex functions in the setD.

Assuming that the member areas are chosen from the setD, the stiffness equation can be elimi-
nated from ProblemPC by inverting the stiffness matrix and substituting the displacements into
the expressions of the compliances. This reduces the problem size considerably, and the following
form is obtained:

min
x∈D

{ c1(x) c2(x) · · · cnL(x) }

s.e. V (x)≤Vmax

0≤ Ai, i = 1,2, . . . ,n

(P0
C)

The feasible set is defined by linear constraints. It is easy to verify that problemP0
C satisfies the

Kuhn-Tucker constraint qualification [9, pp.38]:

Lemma 1. Let the feasible set of a multicriterion problemΩ = {x | g(x) = Ax−b ≤ 0}. Then
the problem satisfies the Kuhn-Tucker constraint qualification.

Proof. Let x∗ ∈ Ω andJ = { j | g j(x∗) = 0}. To show that the constraint qualification holds, we
construct a vector-valued functiona : [0,1]→R

n, satisfyinga(0) = x∗, a′(0) = αd andg(a(t))≤
0 for all t ∈ [0,1]. Hereα > 0 is a constant andd is an arbitrary member of the set{v |∇gT

j (x
∗)v≤

0, ∀ j ∈ J }.
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2.2 Multicriterion compliance minimization

A function satisfying the initial condition isa(t) = x∗+αtd. Next we define a constantα > 0
such thatg(a(t))≤ 0 holds. Consider the functiong j, when j ∈ J and whenj /∈ J:

j ∈ J : g j(a(t)) = (A(x∗+αtd)) j −b j = (Ax∗) j
︸ ︷︷ ︸

=b j

+αt (Ad) j
︸ ︷︷ ︸

≤0

−b j ≤ 0

j /∈ J : g j(a(t)) = (Ax∗) j +αt(Ad) j −b j

= b j + ε j +αt(Ad) j −b j = ε j +αt(Ad) j

whereε j = (A(x∗+αtd)) j −b j < 0.

Now ε j +αt(Ad) j ≤ 0 for all t ∈ [0,1] at least, when(Ad) j ≤ 0. Assume then, that(Ad) j > 0.
Sinceg j is an increasing function with respect tot, settingt = 1 yields an upper bound forα such
thatg j(a(t))≤ 0 holds for allt ∈ [0,1]:

α ≤ −ε j

∇gT
j d

Taking into account all constraints, for which∇gT
j d > 0, the following value forα is obtained

α = min
j:∇gT

j d>0

{

−ε j

∇gT
j d

}

Thus, an appropriate functiona has been constructed, and it can be deduced that the problem
satisfies the constraint qualification.

In order to apply the KKT-conditions, we still need to verifythat the compliance is continuously
differentiable in the setD. Since in the setD, the stiffness matrixK is positive definite, we have
detK(x)> 0 for all x ∈ D. The compliance of loading conditioni can be written as

ci(x) = pT
i K(x)−1pi = ∑

s,t
K−1

st (x)pispit

The inverse of the stiffness matrix can be written as

K−1 =
1

detK
adjK

where adjK is the adjugate. Since each element ofK is a linear function of the member areas,
detK and the elements of adjK are polynomial functions of the member areas. Then, as all
elements,K−1

i j , of the inverse matrix are rational functions, they are continuously differentiable
(detK > 0) with respect to member areas. Thus, since the compliance is linear with respect to
theK−1

i j , it can be deduced that the compliance is continuously differentiable with respect to the
member areas in the setD.

From the discussion above, it follows that the Pareto optimal solutions of the compliance mini-
mization problem can be solved from the KKT-conditions. This is done in the following sections.
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3. Equal allowable stresses

3 Equal allowable stresses in tension and in compression

In this section, we find the stress-constrained minimum weight design and the minimum compli-
ance design for a three-bar truss, with equal allowable stresses in tension and in compression.

3.1 Ground structure and feasible topologies

We consider the structure shown in Fig. 1. The truss is subject to two loading conditions. In
loading condition LC1, a horizontal load with magnitude 3F acting to the right and a vertical
load with magnitudeF, are applied. In loading condition LC2, only the horizontalload acting to
the left with magnitude 3F is applied.

1
3

F1

L

√
3L

1

2

F1

321

F2

L

Figure 1: Three-bar truss. The loading conditions are: LC 1:F1 = 3F, F2 = 0; LC 2: F1 = 0,
F2 = 3F.

The truss has four statically feasible topologies; three statically determinate that are obtained by
removing one member from the ground structure, and one statically indeterminate, corresponding
to the ground structure.

3.2 Minimum weight design

To solve the stress-constrained minimum weight design, ProblemPV is written for the three-bar
truss. The stress bounds for all members areσ i = −σ i =

F
A0

, whereA0 is a reference member
area.

The stiffness matrix corresponding with the nodal displacements shown in Fig. 1 is

K(x) =
E
L







A1

2
√

2
+A2+

A3

8
− A1

2
√

2
+

√
3

8
A3

− A1

2
√

2
+

√
3

8
A3

A1

2
√

2
+

3
8

A3







(3)

whereE is the Young’s modulus andL is the characteristic length appearing in Fig. 1.
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3.2 Minimum weight design

The load vectors are

p1 =

[
F

−3F

]

p2 =

[
0

3F

]

(4)

and the stress matrix is

S =
E
L











1
2

−1
2

1 0

1
4

√
3

4











(5)

The nodal displacements in the two loading conditions are obtained by solving the stiffness equa-
tion. They have the following expressions:

LC1: u11(x) =
−8

√
2A1+6(1+

√
3)A3

d(A1,A2,A3)

FL
E

u21(x) =
−8

√
2A1−48A2−2(3+

√
3)A3

d(A1,A2,A3)

FL
E

LC2: u12(x) =
12

√
2A1−6

√
3A3

d(A1,A2,A3)

FL
E

u22(x) =
12

√
2A1+48A2+6A3

d(A1,A2,A3)

FL
E

where
d(A1,A2,A3) = 4

√
2A1A2+(2

√
2+

√
6)A1A3+6A2A3

Applying Eq. (1) gives the member stresses:

LC1: σ11(x) =
24A2+2(3+2

√
3)A3

d(A1,A2,A3)
F (tension)

