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Abstract: An increasing share of electric vehicles can mean excessive peak loads in low-voltage power distribution networks.
Introducing peak shaving mechanisms to the charging systems, such overloads can be mitigated significantly. The first
contribution of this study is to quantify the amount of flexibility that electric vehicles can contribute to peak load reduction so that
the drivers can still fully charge the batteries of their vehicles. The second contribution is that the study presents and compares
two optimisation strategies for peak load reduction. The work is based on real charging data covering about 25,000 charging
sessions at various charging sites in the metropolitan area of the Finnish capital city. The main finding is that the peak loads at
charging sites can be reduced by up to 55%. Another important result is that load reduction through low-power charging is
achievable only if the average parking time at the charging site is >3 h, without affecting the user experience negatively. It is also
found out that the average parking time is over 2 h longer than the average charging time, which indicates the enormous
potential of electric vehicles in peak shaving.

1 Introduction
The undesirable impacts of uncontrolled charging of electric
vehicles (EV), such as network congestions and the resulting
network reinforcement costs, affect mostly low-voltage distribution
networks [1–3]. In power networks, the primary components, such
as transformers and cables, must be sized to withstand the peak
load. Thus, reducing this peak load can lead to lower investment
costs and significant savings.

On the other hand, a high percentage of vehicles remain parked
most of the time [4], and the parking time often exceeding the
charging time. This implies that the charging process does not
necessarily have to be started immediately when the charging cable
is plugged in. It also entails that the nominal (the highest possible)
charging power may not be needed and that the charging power can
be varied along the charging process. Simply, the more time the
vehicle is parked, the more flexibility the charging process has.
Knowing the flexibility capacity of EVs is essential when
considering the use of EVs for network services, for example by a
sub-aggregator.

In order to achieve climate targets [5] and improve air quality
[6], the European Union (EU) defines the basic requirements for
the renovation of existing buildings. Electric mobility, which helps
to reduce CO2 and air quality-related emissions through the electric
power train of the EVs and an increasing share of renewable
energies, plays an important role in this context. To ensure that the
integration of EVs is as efficient as possible, certain requirements
must be fulfilled when renovating buildings. EU directive (EU)
2018/844 of 30 May 2018 amending directive 2010/31/EU on the
energy performance of buildings will come into force on the 10
March 2020 [7]. The directive makes a difference between non-
residential buildings and residential buildings. Article 1, point 5,
paragraph 2 of the directive (EU) 2018/844 specifies the
requirements for the non-residential buildings. If there are >10
parking places in or in the immediate vicinity of the building, at
least one charging point for EVs must be installed as a part of the
renovation. In addition, 20% of all parking places must already
have an infrastructure that enables a quick retrofitting of a charging
point. In addition, by January 2025, a minimum number of

charging points will be specified for car parks with >20 parking
places. Once again, all buildings with ten or more parking places
are affected. As a part of a renovation, all parking places must be
equipped with an infrastructure that enables quick retrofitting of
charging points. This means that they would be charging ready.
However, a minimum number of charging points are not specified.
If the costs of charging readiness (for example laying cable pipes)
exceed the total costs of renovation by >7%, or if a possible
charging system could endanger the stability of the power network,
it is possible to deviate from this requirement. An example of a
charging ready parking place that is being made to a functional
charging point is illustrated in Fig. 1. 

The possibility to control the charging processes of EVs is
strongly dictated by three major factors. The first factor is the
required energy in the charging process [9] that is related to the
driving and charging patterns. The second important point is the
plug-in time to the charging point [10]. The third limiting factor is
the maximum available charging power. The maximum power can
be limited by the individual charging point or the point of
connection to the charging site.

Two of the three above-mentioned factors are strongly
dependent on the behaviour of the customer. It is also important to
consider that different charging sites may have very different
charging behaviour.

The charging behaviour being strongly influenced by human
factors, studies based on real charging data are requisite to quantify
the realistic possibilities and limitations of smart charging [2].
Studies based on actual charging data, rather than on estimations,
are scarce in the scientific literature.

1.1 Objective of the paper

With the benefits of peak load reduction in mind, the principal
objective of this paper is to quantify the real capacity limits of
flexibility that EVs can provide to the power system in terms of
peak shaving. In other words, to discover the realistic boundaries
of EV charging without decreasing the level of service for the final
customers. The major contribution of this paper is to answer the
following fundamental questions:
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• How much peak load can be reduced with peak shaving at
charging sites under realistic conditions?

