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ABSTRACT Residual learning is known for being a learning framework that facilitates the training of very
deep neural networks. Residual blocks or units are made up of a set of stacked layers, where the inputs are
added back to their outputs with the aim of creating identity mappings. In practice, such identity mappings
are accomplished by means of the so-called skip or shortcut connections. However, multiple implementation
alternatives arise with respect to where such skip connections are applied within the set of stacked layers
making up a residual block. While residual networks for image classification using convolutional neural
networks (CNNs) have been widely discussed in the literature, their adoption for 1D end-to-end architectures
is still scarce in the audio domain. Thus, the suitability of different residual block designs for raw audio clas-
sification is partly unknown. The purpose of this article is to compare, analyze and discuss the performance
of several residual block implementations, the most commonly used in image classification problems, within
a state-of-the-art CNN-based architecture for end-to-end audio classification using raw audio waveforms.
Deep and careful statistical analyses over six different residual block alternatives are conducted, considering
two well-known datasets and common input normalization choices. The results show that, while some
significant differences in performance are observed among architectures using different residual block
designs, the selection of the most suitable residual block can be highly dependent on the input data.

INDEX TERMS Audio classification, convolutional neural networks, residual learning, urbansound8k, ESC.

I. INTRODUCTION
Audio event classification (AEC) is the problem of cate-
gorizing an audio sequence into exclusive classes [1]–[3].
Basically, AEC is aimed at recognizing and understanding
the acoustic environment based on sound information. This
is usually treated as a supervised learning problem where a
set of labels (such as siren, dog barking, etc.) describe the
content of the different sound clips. In contrast to classical
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schemes based on feature extraction followed by classifica-
tion, Deep Neural Networks (DNNs) [4] reduce these steps
by working both as feature extractors and classifiers. Among
the many different deep learning techniques, the ones based
on Convolutional Neural Networks (CNNs) have shown very
successful results in areas such as image classification and
object detection [5]–[8]. CNNs are able to learn spatial or
time invariant features from pixels (i.e. images) or from
time-domain waveforms (i.e. audio signals). Several con-
volutional layers can be stacked to get different levels of
representation of the input signal. As a result, CNNs have
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been proposed to tackle audio related problems such as sound
event detection or audio tagging [9]–[11].

Although audio signals are natively one-dimensional
sequences, most state-of-the-art approaches to audio clas-
sification based on CNNs use a two-dimensional (2D)
input [12], [13]. Usually, these 2D inputs computed from
the audio signal are well-known time-frequency representa-
tions such as Mel-spectrograms [14]–[17] or the output of
constant-Q transform [18] (CQT) filterbanks, among others.
Time-frequency 2D audio representations are able to accu-
rately extract acoustically meaningful patterns but require a
set of parameters to be specified, such as the window type
and length, hop size or the number of frequency bins. The
choice of these hyperparameters can lead to different optimal
settings depending on the particular problem being treated or
the particular type of input signals [19]. In order to overcome
these problems and providing an end-to-end solution, other
approaches have proposed the use of 1D convolutions using
the raw audio signals as input. Recent works have shown
satisfactory results in this direction [20]–[28].

This article is focused on the analysis of the performance
of a particular CNN architecture, called Residual Network
(ResNet), fed with 1D audio data. The ResNet architecture
was first introduced in [29] with the purpose of dealing with
the vanishing gradient issue. The core idea of ResNet is to
introduce the so-called identity weight shortcut connection
that skips one or more layers and adds the input of such
layers to their stacked output. After the first residual unit
was presented in [29], an exhaustive analysis of different
variations of such a configuration was done for CNNs with
2D input signals to tackle the image classification problem
[30]. Nevertheless, although other works have studied the
contribution of residual blocks in the context of 1D raw audio
input waveforms [28], [31], a comprehensive analysis of how
different residual block designs may affect the overall perfor-
mance of audio recognition systems has not been provided
so far.