σ21(x) =
−8

√
2A1+6(1+

√
3)A3

d(A1,A2,A3)
F (tension or compression)

σ31(x) =
−2(

√
2+

√
6)A1−12

√
3A2

d(A1,A2,A3)
F (compression)

LC2: σ12(x) =−24A2+3(1+
√

3)A3

d(A1,A2,A3)
F (compression)

σ22(x) =
12

√
2A1−6

√
3A3

d(A1,A2,A3)
F (tension or compression)

σ32(x) =
3
√

2(1+
√

3)A1+12
√

3A2

d(A1,A2,A3)
F (tension)

The following observations can be made about the member stresses. Sinced > 0 for all feasible
cross-sections, in can be seen that in LC1, member 1 is alwaysin tension and member 3 is always
in compression. Member 2 can be in tension or in compression depending on the values ofA1

andA3. In LC2, member 1 is in tension and member 3 is in compression,while member 2 can
again be either in tension or in compression.
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3.2 Minimum weight design

3.2.1 Statically determinate topologies

ProblemPV is non-convex, so it can have local minima. Furthermore, thefeasible set contains de-
generate parts that correspond to the removal of a member [4]. Gradient-based solution methods
are unable to find solutions located in these parts. Thus, we consider each topology separately.
When one of the members is removed, the remaining truss becomes statically determinate, and
the minimum weight solution can be found by simple hand calculations.

Member 1 removed. When member 1 is removed from the ground structure, the normal forces
in the remaining members 2 and 3 can be solved from the equilibrium equations of the loaded
node. The normal forces are:

LC 1: N21 = (1+
√

3)F N31 =−2
√

3F

LC 2: N22 =−
√

3F N33 = 2
√

3F

The cross-sectional area of member 2 is determined by LC1, whereas LC2 determines the cross-
section of member 3. Setting the members to the stress limit gives the following optimal member
areas and the minimum material volume of this topology:

A1 = 0 A2 = (1+
√

3)A0 A3 = 2
√

3A0 V = (5
√

3+1)LA0 ≈ 9.66025LA0

Member 2 removed. When member 2 is removed from the ground structure, the normal forces
of members 1 and 3 are

LC 1: N11 =

√
2(3+2

√
3)

2+
√

3
F N31 =

−2(1+
√

3)

2+
√

3
F

LC 2: N12 =−3
√

2(1+
√

3)

2(2+
√

3)
F N32 =

3(1+
√

3)

2+
√

3
F

This time LC1 determines the optimum cross-sectional are ofmember 1 and LC2 determines the
optimum value forA3. The stress bounds are reached by the following member areas:

A1 =

√
2(3+2

√
3)

2+
√

3
A0 ≈ 2.4495A0 A2 = 0 A3 =

3(1+
√

3)

2+
√

3
A0 ≈ 2.1962A0

V =
2(6+5

√
3)

2+
√

3
LA0 ≈ 7.8564LA0

It can be seen that this topology gives a better value for the material volume than the previous
topology.

Member 3 removed. In this case, the normal forces of members 1 and 2 are

LC 1: N11 = 3
√

2F N21 =−2F

LC 2: N12 =−3
√

2F N22 = 3F
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3.2 Minimum weight design

The optimum member areas and the minimum material volume are

A1 = 3
√

2A0 ≈ 4.2426A0 A2 = 3A0 A3 = 0 V = 9LA0

From the statically determinate topologies, the one where member 2 is removed gives the lowest
material volume. We denote this value by

V0 =
2(6+5

√
3)

2+
√

3
LA0 ≈ 7.8564LA0

3.2.2 Statically indeterminate topology

When the sign of the member stresses are taken into account, the material volume minimization
problem can be written in the following standard form:

min
x

f (x) = L(
√

2A1+A2+2A3)

g1(x) = σ11(x)−σ ≤ 0

g2(x) = σ21(x)−σ ≤ 0

g3(x) =−σ −σ21(x)≤ 0

g4(x) =−σ −σ31(x)≤ 0

g5(x) = σ22(x)−σ ≤ 0

g6(x) = σ32(x)−σ ≤ 0

g7(x) =−σ −σ12(x)≤ 0

g8(x) =−σ −σ22(x)≤ 0

g9(x) = A−A1 ≤ 0

g10(x) = A−A2 ≤ 0

g11(x) = A−A3 ≤ 0

(6)

To fix the topology, we set a lower boundA= 0.01A0 for the member areas. Applying a sequential
quadratic programming method gives the following solution:

A1 = 2.40910A0 A2 = 0.19613A0 A3 = 2.11116A0 V ∗ = 7.82542LA0 (7)

At the optimum, the stressesσ11 andσ32 reach the tensile limit. Thus, the solution is not a fully
stressed design. It can be seen thatV ∗ < V0, so the global optimum is attained by the statically
indeterminate topology. Note that the solution of Eq. (7) isnot necessarily a global optimum.
However, the statically determinate topologies cannot give better solutions than the one above.
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3.3 Compliance minimization

3.3 Compliance minimization

3.3.1 Problem formulation

The multicriterion formulation for the three-bar truss corresponding toPC is

min
x∈D

{ c1(x) c2(x) }

s.t K(x)u j = p j, j = 1,2

V (x)≤Vmax

0≤ Ai, i = 1,2,3

(8)

The material volume upper bound is expressed asVmax= kLA0, wherek > 0. The domainD is as
in Eq. (2).

In order to apply the KKT-conditions, we solve the nodal displacements from the stiffness equa-
tion and substitute them into the expressions of the compliances. Then the following analytical
expressions are obtained:

LC 1: c1(x) =
16

√
2A1+144A2+4(6+3

√
3)A3

4
√

2A1A2+(2
√

2+
√

6)A1A3+6A2A3

F2L
E

(9)

LC 2: c2(x) =
18(2

√
2A1+8A2+A3)

4
√

2A1A2+(2
√

2+
√

6)A1A3+6A2A3

F2L
E

(10)

The problem formulation can be tidied up by scaling the variables and the criteria. Furthermore,
since the material volume constraint is active at all Paretooptimal solutions, one variable can be
solved from the equationV (x) =Vmax.