• What kind of charging sites is the most prominent for peak
shaving?

• What is the minimum average parking time that permits the use
of peak shaving without decreasing user comfort?

The second objective of the paper is to present and to compare two
different optimisation algorithms: individual optimisation and field
optimisation.

The two previously mentioned objectives are tied together by
the fact that the available flexibility of the charging processes is
determined by using the optimisation algorithms.

The use of real-world data helps to identify the most feasible
locations and the types of parking sites for the implementation of
smart charging strategies.

The subsequent parts of this paper are structured as follows.
Section 2 presents the state-of-the-art found in the literature in this
field. Section 3 explains the methodology used in this work. This
section also describes the used data and clarifies how it has been
processed for the study as well as describes the two optimisation
strategies. Section 4 presents the case study results of this paper
that are further discussed in Section 5. Lastly, the conclusion and
suggestions for future research are provided in Section 6.

2 Related research works
Due to concerns and possibilities related to the charging of EVs,
peak shaving has gained attention in academic research during the
last years. In this section, a comparison with this paper and the
most related latest research works is carried out.

The study in [11] proposes a real-time algorithm for peak
shaving at non-residential charging sites. This study is based on
real data from charging sites of various sizes. The percentage of
flexible sessions is similar than in this paper; ranging from 43 to
61%, depending on the type of the charging site. Unlike this paper,
Zhang et al. [11] have focused on the development of a functional
real-time algorithm, rather than finding the maximum possible
peak shaving capacity of EVs. The study in [11] does not have the
constraint of not reducing the quality of charging service as this
paper, which leads to up to 80% peak reductions. The same 15 min
time step is used in the computation process of [11] and in this
paper. Despite the objective of this work being slightly different, it
can be stated that the results point in the same direction and this
paper complementing the findings in [11].

The study in [12] aspires minimising both, the peak power at a
charging site as well as the costs of the battery deterioration. Such
an approach has undoubtable benefits to the power utility and the
customers. The work does not rely on real charging data, but on
three synthetic scenarios with the number of EVs ranging from 30
to 50 at one charging site, similar numbers as presented in this
paper. The peak power can be reduced by about 50% in
comparison with the original case. A major drawback is that the
requirement of knowing the exact vehicle and the battery model
could make the practical implementation troublesome.

The study in [13] presents a distributed charging algorithm with
the goal of decreasing the power peak at the charging site. The
work relies strongly on previously known parameters, such as the
models of the vehicles, the mobility data (daily travelled distance,
arrival and departure time) and the load profile of the network. The
result shows that the algorithm is able to reduce peak power by
nearly 60%. In all cases, the state of charge (SoC) of the battery
does not reach 100%. However, SoCs over 95% are obtained in
every case. The results presented in [13] are very well in line with
the results presented in this paper, even if Kisacikoglu et al. [13] do
not include real charging data.

The work in [14] does not focus only on peak shaving, with an
EV, but also with a battery energy storage and a photovoltaic power
plant at one household. The data of the household over 15 days is
used. The study does not use real EV charging data, but artificial
data based on 30 km driving per day. The maximum peak load
reduction by only using an EV is 55%. The major difference to this

work is that in [14], only one household with one EV is considered
and the study is restricted to a relatively narrow period of time.

The study in [15] is a continuation of [14], but instead of a
household, algorithms are applied in a commercial building with
six EVs, a battery energy storage and a photovoltaic generator. The
study does not use real EV charging data. The time period of data
from the building covers 16 days and the computation is carried out
in 10 min time steps. The peak load reduction by using only EVs in
not studied, but through the combination of EVs together with a
photovoltaic power generator, the maximum peak reduction of
31% is reached.

The work in [16] also successfully minimises the charging costs
and the peak load. Additionally, it expands its concept to vehicle-
to-grid strategies. The study does not rely on real charging data, but
on scenarios that are modelled based on average daily driving
distances in Singapore. The study uses a rather complex 37-bus
network with industrial, commercial, residential and combined
branches. The work compares the peak load increment with an
increasing share of EVs, with the result that peak load increases
during the coming years much slower than the share of EVs. The
maximum rates of EVs that the studied network can accommodate
ranges from 60 to 80%, depending on the case. Due to the fact that
the study in [16] is not focused on individual charging sites, but on
a larger distribution network, and the results are not directly
comparable with this paper.