The main objective of this work is to analyze the influ-
ence on the performance of different residual block alterna-
tives, the ones more commonly used in the image domain,
within the context of 1D raw audio classification. To this
end, a baseline architecture is slightly modified considering
six different residual block implementations that have been
shown to lead to satisfactory results in image classification
problems. These blocks provide a varying schemewith regard
to where identity mappings are created within the set of
stacked layers that conform the block. The common baseline
architecture is the one presented in [20], which proposed a
1D CNN for raw audio waveform classification using the
public dataset UrbanSound8k.1 For the sake of consistency,
the same dataset will be considered in this work. Additionally,
the public dataset ESC-502 (concretely, the ESC-10 subset)
is also used in the experimentation to evaluate the potential

1https://urbansounddataset.weebly.com/urbansound8k.html
2https://github.com/karoldvl/ESC-50

FIGURE 1. Originally proposed residual block or unit [29].

differences arising over different datasets. The results suggest
that the best performing blocks in the image domain are not
the ones showing significant advantages in performance for
raw audio classification [30], nor the one originally suggested
in [20] for audio data using the baseline architecture.

II. BACKGROUND
Residual neural networks -or ResNets- can be understood as
modular networks whose building blocks are the so-called
residual units or blocks. These residual blocks (RB) are
usually characterized by two or three convolutional layers
and a shortcut connection that guarantees residual learning
during the network training process. The original residual
block proposed in [29] is shown in Fig. 1. Consider H(x)
an underlying mapping to be fit by a set of stacked layers
in a particular network module, where x is the input to the
first of such layers. Residual blocks are designed to let such
layers approximate a residual function, F(x) := H(x) − x,
which means that the original function can be expressed as
H(x) = F(x)+x. Similar to predictive coding, the motivation
of using residual blocks comes from the intuition that it may
be easier to optimize the above residual mapping than to
optimize the original, unreferenced mapping. A straightfor-
ward way of implementing residual learning is by adding
shortcut connections performing identity mappings. In such
connections, the input to the set of layers x is added back
to their output, so that y = x + F(x). The function F(x)
represents the residual to be learned by a set of stacked
layers of the CNN, where the weight layers are convolutional.
In the original residual block, Rectified Linear Unit (ReLU)
activation is applied to the result after each identity mapping,
resulting in a final output f (y) that acts as input to the next
residual block, where f (·) denotes the ReLU function. Thus,
in general, the input to the l-th block, Xl , is the output from
the previous block and its output becomes the input to the next
one, Xl+1. Note that shortcut connections do not add extra
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FIGURE 2. Network analyzed [20]. The architecture is explained as follows: [80/4, #48] denotes a layer with 48 filters, 80 of kernel size and stride equal to
4. RB blocks are indicated with kernel size, stride and number of filters.

parameters nor additional computational cost. Thus, deeper
networks can be trained with little additional effort, sub-
stantially reducing vanishing-gradient problems. However,
CNNs often include Batch Normalization (BN) layers and
vary slightly with regard to where the activation function
is applied. Therefore, the performance of residual learning
may also depend both on the order followed by these layers
and on the selected point at which shortcut connections are
established. In [30], a careful discussion on identity mappings
is provided, proposing the use of pre-activated residual units
where f is an identity mapping, i.e. Xl+1 = yl . Such slight
modification is shown to benefit the training process and to
achieve better results in image recognition tasks. However,
such analysis has only been performed for 2D architectures
and, to the best of the authors’ knowledge, a similar study
analyzing residual blocks in 1DCNNs has not been addressed
so far.

A. RELATED WORK
The use of residual networks for audio-related tasks has
already been explored in the literature, usually taking as input
frame-level features such as the outputs from mel-scale or
logarithmic filterbanks [32]–[34]. As in the present work,
several variants of a CNN-based audio classification system
accepting raw audio waveforms as input was proposed in
[20], including a particular residual architecture. Similarly,
end-to-end audio classification systems using residual net-
works were covered by Kim et al. in [28], [31], proposing
as well the use of squeeze-and-excitation strategies [35] for
increased accuracy. Such strategies are aimed at rescaling
the convolutional feature maps by learning proper weight-
ings using temporal aggregation (squeeze) and channel-wise
recalibration (excitation). The residual blocks presented in
these works, named Res−n (purely residual) and ReSE−n
(combinining squeeze-and-excitation), considered the origi-
nal residual design of [29] depicted in Fig. 1. Both works
showed that CNN architectures making use of such blocks
provided promising results for learning from raw data and
analyzed in detail the effect of including squeeze-and-
excitation recalibration. However, the influence of the spe-
cific residual block design, as considered in [30] for the image
domain, has not been covered so far and its effect in 1D raw
audio learning is still unclear.