The variables are scaled by the factorkA0, which leads to dimensionless design variablesxi =
Ai/(kA0). Then, the compliances are scaled by the factorF2L/(kEA0). Variablex1 is solved
from the active material volume constraint:

x1 =
1√
2
(1− x2−2x3)

Substituting this and the other scalings to the expressionsof the compliances, Eq. (9) and Eq. (10)
yields

f1(x2,x3) =
4(−4+(2−3

√
3)x3−32x2)

4x2
2+(4+2

√
3)x2

3+(4+
√

3)x2x3− (2+
√

3)x3−4x2

f2(x2,x3) =
18(−6x2+3x3−2)

4x2
2+(4+2

√
3)x2

3+(4+
√

3)x2x3− (2+
√

3)x3−4x2

The remaining constraints are the non-negativity conditions of the variables. Thus, the following
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3.3 Compliance minimization

standard form is obtained for the minimum compliance problem

min
x∈D′

{ f1(x) f2(x)}

g1(x) =
√

2
2 (x2+2x3−1)≤ 0

g2(x) =−x2 ≤ 0

g3(x) =−x3 ≤ 0

(Pst)

Here, the setD′ is
D′ = {x ≥ 0 | g1g2 > 0∨g1g3 > 0∨g2g3 > 0}

which is equivalent to stating that only one member can be removed from the ground structure in
order to keep the truss statically feasible.

3.3.2 Pareto optimal solutions

The KKT-conditions of ProblemPst are

α1∇ f1(x)+α2∇ f2(x)+µ1∇g1(x)+µ2∇g2(x)+µ3∇g3(x) = 0 (11)

µigi(x) = 0, i = 1,2,3 (12)

gi(x)≤ 0, i = 1,2,3 (13)

α j ≥ 0, µi ≥ 0, (α,µ) 6= 0 (14)

In solving the KKT-conditions, the matter of active constraints is important, since for inactive
constraints (gi(x)<0), the Lagrange multiplier is zero, that isµi =0, which simplifies the solution
of the gradient equation, Eq. (11).

Finding solutions of the KKT-conditions involves the following steps. First, the active constraints
are chosen and the Lagrange multipliers of the inactive constraints are set to zero. Then, the gradi-
ent equation Eq. (11) is considered. In this equation, some of the remaining Lagrange multipliers
may be zero, so each combination of multiplier values must bechecked separately. Assuming
some Lagrange multipliers to be zero and the others positive, the gradient equation can be solved
for the non-zero multipliers or their ratio. Finally, enforcing the non-negativity or positivity con-
dition of the Lagrange multipliers, values ofx2 andx3 can be found such that the KKT-conditions
are satisfied. This procedure is repeated for all feasible combinations of active constraints.

For the three-bar truss problem, there are four cases to be considered: one of the constraints is
active (3 cases) or all are inactive (1 case). Note that two constraints cannot be active simultane-
ously, since this would lead to a truss with only a single member, which cannot support either of
the loading conditions.

g1 = 0, g2 < 0, g3 < 0. Now x2+2x3−1= 0. From the positivity ofx2 andx3 it follows that

0< x3 <
1
2
, x2 = 1−2x3 and 0< x2 < 1
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3.3 Compliance minimization

Sinceµ2 = µ3 = 0, the KKT-conditions reduce to

α1∇ f1(x)+α2∇ f2(x)+µ1∇g1(x) = 0

Since bothα1 andα2 cannot be zero, all possible combinations of zero Lagrange multipliers need
to be considered separately.

1. µ1 = 0, α1 > 0 andα2 > 0.

Now the KKT-conditions reduce to a pair of linear equations with respect toα1 andα2.
This system of linear equations has a non-trivial solutionsonly if the determinant of the
matrix, whose columns are the gradients of the criteria, is zero. This leads to the following
equations

f1,2 f2,3− f1,3 f2,2 = 0

x2 = 1−2x3

where the conditiong1 = 0 has been employed.

This pair of equations has no real-valued solutions.

2. α1 = 0, µ1 > 0, α2 > 0.

The KKT-conditions reduce to



f2,2

1√
2

f2,3
√

2





[
α2

µ1

]

=

[
0
0

]

The values ofx3 leading to non-trivial solutions are

x3 =
2
3

or x3 =
2
5

of which the latter is feasible. Thenx2 =
1
5. The KKT-conditions are satisfied, ifµ1/α2 =

−
√

2 f2,2> 0. Whenx2 = 1/5 andx3 = 2/5 are substituted, we get

µ1

α2
=−294.5144651< 0

Thus, the point(1
5,

2
5) does not satisfy the KKT-conditions.

3. α2 = 0, µ1 > 0, α1 > 0.

The gradient equation becomes



f1,2

1√
2

f1,3
√

2





[
α2
µ1

]

=

[
0
0

]

Non-trivial solutions with respect toµ1 andα1 are obtained when

x3 =

√
3−9√
3−22

≈ 0.3586 or x3 =− 15+
√

3

−22+
√

3
≈ 0.8255
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3.3 Compliance minimization

The first solution is feasible. The ratio of the Lagrange multipliers is

µ1

α1
=−366.4565< 0

so this solution does not satisfy the KKT-conditions.

4. α1 > 0, α2 > 0, µ1 > 0.

In this case there are three unknowns and two equations. Therefore, only the ratiosz1 =
α1/µ1 andz2 = α2/µ1 of the Lagrange multipliers can be solved from

[

f1,2 f2,2

f1,3 f2,3

][

z1

z2

]

=






− 1√
2

−
√

2






With the conditionx2 = 1−2x3, the solutions of this equation are

α1

µ1
= p1(x3) =−3(−14

√
2+3

√
6)x3(30x3

3−47x2
3+24x3−4)

4(1014x2
3− (997+64

√
3)x3+264+40

√
3)

α2

µ1
= p2(x3) =

(−317
√

2+3
√

6)(962x4
3−C1x3

3+C2x2
3−C3x3)

962(1014x2
3− (997+64

√
3)x3+264+40

√
3)

where

C1 = 1537+48
√

3 C2 = 792+36
√

3 C3 = 132+6
√

3

Since all Lagrange multipliers have to be positive, the conditions p1 > 0, p2 > 0 must hold.
The simplest way of examining this is to plotp1 and p2 in the interval 0< x3 < 1/2 as
shown in Fig. 2. From the figure it can be seen that the ratios are never simultaneously
positive, which means that all Lagrange multipliers cannotbe positive. Thus,g1 = 0 yields
no Pareto optimal solutions.

g2 = 0, g1 < 0, g3 < 0. Now x2 = 0, and 0< x3 <
1
2. The gradient equation becomes

α1∇ f1(x)+α2∇ f2(x)+µ2∇g2(x) = 0

Again, the combinations of the Lagrange multipliers need tobe considered.