It is important to notice that many studies in the literature
include peak shaving as a secondary feature among others in their
charging management approach. Such features can be, for example,
minimisation of the charging cost [17, 18], minimisation of the
battery degradation cost [12] or the minimisation of losses in the
distribution feeder [19]. In practice, it can be difficult to implement
a charging management system with such many features due to the
complexity, the need for a large amount of information and
possible contradictory objectives.

As stated earlier, in order to achieve realistic research
outcomes, there is a need for research based on real charging data.
That is where this paper stands out from the most other research
works. Additionally, even less research works compare results
between different types of charging sites. Finally, similar
optimisations in the same context are not presented previously.

Fig. 1  Example of a charging-ready parking place. It can be converted to
a functional charging station by installing the actual charging point
through the quick connector [8]
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3 Methodology: analysis and optimisation of real
parking and charging data
In this section, the analysis of low-power charging data used in this
study is described. The charging behaviour of EV drivers thereby
represents a central element. By comparing the deviation between
the charging time and the parking time, the flexibility potential of
each charging process will be determined. Further on, two
optimisation methods are presented in order to reduce the overall
peak load by load shifting mechanisms. The two optimisation
methods are called individual optimisation and field optimisation.
If a general reduction of the peak load is possible, the installation
of further charging points can be considered without exceeding the
limits of the building infrastructure. The aim of the analysis is to
show the potential of smart scheduling to reduce the peak loads.
Both algorithms are meant to be used to reduce the power peaks at
a single charging site by the charging operator.

3.1 Description of the data

The study is based on roughly 25,000 charging sessions that have
been measured at various charging sites in the Helsinki
metropolitan area in Finland between September 2017 and July
2019. The charging sites under the study can be divided into two
categories. The first category includes public charging sites that
can be used by all EV drivers. The second category includes
commercial charging sites that can only be used by the employees
of the companies located in the proximity. Not all charging sites
have the same pricing for the end user. An overview of the
charging data is presented in Table 1. 

From the data sets, it is possible to read the plug-in as well as
the plug-out times. It is assumed that a customer does not remove
the charging cable until driving away from the parking area. The
time between the aforementioned time stamps can therefore be
assumed as the total parking time. Although it is possible that the
real parking time exceeds the time between the plug-in and plug-
out time stamps, it appears rather unlikely and is therefore not
taken into account. In order to determine the pure charging time,
the current flow is analysed more closely. If the battery of the
vehicle is fully charged, the current flow of zero is assumed. This
moment can also be taken from the data set. The charging time is
therefore defined by the time between the plug-in and the end of
the current flow time stamps.

The respective charging power is derived from the total amount
of energy charged. It can be assumed that the maximum charging
power decreases with an increasing SoC. Due to the fact that low-
power charging does not charge with the maximum charging power
of the battery, an approximately constant charging power, with only
a minor error, can be assumed [20]. To determine the charging
power, the amount of energy charged is divided by the charging
duration. Information on the current SoC of the battery cannot be
seen from the data set. However, if the parking time exceeds the
charging time, it is assumed that the battery is fully charged.

In order to reduce the complexity of the analysis, a compromise
must be made regarding the choice of the analysis interval. With an
interval length of 15 min, the expected deviation of the results from
a shorter analysis interval is small. This means that the analysis and
the optimisations are carried out in time blocks of 15 min. In the
further work, this interval length will be used. Before the data
analysis, the data set is adjusted to the time interval. The amount of
energy charged is not changed and is kept constant even if the time
intervals of the charging are changed. Since the parking and
charging times can change due to an analysis interval of 15 min,
the charging capacity must be corrected accordingly. The
calculation of the new parking and charging intervals (timenew, i) is
shown in (1). If an original interval (timeorig, i) is <15 min, it will be

rounded up to full 15 min. For all other cases, the remainder of an
integer division of 15 is considered as follows. If this value is <7.5 
min, it is subtracted from the interval. Otherwise, the difference
between 15 and the corresponding value is added to the interval:

timenew, i =

15

timeorig, i − mod timeorig, i

timeorig, i + 15 − mod timeorig, i

timeorig, i < 15

mod timeorig, i < 7.5

else

. (1)

The modified charging power (powernew) is calculated from the
original charging power (powerorig) as

powernew = powerorig ×
timeorig, i

timenew, i
(2)

3.2 General data analysis

This section describes more closely the data analysis that is carried
out separately for the public and commercial charging data. The
real charging data from the measurements is referred to as the base
scenario. In further step two optimisation approaches to reduce the
peak loads will be presented.

