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A bearingless machine should be designed to maximize the average and to minimize the ripple in the electromagnetic torque and 

levitating force. In a bearingless synchronous reluctance machine (BSynRM), the complex rotor design and the levitation winding 

create a rich spatial and temporal spectrum of the magnetic flux density in the airgap, which affects both the torque and force ripple. 

In this paper, a novel method is introduced to compute the electromagnetic forces from the spatial harmonics of the airgap flux 

density. A new indexing method is introduced to classify the spatial harmonic wavenumbers and temporal harmonic frequencies of the 

flux density in the electromagnetic force. The proposed model enables the understanding of the spatial harmonic footprint on the 

temporal frequencies of the electromagnetic force ripple. The study is carried out through finite element simulations, which are 

verified by prototype measurements.   

 
Index Terms— Bearingless Machine, Electromagnetic Forces, Flux Barriers, Harmonics, Levitation. 

 

I. INTRODUCTION 

EARINGLESS synchronous reluctance motors (BSynRM) 

offer an integrated combination of a synchronous 

reluctance motor and active magnetic bearing (AMB) in one 

common unit. The operation of bearingless motors is based on 

the interaction between the magnetomotive forces generated 

by the main winding, an additional winding and, in case of a 

permanent magnet machine, the magnets [1] - [4]. The main 

winding is designed to produce the airgap magnetic flux 

density required for producing the desired torque. The 

additional winding produces a magnetomotive force, which 

interacts with the magnetomotive force produced by the main 

winding. Fig 1 shows that in a certain part of the airgap like 

region 2, the 4 pole flux and 2 pole flux add to each other, 

whereas, in some other part of the airgap like region 4, they 

oppose each other. Therefore, the resultant flux distribution in 

the airgap under different pole becomes uneven [5]. As a 

result, the Maxwell stress tensor is also unevenly distributed 

under each pole which generates an unbalanced magnetic pull, 

i.e. a net electromagnetic force on the rotor. By controlling 

this force, the rotor can be levitated. The electromagnetic force 

acting on the rotor can be considered a combination of two 

perpendicular components; one opposing the gravity (y-

component) and one perpendicular to the gravity (x-

component), as shown in Fig. 1. The shaft is considered 

perfectly horizontal (z-direction). 

The electromagnetic forces have different temporal 

harmonic components arising from the spatial complexity of 

the stator and the rotor. Thus, the four important design 

considerations of a bearingless motor are minimizing the 

torque ripple and force ripple and maximizing the mean torque 

and levitation force acting on the rotor. In [6], a novel control 

strategy has been proposed to solve the torque ripple and force 

ripple problem in a bearingless switched reluctance motor. In 

[7], a semi-analytical model is presented for a 2-pole 

bearingless permanent magnet synchronous motor (BPMSM) 

in order to determine the harmonic components of the airgap 

flux density. In [8], the spatial harmonics of a BPMSM are 

investigated and a detailed force ripple model is presented.   

 
 

Fig. 1.  The main winding flux (blue colour) and additional winding flux (red 
colour) act in the same direction in the upper part of the airgap (making flux 

density higher) and in opposite direction in the lower part (making flux 

density lower), which produces the electromagnetic force denoted by the 
arrow (green colour).  

 

In [9] and [10], 2D harmonic force models are presented to 

identify the electromagnetic force ripple components of an 

eccentric motor to analyse the vibrations of the motor. 

However, these methods are based on the 2D Fourier analysis 

of the airgap flux density to understand the spatial and 

temporal force spectrum. In fact, the spatial harmonic 

information can be obtained from the 1D Fourier analysis of 

the airgap flux density at each time step. In this paper, one 
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quasi-static magnetic flux density distribution is computed in 

the airgap, from which the spatial harmonics are computed. 

The time variation of each spatial harmonic can be utilised to 

develop a model that explains the impact of the airgap spatial 

harmonics on the force temporal spectrum. In this way, 

individual force harmonics can be computed faster, enabling a 

better understanding to control any individual harmonics if 

required. 

This paper has two main goals as given below: 

a. Proposing a method to compute the electromagnetic 

forces from the 1D Fourier analysis of the airgap flux 

density. 

b. Analysing the electromagnetic force harmonics in the 

spatial and temporal spectrum by proposing a novel 

indexing technique. 

The main benefit of the method is that it enables a 

comprehensive idea on which pair of spatial harmonics 

produce which temporal harmonic of the forces. The proposed 

method of calculating the electromagnetic force is compared 

with the already established Coulomb’s method, which is 

based on the virtual work principle [11]. The finite element 

(FE) computation results are validated with measurements on 

a BSynRM prototype at no-load condition. 