III. NETWORK ARCHITECTURE
The experimentation conducted in this work considers as
a baseline the architecture originally proposed in [20] for

raw audio waveforms, consisting in a fully-convolutional
network intercalating convolutional and pooling layers.
Fully-convolutional networks can usually obtain better gen-
eralization properties, whereas, fully-connected layers at the
end of the network are more prone to suffer from overfitting.
In [20], the convolutional layers are configured with small
receptive fields, with the exception of the first layer, whose
receptive field is bigger in order to emulate a band-pass
filter. Therefore, temporal resolution is reduced in the first
two layers with large convolution and max pooling strides.
After these layers, resolution reduction is complemented by
doubling the number of filters in specific layers. Finally,
after the last residual unit, global average pooling is applied
to reduce each feature into a single value by averaging the
activation across the input. To study the behavior of a given
residual block (RB), this article focuses on the residual vari-
ant proposed in [20] (originally labeled as M34-res), which
follows the general architecture shown in Fig. 2.
Six different RB implementation alternatives are analyzed:

the original block proposed by He et al. [29] plus the other
four blocks proposed by the same authors in [30] and the
one introduced by Dai et al. in [20] (see Fig. 3). In ResNets,
convolutional layers are replaced by different RBs. To isolate
the effect of these blocks from the rest of parameters of the
network, the number of filters, the receptive field size and the
number of convolutional layers remain the same as in [20].
The analyzed residual blocks are the following:

• RB1 [29]: the input is first convolved and the output
of the second convolution is the input of a batch nor-
malization layer. After the addition, ReLU activation is
applied.

• RB2 [30]: the input is first convolved and no
post-processing is done after the second convolution.
The only difference with respect to RB1 is that normal-
ization is applied after adding the input and consequently
f corresponds to the composition of BN and ReLU.

• RB3 [30]: the input is first convolved as in [20] and the
activation is performed before the addition.

• RB4 [30]: the input is first passed through a ReLU
activation layer and then normalized after the second
convolution.

• RB5 [30]: the input is first normalized and there are no
layers after the second convolution as well as after the
addition. RB3-5 constitute a family in which there are
no layers after the addition and consequently f is exactly
the identity. The differences are in the order in the layers
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FIGURE 3. Residual units implemented in this work. RB1 to RB5 (a-e) were first introduced in [30], whereas RB6 (f) was presented in [20].

ranging from post-activation (RB3) to pre-activation
(RB5).

• RB6 [20]: the input is first convolved and the output of
the second convolution is the input of a batch normal-
ization layer. After the addition, a new normalization is
applied followed by ReLU activation which constitutes
a very slight variation of RB2.

The M34-res presented in [20] has 4,001,242 parameters
because it uses RB6. When using RB5 the network has
3,988,570 parameters while using RB1-4 the network is com-
posed by 3,989,914 parameters. Dropout layers [36] have not
been implemented neither after the pooling layers nor in the
residual block, as set out in [20].

IV. EXPERIMENTAL DETAILS
A. DATASETS AND AUDIO PRE-PROCESSING
As in [20], the experimental setup of the present work is based
on UrbanSound8k (UBS8k) [37], a public sound-database
that contains 8732 sound clips of duration of up to 4 sec-
onds with 10 different classes such as dog barking, car horn,
drilling, etc. The dataset is partitioned into 10 different folds
and the last one is commonly used as a test while the pre-
vious ones are left for training and validation. Additionally,
the ESC-10 dataset [38], a public sound-database that con-
tains 400 clips of 5 seconds of duration with 10 different
categories (40 samples each category), is also considered.
This dataset contains the same number of categories than
UBS8k, making the comparison more precise. This dataset is
also officially partitioned into different folds (5 in this case).