1. µ2 = 0, α1 > 0, α2 > 0.

The KKT-conditions reduce to a pair of linear equations withrespect toα1 andα2. Requir-
ing a non-trivial solution and substitutingx2 = 0, it can be shown that the equation

f1,2 f2,3− f1,3 f2,2= 0

has no real-valued solutions.

13/35



3.3 Compliance minimization
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Figure 2: Ratios of the Lagrange multipliers, wheng1 = 0.

2. α1 = 0, µ2 > 0, α2 > 0.

Now the gradient equation is
[

f2,2 −1

f2,3 0

][
α2
µ2

]

=

[
0
0

]

Requiring non-trivial solutions gives

x3 = 1 or x3 = xB3 =
1
3

of which the latter is feasible. Thenx1 =
√

2
6 . The KKT-conditions are satisfied, ifµ2/α2 =

f2,2> 0. Whenx2 = 0 andx3 = 1/3 are substituted, we get
µ2

α2
= 41.73762175> 0

Thus, the solutionx2 = 0, x3 =
1
3 satisfies the KKT-conditions.

The Pareto optimal solution found is

x1 =

√
2

6
x2 = 0 x3 =

1
3

≈ 0.2357 ≈ 0.3333

The values of the scaled compliances are

f1 =
12(10+3

√
3)

2+
√

3
≈ 48.86156123 f2 =

162

2+
√

3
≈ 43.40776917

The solution is the minimum of the compliance of LC2.
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3.3 Compliance minimization

3. α2 = 0, µ2 > 0, α1 > 0.

The gradient equation becomes

[

f1,2 −1

f1,3 0

][
α2

µ2

]

=

[
0
0

]

Non-trivial solutions forα2 andµ2 are obtained, when

x3 = xA3 =

√
3−1

4
√

3+5
≈ 0.2290412693 or x3 =−

(

9
√

3+17

4
√

3+5

)

The first solution is feasible. The ratio of the Lagrange multipliers is

µ2

α1
= 39.28938110> 0

so the point is Pareto optimal. The values of the design variables are

x1 =
(3+2

√
3)
√

2

2(4
√

3+5)
x2 = 0 x3 =

√
3−1

4
√

3+5

≈ 0.38319 ≈ 0.22904

The scaled values of the compliances are

f1 =
4(5+4

√
3)(27+17

√
3)

(3+2
√

3)(
√

3+1)(2+
√

3)
≈ 40.86156123

f2 =
18(5+4

√
3)(7+5

√
3)

(3+2
√

3)(
√

3+1)(2+
√

3)
≈ 51.01546433

This solution is the minimizer of the compliance of LC1.

4. α1 > 0, α2 > 0, µ2 > 0.

Again, only the ratios of the Lagrange multipliers,z1 = α1/µ2 and z2 = α2/µ2 can be
solved from [

f1,2 f2,2

f1,3 f2,3

][

z1

z2

]

=

[
1
0

]

Substitutingx2 = 0, we get

α1

µ2
= p1(x3) =

(19+8
√

3)(3x2
3−4x3+1)(1−2x3)x3

4(1014x2
3+(332

√
3−1155)x3+408−184

√
3)

α2

µ2
= p2(x3) =− (34+41

√
3)(46x3

3+D1x2
3−D2x3+D3)x3

414(1014x2
3+(332

√
3−1155)x3+408−184

√
3)
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3.3 Compliance minimization

where

D1 = 9+48
√

3 D2 = 24+36
√

3 D3 = 4+6
√

3

p1 and p2 are plotted in Fig. 3. It can be seen, that bothp1 and p2 are positive in the
intervalxA3 < x3 < xB3 . Since the end points of this interval are also Pareto optimal, it can
be deduced, that the following points are Pareto optimal, wheng2 = 0:

x1 =
1√
2
(1−2x3) x2 = 0 x3 ∈

[

7−
√

3
23

,
1
3

]
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Figure 3: Ratios of the Lagrange multipliers, wheng2 = 0.

g3 = 0, g1 < 0, g2 < 0. Now x3 = 0, and 0< x2 < 1. The gradient equation of the KKT-
conditions becomes

α1∇ f1(x)+α2∇ f2(x)+µ3∇g3(x) = 0

Again, the combinations of the Lagrange multipliers have tobe considered.

1. µ3 = 0, α1 > 0, andα2 > 0.

As in the previous cases, the equation

f1,2 f2,3− f1,3 f2,2= 0

has no real-valued solutions.
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3.3 Compliance minimization

2. α1 = 0, µ3 > 0, α2 > 0.

The gradient equation becomes
[

f2,2 0

f2,3 −1

][
α2
µ3

]

=

[
0
0

]

Non-trivial solutions are obtained, when

x2 =−1 or x2 =
1
3

of which the latter is feasible. The ratio of the Lagrange multipliers is

µ3

α2
=−226.7220866< 0

so the KKT-conditions are not satisfied.

3. α2 = 0, µ1 > 0, α1 > 0.

The gradient equation becomes
[

f1,2 0

f1,3 −1

][
α1

µ3

]

=

[
0
0

]

Requiring non-trivial solutions forα1 andµ3 gives

x2 =−1
2

or x2 =
1
4

of which the latter is feasible. The ratio of the Lagrange multipliers is

µ3

α1
=−179.1384388< 0

so the KKT-conditions are not satisfied.

4. α1 > 0, α2 > 0, µ3 > 0.