The paper is organised as follows: in Section II, the 

harmonic decomposition method for the force computation is 

presented and the related spatial harmonic indices are defined. 

In Section III, the FE method used to compute the flux density 

harmonic is presented. Section IV presents the validation of 

the presented results at different levels. Section IV.A presents 

a validation of the harmonic decomposition method by 

comparing its results to those obtained from the virtual work 

principle. Section IV.B presents the experimental validation 

and related analysis. In addition, the measurement setup is 

described, the results from two different force-measuring 

systems are shown, and their comparison with the numerical 

analysis is presented. Finally, Section V concludes the paper 

and discusses the relevance of the work and foreseen 

consequences.  

 

II. HARMONIC DECOMPOSITION MODEL FOR FORCE 

COMPUTATION 

A. Computation of Force 

The Fourier decomposition for the angular (θ) dependency 

of the flux density B in the air gap at airgap radius r in radial 

and tangential coordinates at any given time t can be written 

as, 
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Brad,i and Btan,i are the radial and tangential components of the 

ith spatial air-gap magnetic flux density harmonics and ϕrad,i 

and ϕtan,i are their corresponding phase angles.  The unit 

vectors urad and utan shown in (1) are given as, 
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where ux and uy are the unit vectors in the x and y direction.  It 

is worth mentioning that the levitation winding and 

eccentricity may cause harmonics of order i < p, where p is the 

pole pair number of the main winding. From now on the t, r 

and θ-dependencies of the quantities are not denoted. The 

electromagnetic force is calculated from the Maxwell stress as 

a surface integral around the rotor, assuming a constant radius 

of integration r (from the centre point of the rotor), which in 

the 2-D case is reduced into an integral along a circular path 

around the rotor given as, 
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where μ0 is the permeability of the vacuum, S is the surface for 

integration, and the normal vector n = urad. Replacing (3) in 

(4) and further simplification gives, 
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The force components in the x and y direction can be written 

as a summation of all the individual flux density harmonics of 

its radial and tangential components. As an example, the force 

component for the x-direction is presented by  
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where any two spatial harmonics are represented as i and j. 

The length of the machine, rotor outer radius, stator inner 

radius and the radial coordinate in the airgap are represented 

by l, rr, rs and r respectively. Now, using Arkkio’s method 

[12] to average the Maxwell stress tensor integration over the 

whole airgap, (6) can be written as, 
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The integration can give nonzero value only when i-j+1, and i-

j-1 is zero. So, replacing j = i±1 and simplifying (7), each 

individual force harmonic in the x-direction, Fx,i can be 

expressed as, 
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Similar methods can be applied for the y-direction, and the 

force harmonics Fy,i can be expressed as,  
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The total force can be calculated as a sum of all the 

combinations of the forces coming from different spatial 

harmonics. The temporal spectrum of the force in a BSynRM 

can be easily analysed from each spatial harmonic of the flux 

density after computing each Fy,i over time. For example, the 

levitation force Fy and the disturbance force Fx can be 

calculated as, 

y y,
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It is worth noting that Brad,1, Brad,2, Btan,1 and Btan,2 

correspond to the radial and tangential fundamental harmonics 

created by the additional winding and main winding 

respectively for a non-eccentric rotor. So, this is one particular 

case where i = 1, and j = i+1 = 2. In this case, Brad,1, Brad,2, Btan,1 

and Btan,2 represent Brad,i, Brad,j, Btan,i and Btan,j. These flux 

density harmonics along with the 3rd harmonic component 

produced by the additional winding leads to the main 

levitation force production. The 3rd harmonic in the flux 

density appears due to the rotor anisotropy with respect to the 

additional winding. In the studied machine, the rotor is 

running at half of the additional winding frequency. A detailed 

analysis of this operational condition is presented by the 

authors in [14]. Equation (8) and (9) gives a good 

understanding of the electromagnetic force harmonics based 

on the spatial flux density spectrum. To mitigate the 

electromagnetic force ripple, individual force harmonics can 

be compensated using current injection, which can be decided 

based on the spatial flux density spectrum. However, in this 

paper, we focus primarily on the force harmonic 

characteristics.  

 

B. Spatial Harmonic Indices 

To understand which combination of the flux density spatial 

harmonics produces which force harmonic in the temporal 

spectrum, a novel harmonic indexing technique is proposed in 

this paper. A force is produced by any two flux density spatial 

harmonics when their harmonic orders i and j differ by one. 