In the first step, the average parking and charging times are
calculated. These indicators provide initial awareness about the
feasibility of possible smart charging algorithms. The third
valuable indicator is the percentage of the flexible charging
sessions from the total number of sessions.

The classification of charging sessions to fixed and flexible
ones together with average parking and charging times helps to
identify quickly the realistic possibilities of smart charging at a
charging site.

It is assumed that a charging process can be stated as flexible if
the parking time is at least 7.5 min longer than the charging time.
The reason for this is the fact that the analysis is carried out in the
time steps of 15 min, making it necessary to round up and round
down the time series accordingly. Finally, the average consumed
energy is calculated.

3.3 Load profile – real charging data

The objective of analysing the base scenarios is to obtain an
overview of the average load profiles for the two categories. In
order to use the capacity of the given infrastructure as efficiently as
possible, peak loads are of particular importance.

In order to create the average load profile, all charging sessions
of the considered days are superimposed first. In a second step,
they are normalised to the value of the peak load.

The processing of the data is carried out in a Java-tool
developed for this purpose. A timer is used to check at intervals of
15 min which vehicles are plugged in at each time step. By adding
the charging power of all vehicles that are plugged in, the total load
profile is determined and temporarily stored. Finally, in another
loop, the individual load time series of each day are combined and
added together.

3.4 Individual optimisation

The objective of the individual optimisation is to minimise the
peak load of each individual charging process in order to reduce
the total load of the charging site. If in the base scenario, the
charging time is equal to the parking time (fixed session), the
power consumption is already the minimum and cannot be further
minimised. In contrast, the situation is different with flexible
sessions. The peak load can be reduced by using the entire parking
time as the charging time. The optimal case is a constant charging
power over the entire parking time. The aggregation of parallel
charging processes finally provides the optimised load curve.

Table 1 Overview of the charging data
Public charging Commercial charging

charging sites 5 3
charging points per site 8–80 10–36
charging sessions 20,382 4664
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For the optimisation, the average charging power (powerind . opt .)
over the entire parking time must be determined as well. For the
analysis of the base scenario, the charging power is assumed to be
constant and it is calculated according to (3). In comparison with
the original case, the amount of energy obtained is not divided by
the original charging time but by the parking time as

powerind . opt . =
Charged energy

Parking time
. (3)

Finally, a timer is used to verify how many vehicles are present at
each time step, analogous to the analysis of the base scenario. The
sum of the optimised charging capacities of all present vehicles
results in the optimised load at the respective time step. The
summary and evaluation of the results are performed in the same
way as in the base scenario.

The individual optimisation method represents a simple
approach to reduce peak load curves. If it is possible to obtain
information from the customers about their expected parking times
and the amounts of energy to be charged, the optimisation can be
carried out within a single charging point. Data exchange between
individual charging points and a higher-level control mechanism is
not necessary. For this reason, however, there is also a weakness in
the optimisation. Due to the fact that all charging events are
optimised independently, the optimum of the aggregated charging
processes can be different.

3.5 Field optimisation

In contrast to the individual optimisation of all charging processes,
the objective of the field optimisation is to minimise the peak load
of the resulting aggregated load curve at a charging site. On the one
hand, the weaknesses of the individual optimisation are removed.
Moreover, it is possible to further reduce the peak loads of the
entire system by a load shift. On the other hand, due to the fact that
all parallel charging processes are highly related to each other, the
complexity of the optimisation increases significantly. An
optimisation over the entire period of up to 20 months is
computationally heavy with the available resources, so the
optimum is determined separately for each day. Anyway, a daily
optimisation would be sufficient for most practical applications.

Due to the defined analysis interval of 15 min, a charging
process can therefore take place at a maximum of 96 different
charging intervals. For the optimisation, a matrix X must therefore
be defined first, which assigns an individual time profile of the
charging process to each vehicle

X =

x1, 1 … x1, n

… … …

xm, 1 … xm, n

, (4)

where n is the number of cars, m is the time of day (15 min
interval) and xij is the charging power.