Solving the ratios of the Lagrange multipliers,z1 = α1/µ3 andz2 = α2/µ3 from the equa-
tion [

f1,2 f2,2

f1,3 f2,3

][

z1

z2

]

=

[
0
1

]

with x3 = 0, gives the following:

α1

µ3
= p1(x2) =

(3
√

3−14)(3x2
2+2x2−1)(x2−1)x2

507x2
2+(50

√
3−177)x2+66+10

√
3

α2

µ3
= p2(x2) =

4(14−3
√

3)(8x3
2−6x2

2−3x2+1)x2

9(507x2
2+(50

√
3−177)x2+66+10

√
3)

The solutionsp1 and p2 are plotted in Fig. 4. It can be seen, that both solutions are not
positive simultaneously. Therefore, no positive Lagrangemultipliers can be found, and
there are no Pareto optimal solutions for this combination of multipliers.
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3.3 Compliance minimization
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Figure 4: Ratios of the Lagrange multipliers, wheng3 = 0.

g1 < 0,g2 < 0,g3 < 0. Now µi = 0 for all i = 1,2,3. The gradient equation reduces to

α1∇ f1(x)+α2∇ f2(x) = 0

This equation has a non-trivial solution, if and only if

f1,2 f2,3− f1,3 f2,2= 0

This equation has four solutions, which are denoted by ˆxi
3 = ri(x2), i = 1,2,3,4. Eachri has to

satisfy the following conditions:

i) x̂i
3 > 0 (i.e. x3 > 0)

ii) g1(x2,ri(x2))< 0 (i.e. x1 > 0)

iii) − f2,2(ri(x2),x2)/ f1,2(ri(x2),x2)> 0

1. r1(x2) = Ax2+
1
4
+

1
4

√

Bx2
2+Cx2+1, where

A =
2
√

3−5
4

≈−0.3840 B = 12
√

3−27≈−6.2154 C = 54−23
√

3≈ 5.5026

This solution is positive, so the condition i) is satisfied. However,g1 > 0 for all 0< x2 < 1,
sor1 gives no feasible solutions.

2. r2(x2) = Ax2+
1
4
+

1
4

√

Bx2
2+Cx2+1.

This solution does not satisfy condition i).
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4. Unequal allowable stresses

3.

r3(x2) = Ax2+
1155−332

√
3

2028
+

1
2028

√

Dx2
2+Ex2+F

r4(x2) = Ax2+
1155−332

√
3

2028
− 1

2028

√

Dx2
2+Ex2+F

where

D = 3084588
√

3−6940323 E = 301158−468468
√

3 F = 9849−20616
√

3

These solutions are not real-valued for 0< x2 < 1.

3.3.3 Summary

The Pareto optimal solutions are

x1 =
1√
2
(1−2x3) x2 = 0 x3 ∈

[

7−
√

3
23

,
1
3

]

This means that only the statically determinate topology, where member 2 is removed, produces
Pareto optimal designs.

4 Unequal allowable stresses in tension and in compression

In the previous section, there was only a single Pareto optimal topology. In order to study the
more common case, where several Pareto optimal topologies appear, consider the truss depicted
in Fig. 5. The ground structure is subject to two loading conditions. In loading condition LC1, a
vertical load with magnitudeF and a horizontal load acting to the right with magnitudeF/10 are
applied. In loading condition LC2, only the horizontal loadacting to the left with magnitudeF is
applied.

Except for the loading conditions, the structure is identical to the one in the previous section. In
the following, the minimum weight and minimum compliance designs are solved.

4.1 Minimum weight design

The stiffness and stress matrices are identical to the ones in the previous section in Eq. (3) and
Eq. (5), respectively. In this case, however, the stress bounds for all members areσ i =

F
A0

, and
σ i =−σ i/10.
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4.1 Minimum weight design

1
10

F1

L

L

√
3L

1

2

321

F1

F2

Figure 5: Three-bar truss. The loading conditions are: LC 1:F1 = F, F2 = 0; LC 2: F1 = 0,
F2 = F.

The nodal displacements are

LC1: u11(x) =
18

√
2A1+(30+

√
3)A3

5d(A1,A2,A3)

FL
E

u21(x) =
18

√
2A1−8A2− (10

√
3+1)A3

5d(A1,A2,A3)

FL
E

LC2: u12(x) =
4
√

2A1−2
√

3A3

d(A1,A2,A3)

FL
E

u22(x) =
4
√

2A1+16A2+2A3

d(A1,A2,A3)

FL
E

where
d(A1,A2,A3) = 4

√
2A1A2+(2

√
2+

√
6)A1A3+6A2A3

The member stresses are

LC1: σ11(x) =
8A2+(31+11

√
3)A3

10d(A1,A2,A3)
F (tension)

σ21(x) =
18

√
2A1+(30+

√
3)A3

5d(A1,A2,A3)
F (tension)

σ31(x) =
(9
√

2+9
√

6)A1−4
√

3A2

10d(A1,A2,A3)
F

LC2: σ12(x) =−8A2+(1+
√

3)A3

d(A1,A2,A3)
F (compression)

σ22(x) =
4
√

2A1−2
√

3A3

d(A1,A2,A3)
F

σ32(x) =

√
2(1+

√
3)A1+4

√
3A2

d(A1,A2,A3)
F (tension)
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4.1 Minimum weight design

The minimum material volume can be found by solving the linear programming problemPLP,
where member normal forces and areas are the variables and nodal equilibrium equations are the
constraints. This formulation, where the compatibility conditions have been neglected, is

min
z

cTz

s.e. Cz = p

Rz ≤ 0

0≤ Ai

(PL)

where

z = { A1 A2 A3 N11 N21 N31 N12 N22 N32 } ∈ R
9

c = {
√

2 1 2 0 0 0 0 0 0}L ∈ R
9

C =








0 B 0

0 0 B







∈ R

4×9 B =








− 1√
2

0

√
3

2

1√
2

1
1
2







∈ R

2×3

R =

















−σI I 0

σI −I 0

−σI 0 I

σI 0 −I

















∈ R
12×9 p = F

















− 1
10

1

1

0

















∈ R
4

The matrixB is obtained from the force equilibrium equations of the loaded node. The rows of
matrixR are obtained from the stress constraints as follows:

σi j ≤ σ ⇒ Ni j

Ai
≤ σ ⇒ Ni j ≤ σAi ⇒ −σAi +Ni j ≤ 0

σi j ≥ σ ⇒ Ni j

Ai
≥ σ ⇒ Ni j ≥ σAi ⇒ σAi −Ni j ≤ 0

The solution of problemPL is

A1 = 0 A2 =
10√

3
A0 A3 =

2√
3

A0 V =
14√

3
LA0

≈ 5.7735A0 ≈ 1.1547A0 ≈ 8.0829LA0
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4.1 Minimum weight design

10√
3
A0

2√
3
A0

Figure 6: Minimum weight design.