Clips from both datasets were resampled to 8 kHz and
padded with zeros to reach 4 s or 5 s length if necessary
after being pre-processed. Once an audio sequence has been
read, two different pre-processings have been carried out to
check how these can affect the behavior of the final sys-
tem. The first processing is the scaling of the audio to the

maximum absolute value (Scalemax). The second processing
consists in normalizing to a signal with zero mean and unit
standard deviation (Mean 0 Std 1) as in [20]. As mentioned
earlier, padding is done once the signal has been accordingly
pre-processed.

B. EXPERIMENTAL SETUP
Instead of using only the last fold of each dataset as a test,
a full k-fold cross validation analysis will be carried out
in order to obtain more accurate averaged measurements
related to the generalization capabilities of the systems under
study. The value of k is 10 and 5 for UBS8k and ESC-10,
respectively.

Due to the stochastic nature of the experiments and to
account for variability, the k-fold cross validation run is
repeated a number of times for each dataset (5 and 10 for
UBS8k and ESC-10, respectively) so that a total of 50 models
are fully trained for each dataset. The final performance
measures correspond to the classification accuracy over the
whole dataset and averaged over all repetitions along with
the corresponding standard deviation.

C. IMPLEMENTATION DETAILS
The optimizer used was Adam [39]. The models were trained
with a maximum of 400 epochs. Batch size was set to 128.
The learning rate started with a value of 0.001 decreas-
ing with a factor of 0.2 in case of no improvement in the
validation accuracy after 15 epochs. The training is early
stopped if the validation accuracy does not improve during
50 epochs. The initialization method was glorot-uniform [40]
and all weight parameters were subject to L2 regularization
with a 0.0001 coefficient as in [20]. Keras with Tensorflow
backend was used to implement the models in the experi-
ments. The audio manipulation module used in this work was
LibROSA [41].
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TABLE 1. Averaged accuracies of the different blocks presented in this article depending on the pre-processing of the audio and dataset used for the
experimentation.

V. RESULTS
Given the number of folds and repetitions in the two datasets
considered, a total number of 50 independent results are avail-
able in each case. With these we have carried out a careful
analysis, first comparing averaged accuracies, and second
performing a rank-based analysis. Note that the results can
not be fairly compared to other previous published results
(e.g. [20]) that are more challenge-oriented, but instead
the followed procedure allows to compare the different
alternatives more accurately.

A. AVERAGED PERFORMANCE ANALYSIS
Averaged rates of accuracy for all the experiments carried out
are shown in Table 1 along with standard deviations across
repetitions. Best results for each dataset and pre-processing
method are marked in bold. We naively assume Gaussianity
and perform a parametric multiple comparison test [42] that
only discovers significant differences between RB3 and RB5
(shaded in the table) and the remaining options depending on
dataset but regardless of pre-processing.

From this first analysis we can hardly observe differences
among RBs but it is worth mentioning several surprising
facts. First, the RB3 is significantly worse in all cases. Even
though this was also the worst in the exact identity family
(RB3-5) according to [30], its behavior in the image context
was clearly better than that of RB2 which is now among the
bests along with its slight variation RB6. Second, the full-
preactivation option, RB5, which was the best in the image
context is now significantly the worst for ESC-10.

It can be also observed that systems trained on the ESC-10
dataset seem to be more sensitive to the selected input pre-
processing. Blocks RB1, RB3 and RB4 show better perfor-
mance when the audios have been processed with Scalemax.
On the other hand, blocks RB2, RB5 and RB6 show better
performance when the audios have been normalized to zero
mean and unit standard deviation.

Apart form putting forward normalization sensibility and
the surprising dependence on data of RB5, the clearest con-
clusion that we can draw from comparing averaged rates is the
very poor behavior of RB3. This could be somewhat expected
as RB3 is the only block having a ReLU activation just before
the addition leading to a non-negative output which is an
unnatural option for a residual function. Note that having
a non-negative residual function can have an undesirable
impact on learned internal representations, which in turn
may substantially affect the robustness and generalization
capabilitites of the network.