Next, the boundary conditions of the optimisation are defined.
Firstly, each vehicle must have received the required amount of
energy (reqEnergy) at the end of the charging session as

reqEnergy j ≤ ∑
i = 1

m

xi, j × 0, 25h . (5)

Secondly, the power is only allowed to be drawn from the grid
when a vehicle (Car j) is plugged in. Additionally, it must be
ensured that the maximum power consumption cannot be exceeded
and that it can never become negative:

xi, j =
0,

powernew ≥ xi, j ≥ 0

Car j not connected

else
. (6)

In the next step, the total load Z of the parallel charging processes
must be determined. For this purpose, the elements of matrix X are
to be summed up line by line as follows:

Z = z1, . . . , zm =

∑
j = 1

n

x1, j

⋮

∑
j = 1

n

xm, j

. (7)

The objective of the optimisation is to maintain the elements of Z
as close to each other as possible so that the total load is
approximately constant. A load distribution that would be on the
same level over the entire day represents the absolute optimum.
Due to the fact that the flexibility of the individual charging
processes is limited, the absolute optimum can only be achieved
theoretically.

Finally, to optimise the total load curve, the elements of Z are
squared and multiplied with the interval duration of 15 min. The
addition of all values finally results in the squared area A below the
total load curve as

A = ∑
i = 1

m

(zi
2 × 0, 25 h) . (8)

If the minimum of area A is found, the total load curve is constant.
The objective function Y is therefore formed by minimising A:

Y = min A . (9)

The ‘fmincon’ optimiser of MATLAB [21] is used for the technical
implementation of the optimisation. Even though the absolute
minimum is only theoretically achievable, the optimisation ensures
that peaks are flattened as much as possible.

The optimised total load curves (Zopt . , k) of all days (d)
considered are finally summarised again so that an average load
profile can be obtained:

Zopt =
∑k = i

d (Zopt, k)

d
. (10)

The peak load of each individual day (Ppeak, k) is also of great
interest:

Ppeak, k = max zopt . , i . (11)

In the final step, the sum of all peak loads from the field
optimisation is compared with the peak load sum of the base
scenario and with those of the individual optimisation.

It should be mentioned that the results are based on historical
data. In this case it is therefore comparatively easy to determine an
optimal charging strategy. A much greater challenge, on the other
hand, is the implementation of the optimisation on a real system. In
addition to the information of the customers about their parking
time, the user behaviour must also be analysed as well. In order to
achieve an optimal result, the arrival times and the required energy
amounts must be predicted as accurately as possible. The results of
this work therefore represent the potential of a perfect prediction.
That is the largest theoretical flexibility that the EVs can provide
for peak shaving without reducing the quality of service of the
charging processes. The boundary condition of maintaining the
highest quality of service possible is selected, because network
services should not compromise the main use of EVs i.e. the
driving.

4 Results
4.1 General data analysis

A general data analysis shows that the average charging time is far
below the parking time. This can be seen in Table 2. Noticeably,
many charging processes exhibit a certain degree of flexibility.

As illustrated in Fig. 2, the share of flexible charging processes
for public charging is almost 50%. In the area of commercial
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charging, even 2/3 of all charging processes can be stated as
flexible.

4.2 Load profile – real charging data

By adding all daily load profiles together, an average profile can be
formed. The load profiles of both categories, public and
commercial charging sites, are presented in Figs. 3 and 4,
respectively. 

For the analysis, especially the peak loads are of great interest.
While the energy consumption of public charging is more evenly
spread over the entire day, the progression of commercial charging
shows a sharp peak around 10 am.

4.3 Optimisation: public charging

The average peak load reduction of two public charging sites is
shown in Figs. 5 and 6, respectively. All three cases: the base
scenario, the individual optimisation and the field optimisation, are
visible. It is discovered that the charging behaviour varies greatly
between different sites. Therefore, the average load curves of
different charging sites do not provide essential information about
the potential of flexibility. That is why the result of two charging
sites (Sites R and C) are shown. These two sites are selected
because Site R is the one with the least peak shaving potential and
Site C is the one with the largest peak shaving potential among the

public charging sites analysed in this study. Choosing the two
extreme cases, the range of flexibility is conceivable. At Site R,
where the average parking time is <2 h, only minor improvements
are visible. The individual optimisation decreases the peak load by
4% and the field optimisation by 12% (in Fig. 5). Site C, with an
average parking time of around 7 h, on the other hand, shows a
completely different situation. Through the individual optimisation,
a more even load curve, with a reduction of 21%, can be achieved
(in Fig. 6). These effects are further improved through the field
optimisation by 42% from the base scenario (Fig. 6).