The harmonic combination of i and j is represented together to 

form what we call spatial harmonic indices (SHI). The primary 

motivation to propose this indexing method is to merge the 

two indices i and j to a single meaningful index which can 

help to understand the force temporal harmonics and explain 

their origin. The SHI is defined as, 
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The |j-i|= 1 in the condition of (11) comes from the 

requirement of force production.  An example of computing 

the SHI is given in Table I. The individual spatial harmonics 

can be traced back from the SHI using the following method: 
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Equation (11) is an example of a bijective mapping of a pair of 

indices to a single index, (i, j)         SHI, under the conditions 

that |j-i|= 1. Equation (12) proves that the mapping is unique. 

To obtain the necessary harmonics of the magnetic flux 

density in the air gap, different methods for magnetic field 

analysis can be utilised. In our study, we use the finite element 

method, where the field equations are coupled with the 

windings’ circuit equations. This methodology, with two sets 

of windings, is explained in the next section. 

 
TABLE Ι 

SPATIAL HARMONIC INDICES 

Harmonic 

component (i) 

Harmonic 

component (j) 

Spatial harmonic 

indices 

1 2 1 

2 1 2 

2 3 3 
3 2 4 

.. .. .. 

33 34 65 
34 33 66 

34 35 67 

35 34 68 
   

 

III.  FINITE ELEMENT METHOD 

The parameters of the BSynRM under consideration are 

given in Table II. The stator and rotor core are made of iron 

lamination and has been modelled with non-linear B-H 

characteristics in the FE analysis as shown in Fig. 2. The 

mesh, the flux density distribution at rated torque and 

levitation force production, where both winding sets are 

supplied with sinusoidal voltage and the winding distribution 

of the prototype motor are shown in Fig. 3 (a), (b) and (c) 

respectively. The flux density is computed after solving a 

quasi-static magnetic problem [12], [13]. Fig. 3 shows that the 

flux density is higher in the positive y-direction than in the 

negative y-direction. Therefore, an electromagnetic force is 
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produced in the positive y-direction [15]. 

 

 
Fig. 2.  B-H characteristics of the stator and rotor lamination. 

 

  

 
 

                    (a)                                                 (b) 

 

 
(c) 

 
Fig. 3. (a)  Mesh of the 2D cross-section of the prototyped motor, (b) 

computed magnetic flux density of the motor during rated load and levitation 

force production state, and (c) winding distribution of the two windings in 36 
slots, where each slot is numbered in the first row.  

  

 A 2D time-stepping FE method is used to determine the 

harmonics of the airgap flux density and the electromagnetic 

forces since the FE model is considered as a high-fidelity 

model. It is good to mention that though the presented 

harmonic decomposition method is implemented with the FE 

method, the force harmonic decomposition method can be 

applied also in other methods like analytical or semi-analytical 

models, which can provide the magnetic flux density 

distribution in the airgap of the machine.       

 In the time-stepping FE method, the model is supplied 

with current sources during the force ripple analysis so that we 

can provide a sinusoidal current distribution in both windings. 

However, to be able to validate the FE model with 

experiments, the time-stepping FE model is voltage-supplied 

as the prototype is also supplied with sinusoidal voltages for 

both windings. From the computational point of view, it is 

necessary to couple the circuit equation of main and additional 

windings in the field equation. In this case, in the FE analysis, 

the phase currents are solved in the system of equations 

together with the vector potential given by: 
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where a represents the nodal values of the magnetic vector 

potential, S(a,αr) is the magnetic stiffness matrix which 

depends on the solution and rotor angle αr. The matrices D 

map the x- and y-components of the main winding (m) and 

additional winding (a) current space vectors i into sources of 

the magnetostatic FE problem. The superscript T stands for 

matrix transposing operator. vm and va are the terminal 

voltages of the main and additional windings, T is the 

damping matrix for the eddy currents in the conducting 

regions, K, and Q are related to the connection of the stator 

winding, Rm and Ra are the resistance of the main and 

additional winding respectively, and l is the length of the 

machine. Only two independent current variables are solved in 

the star connection for the main and additional windings 

separately. To verify the proposed force decomposition model, 

the already established Coulomb’s method is used which is 

based on the virtual work principle [11] as, 
eag
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where Neag is the total number of elements in the integration 

band and G is the Jacobian matrix which performs the 

isoparametric mapping between the local coordinates and the 

global coordinates of each element in the integration band.   