At the optimum, the member stresses are

LC1: σ11 =
71

√
3+33

600
F
A0

σ21 =
10

√
3+1

100
F
A0

σ31 =− 1
10

F
A0

≈ 0.2600
F
A0

≈ 0.1832
F
A0

LC2: σ12 =−3+41
√

3
60

F
A0

σ22 =− 1
10

F
A0

σ32 =
F
A0

≈−1.2334
F
A0

The stresses indicate, that the area of member 2 is determined by LC1 and the area of member 3
by LC2. There seems to be non-zero stress in the removed member 1. This false result is due to
the discontinuity of the stress function at zero cross-sectional area [4].

Since the optimum solution is statically determinate, it satisfies the compatibility conditions and
it is therefore also the global optimum of ProblemPV . However, it is still possible that the other
topologies could give the same minimum material volume.

The uniqueness of the solution of an LP problem in standard form can be investigated by the
following test [2]. Let

min
x

cTx

such that Ax = b

x ≥ 0

(P0)

and letx∗ be the solution, withz∗ = cTx∗. Denote byT the indices of the non-basic variables at
x∗. We solve the following problem:

min
x

dTx

such that Ax = b

cTx = z∗

x ≥ 0

(P′
0)

whered j =−1, if j ∈ T andd j = 0 otherwise. The maximum of ProblemP′
0 is 0, and it is obtained

at x∗. All other basic feasible solutions havex j > 0 for somej ∈ T , and in this case the objective
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4.2 Compliance minimization

function value decreases. Hence, if the minimum of ProblemP′
0 equals 0, thenx∗ is the unique

optimum of ProblemP0. Otherwise there exist multiple global optima.

When the LP-formulationPL is transferred into standard form and problemP′
0 is solved, it can

be seen that the solution is unique. Therefore, we can conclude that a unique globally optimal
minimum weight design has been found.

4.2 Compliance minimization

The compliance minimization problem in standard form is as in Pst . Only the expressions of the
compliances need to be refined to match the loadings of the present case. The expressions of the
compliances are

LC 1: c1(x) =
162

√
2A1+8A2+(301+20

√
3)A3

50(4
√

2A1A2+(2
√

2+
√

6)A1A3+6A2A3)

F2L
E

LC 2: c2(x) =
4
√

2A1+16A2+2A3

4
√

2A1A2+(2
√

2+
√

6)A1A3+6A2A3

F2L
E

When the design variables are scaled bykA0 and the compliances byF2L/(kEA0), and the scaled
variablex1 is solved from the active material volume constraint, the following expressions are
obtained:

f1(x2,x3) =
162+(−23+20

√
3)x3−154x2

50(−4x2
2+(−4−2

√
3)x2

3+(−4−
√

3)x2x3+(2+
√

3)x3+4x2)

f2(x2,x3) =
12x2−6x3+4

−4x2
2+(−4−2

√
3)x2

3+(−4−
√

3)x2x3+(2+
√

3)x3+4x2

Solving the KKT-conditions follows the same steps as in the previous section.

4.2.1 g1 = 0, g2 < 0, g3 < 0

Now x2+2x3−1= 0. Fromx2 > 0 andx3 > 0 it follows that

0< x3 <
1
2
, x2 = 1−2x3

Furthermore,µ2 = µ3 = 0, so the gradient equation becomes

α1∇ f1(x)+α2∇ f2(x)+µ1∇g1(x) = 0

We investigate all possible values of the Lagrange multipliers.

1. µ1 = 0, αi > 0.

Now the equations to be solved are

f1,2 f2,3− f1,3 f2,2 = 0

x2 = 1−2x3
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4.2 Compliance minimization

The solutions are
x3 = 1.2159 or x3 =−0.5293

Neither of these is feasible.

2. α1 = 0, µ1 > 0, α2 > 0.

The gradient equation becomes



f2,2

1√
2

f2,3
√

2





[
α2
µ1

]

=

[
0
0

]

Non-trivial solutions are obtained, when

x3 =
2
3

or x3 =
2
5

The latter of these is feasible. Thenx2 = 1
5. The KKT-conditions require thatµ1/α2 =

−
√

2 f2,2> 0. Substitutingx2 = 1/5 andx3 = 2/5, we get

µ1

α2
=−32.72382945< 0

Therefore the KKT-conditions are not satisfied.

3. α2 = 0, µ1 > 0, α1 > 0.

The gradient equation becomes



f1,2

1√
2

f1,3
√

2





[
α2
µ1

]

=

[
0
0

]

Requiring non-trivial solutions with respect toµ1 andα1 gives

x3 =
4
√

3−2
55

≈ 0.0896 or x3 =−
(

20
√

3+6
291

)

The former is feasible. The ratio of the Lagrange multipliers is then

µ1

α1
=−6.521271232< 0

Thus, the KKT-conditions are not satisfied.

4. α1 > 0, α2 > 0, µ1 > 0.

In this case we can solve the ratiosz1 = α1/µ1 andz2 = α2/µ1 from

[

f1,2 f2,2

f1,3 f2,3

][

z1

z2

]

=






− 1√
2

−
√

2
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4.2 Compliance minimization

Employing the conditionx2 = 1−2x3, we get

α1

µ1
= p1(x3) =

45
√

2(5+
√

3)x3(30x3
3−47x2

3+24x3−4)

8(16
√

3+33−99x2
3+(42+15

√
3x3)

α2

µ1
= p2(x3) =

−3
√

2(27+7
√

3)x3(−32010x3
3+A1x2

3+A2x3−228+16
√

3)

15520(16
√

3+33−99x2
3+(42+15

√
3x3)

where

A1 = 14181+128
√

3

A2 = 1368−96
√

3

The ratios are plotted in Fig. 7, from which it can be seen thatall Lagrange multipliers
cannot be positive for feasible values ofx3. Therefore, no Pareto optimal solutions are
obtained.