Fig. 7 examines the peak load values of five different public
charging facilities in more detail. The real values are compared
with the optimised time series. It turns out that the level of the
optimisation potential depends strongly on the average parking
duration. The lines show that there is approximately a linear
correlation between the parking time and the potential for peak
reduction.

4.4 Optimisation: commercial charging

Analogous to public charging, the load profiles of two charging
sites are illustrated in Figs. 8 and 9, respectively, showing the
average load profiles of two charging sites (Sites S and I). Fig. 8
shows the result from Site S that offers the least load reduction
potential among the commercial charging sites. On average, a peak

Table 2 Details of the charging sessions
Public charging Commercial charging

no. of charging sessions 20,382 4664
ø parking duration, h 5:05 6:14
ø charging duration, h 3:03 3:42
ø consumed energy, kWh 6.4 5.9
 

Fig. 2  Share of fixed and flexible charging sessions in commercial (left)
and public (right) charging sites

 

Fig. 3  Aggregated normalised load curve of the public charging sites
 

Fig. 4  Aggregated normalised load curve of the commercial charging sites
 

Fig. 5  Base scenario (real charging) and the optimised results at Site R
 

Fig. 6  Base scenario (real charging) and the optimised results at Site C
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load reduction of 26% is obtained by the individual optimisation
strategy (Fig. 8) in comparison with the base scenario. The field
optimisation reduces the peak load by 44% (Fig. 8).
Correspondingly, Fig. 9 shows the results of Site I that offers the
largest potential for peak shaving. The individual optimisation
achieves an average peak reduction of 39% and the field
optimisation reaches 55% (in Fig. 9). The grey graphs show the
real load profile. The load profiles resulting from the optimisation
procedures are shown in yellow and green. It can be seen that a
large part of the energy consumption can be shifted to the
afternoon by the optimisations.

The average peak load reduction which results from the three
analysed larger commercial locations are visible in Fig. 10. It can
be seen that the potential for peak reduction between the
commercial locations are more similar to each other than at public
charging sites, where the average parking times are also at a similar
level. Overall, peak loads can be reduced by up to 55% through the
field optimisation.

4.5 Summarised results of peak load reduction

Table 3 illustrates the reduction of peak load at all charging sites. 
The average parking times, charging times and average charged
energies are visible. In addition, the average peak reduction for
both optimisation algorithms is shown.

5 Discussion
In this section, the results are discussed more in detail.

5.1 General data analysis

For both categories (public and commercial charging) the high
degree of flexible charging processes shows significant potential
for optimisation and peak shaving. Comparing the average parking
times with average charging times, the public and commercial data
are at a similar level. The average parking times are 2–2.5 h longer
than the average charging times. The fact that the parking times are
usually much longer than the charging times reduces the need for
extremely accurate load forecasting if the load reduction capacity is
used, for example in sub-aggregation.

Expecting that the EV owners charge their vehicles overnight at
home and also during the day at work or at other public charging
sites, the average energy consumption is about 11.3 kWh [22].
Considering that the charging losses are about 11% [22] and the
average consumption is about 19.6 kWh/100 km [22], the average
driving distance is about 51.3 km/day. A comparison of these
values with the average daily distance travelled by all vehicles in
Finland of 50 km/day [23] shows that the data used are
representative for the whole country. It should be noted that the
statistic does not take into account any days on which no charging
has taken place, therefore the actual values are slightly lower. It
should also be considered that the average distances travelled in
urban areas are lower than in rural areas [22]. Due to the fact that
the used data comes from the metropolitan region of Helsinki, a
range below the national average is not surprising.