B. NON-PARAMETRIC RANK-BASED COMPARISON
In order to provide more insight about the RB choice, a
non-parametric Friedman test with Holm post-hoc has been
carried out [43]. Moreover, medians of all repetitions and an
optimistic bound obtained by selecting the best model for
each fold have been computed and are shown in Fig. 4 along
with averaged rates. Table 2 shows the test results including
average ranks and corrected p-values. Significance level has
been set to α = 0.05. The value 0.00 means p < 0.005.
Apart from the results for each dataset, we also show the ones
corresponding to both datasets. Results that are significantly
worse than the best according to the selected level appear as
shaded in the table, with the corresponding p-values in bold.

The results of the non-parametric analysis confirm the
findings from the parametric one and uncovers further dif-
ferences among the best performing options. Unfortunately,
and as previously observed, different datasets imply slightly
different conclusions.

According to UBS8k results, the best performing blocks
are RB1, RB4 and RB5, partially confirming the inappro-
priateness of RB2 as in [30]. Even though RB1 ranks the
first and all means are indistinguishable we can still find
some interesting differences. On the one hand, RB4 using
both pre-processing options has almost the best median (0.69)
whichmay suggest that the RB4 option is more robust. On the
other hand, we obtain an optimistic bound of 0.72 both for
RB5 and RB1 with Mean 0 Std 1 pre-processing. The value
of this bound for the next best options is 0.71 for RB4 using
the same preprocessing.

When considering the ESC-10 results, the previous sur-
prising behavior of RB5 is confirmed in all cases. Moreover,
the more specific differences among methods also confirm
that pre-processing affects the behavior of RB options for this
dataset. In particular, RB1 andRB4 on one hand, andRB2 and
RB6 on the other, are the best performing blocks depending
on pre-processing, all with indistinguishable means. If we
compute the medians as with the previous dataset we find
slight differences between RB2 and RB4 (0.80) and RB1 and
RB6 (0.79). Finally, the best options according to the opti-
mistic bound when the best models are selected are RB4,
RB2 and RB1 (0.84) for different pre-processing options.
These bounds, together with the fact that RB1 exhibits sig-
nificantly worse medians, suggest that both RB4 and RB2
constitute a more robust alternative.

Given these overall results, drawing a general conclusion
looks difficult. The more remarkable fact is that the best
block considered for the image domain RB5 is not, in general,
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FIGURE 4. Means, medians and optimistic bounds on accuracies of the considered residual blocks on two datasets for different
pre-processings: Scalemax (SC) in blue and Mean 0 Std 1 (ZM) in green. The best medians and optimistic bounds are marked as cercles
and triangles, respectively.

TABLE 2. Ranking results of the different RB configurations.

among the bests. Also interesting is the fact that the block
RB6 proposed in [20] and specially its close variant RB2with
normalized inputs are among the bests but only for one of
the datasets. Finally, the original block RB1 is among the
bests for all datasets even though it exhibits a dependence
on pre-processing. Also among the bests for all datasets is
the RB4 option that can be considered as a small variation
of the RB5 recommended in [30]. If one had to put one
of the options ahead of the others for 1D end-to-end audio
classification from the experimentation carried out in the
present work it would be the RB4 design. This ReLU-only
pre-activation, as named in [30] had also a very good behav-
ior in image classification. Moreover, it consistently pro-
duces median accuracies among the best in all datasets and
pre-processing options (except Mean 0 Std 1 in the case of
ESC-10).

VI. CONCLUSION
End-to-end 1D architectures are very convenient for address-
ing audio classification tasks, as they avoid making certain

decisions related to the adoption of suitable input repre-
sentations for the input audio data. As a result, raw audio
waveforms can be fed directly into convolutional networks
without the need for a prior feature extraction process. While
residual learning has been widely demonstrated to be a suc-
cessful approach for training deep neural networks, different
residual block designs may affect the final performance of the
classification system. In this context, while the study of the
appropriateness of different residual block designs has been
previously addressed in the image domain, similar analyses
have not been previously reportedwhen considering 1D audio
data. In this work, it has been shown that previous results
obtained for image classification can not be easily extrapo-
lated to the audio domain. Moreover, significant differences
in the performance provided by different residual blocks have
been observed when considering different audio datasets and
pre-processings. With the considered baseline architecture,
some of the recommended residual blocks in the literature
did not achieve the best performance, nor even the the most
successful block recommended for image classification tasks.
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