0 0.1 0.2 0.3 0.4 0.5
−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

x
3

p i

 

 

p
1

p
2

Figure 7: Ratios of the Lagrange multipliers, wheng1 = 0.

4.2.2 g2 = 0, g1 < 0, g3 < 0

Now x2 = 0, and 0< x3 <
1
2. The gradient equation reduces to

α1∇ f1(x)+α2∇ f2(x)+µ2∇g2(x) = 0

Again, we investigate the combinations of Lagrange multipliers.

1. µ2 = 0, αi > 0.
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4.2 Compliance minimization

The gradient equation has a non-trivial solution if and onlyif

f1,2 f2,3− f1,3 f2,2= 0

The solutions of this equation are

x3 = B+C
√

D ≈ 7.20 or x3 = B−C
√

D ≈ 0.3232

where

B =
139
44

+
23

√
3

66
≈ 3.7627 C =

1
132

≈ 0.007576

D = 123213+47868
√

3≈ 2.0612·105

The latter is in the interval(0, 1
2). The ratio of the Lagrange multipliers is 0.0822, so the

KKT-conditions are satisfied.

We denote this Pareto optimum as pointB:

xB1 =
1√
2
−
√

2(B−C
√

D) xB2 = 0 xB3 = B−C
√

D

≈ 0.2500 ≈ 0.3232

The compliances at this point are

fB1 = 7.773619182 fB2 = 4.831695915

2. α1 = 0, µ2 > 0, α2 > 0.

The gradient equation becomes

[

f2,2 −1

f2,3 0

][
α2

µ2

]

=

[
0
0

]

Non-trivial solutions are obtained by

x3 = 1 or x3 =
1
3

The latter is feasible. Thenx1 =
√

2
6 . Substituting these values toµ2/α2 = f2,2, we get

µ2

α2
= 4.637513528> 0

so another KKT-point has been found.
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4.2 Compliance minimization

This Pareto optimum is denote pointA:

xA1 =

√
2

6
xA2 = 0 xA3 =

1
3

≈ 0.2357 ≈ 0.3333

The values of the compliances at this point are

fA1 = 8.000550504 fA2 = 4.823085463

This is the minimum of the compliance of LC2.

3. α2 = 0, µ2 > 0, α1 > 0.

The gradient equation becomes
[

f1,2 −1

f1,3 0

][
α2
µ2

]

=

[
0
0

]

Non-trivial solutions forα2 andµ2 are obtained, when

x3 =
171−90

√
3

61
≈ 0.2478 or x3 =−153+90

√
3

11

The first solution is feasible. The ratio of the Lagrange multipliers is

µ2

α1
=−45.69771162< 0

so the KKT-conditions are not satisfied.

4. α1 > 0, α2 > 0, µ2 > 0.

Now we solve the ratiosz1 = α1/µ2 andz2 = α2/µ2 from
[

f1,2 f2,2

f1,3 f2,3

][

z1

z2

]

=

[
1
0

]

Substitutingx2 = 0, we get

α1

µ2
= p1(x3) =

5(13+7
√

3)x3(6x3
3−11x2

3+6x3−1)

4(216−36
√

3+66x2
3− (417+46

√
3)x3)

α2

µ2
= p2(x3) =

(11+9
√

3)x3(2x3−1)(671x2
3+B1x3−B2))

4880(216−36
√

3+66x2
3− (417+46

√
3)x3)

where

B1 = 7452+6480
√

3

B2 = 1863+1620
√

3
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4.2 Compliance minimization
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Figure 8: Ratios of the Lagrange multipliers, wheng2 = 0, in the interval(0,B−C
√

D).
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Figure 9: Ratios of the Lagrange multipliers, wheng2 = 0, in the interval(B−C
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D,1/3).
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4.2 Compliance minimization

These solutions are plotted in Fig. 8 and Fig. 9. It can be seenfrom these figures, that the
ratios are positive at the same time in the open interval(B−C

√
D,1/3).

Thus, for the topology, where member 2 is removed, the following points are Pareto opti-
mal:

x1 =
1√
2
(1−2x3) x2 = 0 x3 ∈

[

B−C
√

D,
1
3

]

4.2.3 g3 = 0, g1 < 0, g2 < 0

Now x3 = 0, and 0< x2 < 1. The gradient equation becomes

α1∇ f1(x)+α2∇ f2(x)+µ3∇g3(x) = 0

In the following, we investigate the combinations of the Lagrange multipliers.

1. µ3 = 0, αi > 0.

The gradient equation has a non-trivial solution if and onlyif

f1,2 f2,3− f1,3 f2,2= 0

with x3 = 0. The solutions are

x2 = Q+R
√

S ≈ 6.62 or x2 = Q−R
√

S ≈ 0.6564

where

Q =
75+26

√
3

33
≈ 3.6374 R =

2
33

≈ 0.06061

S = 1245+678
√

3≈ 2419.3304

The latter is in the interval(0,1). The ratio of the Lagrange multipliers is 20.47, so the
KKT-conditions are satisfied.

We denote this Pareto optimal solution as pointC:

xC1 =
1√
2
(1− (Q−R

√
S)) xC2 = Q−R

√
S xC3 = 0

≈ 0.2423 ≈ 0.6564

The values of the scaled compliances are

fC1 = 1.350476870 fC2 = 13.16370143
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4.2 Compliance minimization

2. α1 = 0, µ3 > 0, α2 > 0.

The gradient equation becomes

[

f2,2 0

f2,3 −1

][
α2

µ3

]

=

[
0
0

]

Non-trivial solutions with respect toα2 andµ3 are obtained, when

x2 =−1 and x2 =
1
3

The latter is feasible. Then

µ3

α2
=−25.19134295< 0

so the KKT-conditions are not satisfied.

3. α2 = 0, µ1 > 0, α1 > 0.

The gradient equation is
[

f1,2 0

f1,3 −1

][
α1
µ3

]

=

[
0
0

]

Requiring non-trivial solutions yields

x2 =
9
7

or x2 =
9
11

The latter is feasible. The ratio of the Lagrange multipliers is

µ3

α1
= 2.338945369> 0

so the KKT-conditions are satisfied.