Fig. 7  Reduction of peak load at five of the public charging sites used in
the study. The average peak load reduction is calculated from the base case
(real data)

 

Fig. 8  Base scenario (real charging) and the results of the optimisation
algorithms at Site S that is a commercial charging site

 

Fig. 9  Base scenario (real charging) and the results of the optimisation
algorithms at Site I that is a commercial charging site

 

Fig. 10  Reduction of peak load at three of the commercial charging sites
used in the study. The average peak load reduction is calculated from the
base case (real data)
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5.2 Load profile – real charging data

The charging profiles of public and commercial charging have
different characteristics. The commercial charging reaches its peak
late in the morning. It can be assumed that most of the company's
employees arrive between 9 and 11 am, which explains a
significant load increase during this time. Already before midday a
significant drop in the consumption of energy can be observed.
However, it seems unlikely that many employees will leave work
at this time of day. It seems much more realistic, however, that the
cars are still parked but the batteries are already fully charged. This
means that the peak loads could be reduced by a more evenly
charging of the batteries throughout the entire working day.

Likewise, the profile of public charging has a significant load
increase during the general office hours. In contrast to the
commercial charging curve, the power consumption in the
afternoon does not drop much. After 7 pm a further drop in power
consumption is noticeable. As a result, it can be assumed that users
of public parking facilities therefore use the charging stations for
both private and business reasons.

5.3 Optimisation: public charging

The results show that an optimisation does not always bring
significant benefits. For the Site R only slight load shifting is
noticeable, which brings up the question of whether the additional
effort of an intelligent charging system exceeds the benefit of a
lower peak load. At Site C, on the other hand, both optimisation
approaches show a great shift potential.

While the individual optimisation is able to reduce the average
peak load by 20%, the field optimisation results in an improvement
potential of 40%. For all locations, the results of the field
optimisation are therefore significantly better than those of the
individual optimisation. As Fig. 7 shows, there is a strong
correlation between the optimisation potential for improvement and
the average parking time of the vehicles. If it can be expected that
users park their vehicles only for a short period of time, for
example in front of a supermarket, the installation of an intelligent
charging system seems questionable. For a parking garage, for
example at a trade fair site, where vehicles are parked for a longer
period of time a great optimisation potential can be expected. Due
to the fact that the system is more complex, a cost–benefit analysis
should be carried out for every charging site.

One of the boundary conditions in the optimisation is that the
customers can charge the same amount of energy that they would
charge without the optimisation. With this approach, the charging
operator is on the ‘safe side’, because the quality of service does
not suffer. On the other hand, the accurate use of such optimisation
requires the knowledge of each plug-out time before the charging
starts. On the other side, in reality, if some customers received
slightly less energy than they expected, it probably would not lead
to remarkable discomfort. It is likely that most affected customers
would not even notice a modestly lower SoC during their daily
trips.

5.4 Optimisation: commercial charging

A similar result can be obtained for all analysed locations of
commercial charging. Due to the fact that many vehicles arrive
within a short period of time, the peak of the real charging data is
comparatively high. With the help of individual optimisation, the
charging can be distributed more evenly over the entire working
day. Compared to the results of the public parking sites, the
reduction of the peak load for commercial charging is considerably
higher. Due to the field optimisation a further reduction is possible.
A comparison of the average peak loads shows that field
optimisation can reduce these by around 55% (see Fig. 9). The
additional potential which can be used compared to the potential of
the individual optimisation is relatively small. It should therefore
be discussed whether the individual optimisation for commercial
parking lots already achieves a satisfying result. Overall, however,
there is a very high optimisation potential for both optimisation
methods.

5.5 Strengths and weaknesses of the different approaches

All optimisation alternatives represent a trade-off between the
resulting benefits and the resulting additional efforts. In the case of
individual optimisation, it is necessary that all users provide
information about their parking time and the desired amount of
energy. It is hard to imagine that this would simply happen without
a certain benefit for the customer. Consequently, an incentive
system must be developed that motivates users to disclose their
behaviour. Furthermore, it should be considered that the individual
optimisation can under certain circumstances cause a worse
solution compared to the uncoordinated charging process [22]. The
field optimisation can prevent this effect, but at the same time
causes a much more complex calculation. Unlike the field
optimisation, the individual optimisation does not require
communication between a central computation unit and the
charging stations.

Bearing the above-mentioned benefits of the individual
optimisation in mind, this seems more likely to be implemented in
a practical charging management application, at least as the first
solution. If the charging site possesses the communication capacity
is operating close to the limits of power capacity, the charging site
can be updated with the field optimisation. As a more complex
approach, the field optimisation gives more freedom to include
additional parameters in the optimisation.

In this paper, the algorithms are used to compute the best
possible scenario (the lowest power peak) within the boundary
conditions. In reality, these results can be achieved if

• the arrival and the leaving times of every EV are known and
• if the expected energy to be charged is known.

Since this information is usually not available before a charging
process starts, these results are reachable with great difficultly.
However, these algorithms can be applied in real life with
adjustments including error margins.

In case that only one vehicle has to be charged, a constant
charging power over the entire day is the optimum. If, by contrast,
it is known that other vehicles will arrive in the afternoon, the

Table 3 Summarised results from all charging sites
Site Ø parking time, h:min Ø charging time, h:min Ø energy, kWh Peak reduction, %
X 02:56 01:25 6.9 9 24
C 07:14 04:20 6.8 21 42
K 07:00 04:30 8.7 19 35
E 05:31 03:27 5.9 19 37
R 01:44 01:22 2.7 4 12
H 06:14 03:42 6.3 32 49
I 06:34 03:37 5.5 39 55
S 05:52 03:52 5.7 26 44
The public charging sites are the sites in bold type.
Peak reduction [%]: the individual optimisation is italic and the field optimisation is bold italic.
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charging process for the first car should be completed in the
morning. It should also be taken into account that drivers may
deviate from their predicted parking times. For example, if a user
indicates to park the car for 8 h, the optimal solution might be that
the vehicle is not charged until the second half of the parking
period. In the event that the driver returns to the car after 4 h to
drive to a spontaneous appointment, the battery may still be
completely empty. It is likely that the user experience will suffer
greatly from this example. For improvement, it should therefore be
considered to implement an additional minimum charging power
for each vehicle in the system. Emergency rides could thus be
covered, but the complexity of the charging system would continue
to increase at the same time.

The results of the analysed charging sites clearly show that the
respective optimisation should be evaluated for each location. If
parking times are relatively short, the benefits of optimisation are
relatively small. If, in contrast, the parking times are very long, the
individual optimisation provides a large optimisation potential, so
that a more complex optimisation can be dispensed with.

The technical requirements of the installed charging points must
also be taken into account when deciding for or against field
optimisation. If all charging points are connected to the main
connection as a star, an optimisation is possible across all charging
points. In the event that several bus topologies branch off from the
main connection point, a sub-optimisation must take place
separately each bus.

6 Conclusion and future work
The main conclusions of this paper and the directions for future
work are presented hereunder.

6.1 Conclusion

The paper reveals several insights into the realistic possibilities of
smart charging based on real data from Finland. It shows that there
is a significant potential for peak load reduction. In addition, this
potential has been quantified under realistic boundary conditions at
several charging sites.

In this study, it is found out that the average parking time is >2 
h longer than the average charging time. This simple finding shows
that the power peaks at charging sites can be reduced significantly.
Another indicator discovering the potential of EVs in peak shaving
is that at commercial charging sites 66% and at public charging
sites 47% of the charging sessions are flexible. This means that
they are able to provide peak load reduction without a decline in
the quality of the charging service.

A relevant finding is that if the parking time is roughly <3 h,
there is no margin for peak shaving without decreasing the quality
of service. In other words, applying smart charging in such
locations does not bring much benefit.

Contrarily, if the average parking time exceeds a duration of
≃3 h, a large optimisation potential can be identified for both
presented optimisation approaches. However, this is also dependent
on the available charging power.

Through a load shift, the average peak load of a charging site
can be reduced by up to 55%. A comparison of location-dependent
charging data shows that charging sites at commercial locations
have particularly great potential. On the other hand, public
charging sites show a strong dependency on the average parking
time.

Furthermore, the paper presents two strategies for peak load
reduction at charging sites: an individual optimisation and a field
optimisation. Generally, the field optimisation achieves better
results, but also entails more complexity.

The average driving distances can be derived from the average
amount of charged energy. Due to the fact that these values
correspond to the general national average driving distances in
Finland, the results are very valuable.

6.2 Future work

The used data set consists of about 25,000 charging sessions. In the
future, more detailed statistical studies by using hundreds of
thousands or more charging sessions will be carried out.

The future work will focus on how the algorithms presented in
this work can be used to control charging sessions in real time. In
addition, the impact of non-optimised peak shaving on the quality
of service will be studied.

In the future, a more detailed analysis of realistic possibilities of
the flexibility of EVs in sub-aggregation will also be studied.
Additionally, forecasting of EV charging loads and the available
flexibility will be considered. Economic aspects of the possible
savings related to peak load reduction will also be taken into
account.
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