This Pareto optimal solution is denoted pointD:

xD1 =

√
2

11
xD2 =

9
11

xD3 = 0

≈ 0.1286 ≈ 0.8182

The scaled compliances at this point are

fD1 =
121
100

≈ 1.2100 fD2 =
209
9

≈ 23.2222

This point gives the minimum of the compliance of LC1.
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4.2 Compliance minimization

4. α1 > 0, α2 > 0, µ3 > 0.

The ratiosz1 = α1/µ3 andz2 = α2/µ3 of the Lagrange multipliers are solved from

[

f1,2 f2,2

f1,3 f2,3

][

z1

z2

]

=

[
0
1

]

Substitutingx3 = 0 gives

α1

µ3
= p1(x2) =

5(5+
√

3)x2(x2−1)(3x2
2+2x2−1)

33x2
2− (150+52

√
3)x2+81+36

√
3

α2

µ3
= p2(x2) =

(5+
√

3)x2(77x3
2−239x2

2+243x2−81)

20(33x2
2− (150+52

√
3)x2+81+36

√
3)

This time we investigate the positivity ofp1 andp2 algebraically in the open interval(0,1).
First, note that the nominators have zeros in this interval as follows

p1 = 0 ⇒ x2 =
1
3

p2 = 0 ⇒ x2 =
9
11

Furthermore, both have a singularity atx2 = Q−R
√

S ≈ 0.6564.

Since the functions are continuous everywhere except at thesingularity, it suffices to calcu-
late their signs at three points, namely between their zerosand the singularity. We choose
x2 = 0.2, x2 = 0.5 andx2 = 0.9. In the table below, the first row indicates the interval and
the second and third rows are the values ofp1 and p2 at the chosen points in the corre-
sponding intervals. The sign ofp1 andp2 in each given interval is determined by the sign
at the chosen point.

(0,1/3) (1/3,Q−R
√

S) (Q−R
√

S,9/11) (9/11,1)
p1(0.2) = 0.02674 p1(0.5) =−0.200 p1(0.8) = 0.492 p1(0.9) = 0.213
p2(0.2) =−0.02879 p2(0.5) =−0.051 p2(0.8) = 0.0013 p2(0.9) =−0.0016

The only interval, where bothp1 and p2 are positive is(Q−R
√

S,9/11). In this interval,
all Lagrange multipliers can take positive values. Therefore, the following points are Pareto
optimal for this topology:

x1 =
1√
2
(1− x2) x2 ∈

[

Q−R
√

S,
9
11

]

x3 = 0

4.2.4 g1 < 0,g2 < 0,g3 < 0

Now all Lagrange multipliers corresponding to the constraints are zero, and the gradient equation
becomes

α1∇ f1(x)+α2∇ f2(x) = 0
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4.2 Compliance minimization

Requiring a non-trivial solutions leads to the equation

f1,2 f2,3− f1,3 f2,2= 0

This equation has four solutions, that we denote ˆxi
3 = ri(x2), i = 1,2,3,4. The following condi-

tions must be met:

i) x̂i
3 > 0

ii) x1(x2,ri(x2))> 0

iii) − f1,1(ri(x2),x2)/ f1,2(ri(x2),x2)> 0

The first and second condition ensure thatx3 andx1 are positive, and the third condition enforces
the Lagrange multipliers to be positive.

1. r1(x2) = Ax2+Bk+C
√

Dk2+Ekx2+Fx2
2, where the constantsB, C, andD are as earlier.

The other constants are

A =

√
3

2
− 5

4
≈−0.3840 E = 32670−8712

√
3≈ 17580.3734

F = 13068
√

3−29403≈−6768.5600

In the interval(0,1), the condition ii) (g1 < 0) is not satisfied. Therefore, this solution
yields no feasible points.

2. r2(x2) = Ax2+Bk−C
√

Dk2+Ekx2+Fx2
2.

This solution provides feasible points in the interval(0,B−C
√

D). In this interval, there
are no zeros or singularities in the ratio of the Lagrange multipliers. Furthermore, the ratio
in this interval is positive, so in this interval, the pointsare Pareto optimal.

3. r3(x2) = Ax2+
1
4 +

1
4

√

1+(54−28
√

3)x2+(12
√

3−27)x2
2.

Now r3>0 is satisfied in(0,1/2), butx1(r3(x2),x2)>0 for all x2∈ (0,1/2), so this solution
is not feasible.

4. r4(x2) = Ax2+
1
4 − 1

4

√

1+(54−28
√

3)x2+(12
√

3−27)x2
2.

Sincer4 < 0 at all points of the interval(0,1), so this solution gives no Pareto optimal
points.

The following points are Pareto optimal for this topology:

x1 =
1√
2
(1− x2−2x3)

x2 ∈
(

0,Q−R
√

S
)

x3 = Ax2+B−C
√

D+Ex2+Fx2
2
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5. Conclusions

4.2.5 Summary

The Pareto optimal solutions and the corresponding minimalpoints are depicted in Fig. 10 and
Fig. 11, respectively. In both figures, scaled variables andcompliances are shown.

It is worth noting that the set of Pareto optimal points is connected, which means that the change
of optimal topology happens continuously. However, to showthat this property holds in general
would require a more thorough study.

Finally, the compliances of the stress-constrained minimum weight design,x∗, are computed, and
the resulting point is shown is Fig. 11 as pointP. The scaled values of the compliances are

f1(x∗) =
2387
1500

+
7
√

3
75

≈ 1.7530 f2(x∗) =
287
15

≈ 19.1333

This point is clearly dominated.
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Figure 10: Pareto optimal points of the three-bar truss withunequal allowable stresses in tension
and in compression. The labels of the points correspond withthe labels in Fig. 11.

5 Conclusions

In this study, a three-bar truss test problem was solved for minimum weight and minimum com-
pliance under multiple loading conditions. In the first case, the allowable stresses in tension and
in compression were equal, and in the second case they were unequal. In both cases the stress-
constrained minimum weight topology did not coincide with the Pareto optimal topologies of the
compliance minimization problem.
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Figure 11: Minimal points of the three-bar truss with unequal allowable stresses in tension and
in compression. The optimal topology changes in pointsB andC. The minimum weight solution
(pointP) is clearly dominated.

Since all the problems have been solved in detail using analytical expressions, they provide re-
liable test cases for future research, where different aspects of truss topology optimization are
studied.
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