 

 
TABLE II 

MACHINE DESIGN PARAMETERS 

Parameters Values 

Number of poles 4 

Number of stator slots 36 

Number of phases   3 

Length of the motor 195 mm 
Outer diameter of the stator core 235 mm 

Inner diameter of the stator core 145 mm 

Outer diameter of the rotor core 143 mm 
Shaft diameter 60 mm 

  

Frequency of supply 50 Hz 

Ratio of area of main and  
additional winding in a slot  

4:1 

Number of conductors in one slot 

for main winding 

16 

Number of conductors in one slot 

for additional winding 

14 

Rated power 4.7 kW 
Rated levitation force   860 N 

x 

y 
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IV. VALIDATION 

A. Numerical Validation 

The simulated radial flux density spectrum at rated torque 

without and with levitation is presented in Fig. 4, excluding 

the 50 Hz temporal frequency. The flux density spectrum only 

at 50 Hz temporal frequency is plotted separately in Fig. 5. 

The two figures are provided separately for the clarity of 

representation. It can be seen from Fig. 4 and Fig. 5, that 

additional harmonic components arise in the magnetic flux 

density due to the levitation. The slot harmonic components 

that are visible in the 35th and 37th harmonics have a 

significant component at higher temporal frequencies like 925 

Hz and 975 Hz as presented in Fig. 4. The 5th spatial harmonic 

has a significant component (0.1 T) at 150 Hz, which is shown 

with an arrow separately. 

  

 
   (a) 

 

 
(b) 

 
Fig. 4.  Harmonic spectrum of radial flux density at rated torque (a) without 

levitation and (b) with levitation.   

 

The 38th spatial harmonic is more visible in the 50 Hz 

spectrum as shown in Fig. 5. It is worth mentioning that the 

37th and 38th harmonics are the “slot number + pole pair” 

harmonics which are produced mainly by the interaction of the 

slot with the additional winding and the main winding 

respectively.  

The force computed with both the presented harmonic 

method and the Coulomb method at the rated operation point 

is presented in Fig. 6. It can be seen from Fig. 6, that the 

proposed harmonic method and the Coulomb’s method 

provide similar results on force computation. The error norm 

between the two methods is just 0.0083. Using the SHI as 

defined in (11), the 2D harmonic spectrum for the 

electromagnetic forces in the disturbance direction (x-axis) 

and in the levitation direction (y-axis) is presented in Fig. 7. 

Equation (8) and (9) are used to compute each force harmonic 

indexed with a specific SHI. Next, each SHI indexed force 

harmonic is traced after the time-stepping simulation to get its 

specific temporal spectrum. It should be understood that the 

force as a global quantity does not have a spatial distribution. 

However, the definition of the SHI makes it possible to plot 

this 2D spectrum, which in turn makes it possible to trace back 

to the flux density spectrum. Fig. 6 and Fig. 7 together shows 

that the SHI has uniquely mapped the force harmonics as all 

the individual force harmonic from Fig. 7 summed up to the 

correct force expression in the time domain as presented in 

Fig. 6. 

 

 
 

Fig. 5.  Spatial harmonic spectrum of radial flux density at rated torque 

without and with levitation at 50 Hz temporal harmonic. 
 

 
 

Fig. 6.  Comparison of the electromagnetic forces at rated torque and 

levitation computed with the harmonic method and the coulomb method. 
 

 

 
                                                   (a) 
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                                                     (b) 

 
Fig. 7.  Simulated 2D spectral analysis of the electromagnetic forces in (a) x 

direction and (b) y direction. Different colours are used to show the different 

amplitudes of force harmonics distinctively. The spatial harmonics 
combination for the corresponding SHI (1,2,3,4) of yellow, green and brown 

bars can be found in Table I. 

 

It can be seen from Fig. 7, that the influence of the lower 

order harmonics in the flux density spectrum is very 

important, as they generate significant harmonics, nearly 5% 

ripple, in the temporal spectrum. The presented model can 

identify the flux density harmonics responsible for the lower 

order temporal harmonics in the force spectrum. These low 

order force harmonics are the main reason for the rotor 

displacement and its misalignment with the stator centre at the 

levitated state. It is worth mentioning that the forces at 0 Hz 

temporal frequency represent the net DC forces in each 

direction. 
 

B. Experimental Validation 

 

1) Description of Setup 

A prototype of the BSynRM is constructed in the laboratory 

and equipped with additional sensors. The position sensors are 

placed horizontally and vertically near the shaft from both 

ends. Moreover, each slot is equipped with a search coil with 5 

turns. The stator and the rotor of the prototype can be seen in 

Fig. 8. For practical reasons, the shaft is supported by 

additional active magnetic bearings (AMB), which are also 

used to measure the forces as explained below. 

 

    
               (a)  (b)                      (c) 

 

Fig. 8. (a) Stator, (b) rotor and (c) prototype machine with the 2 AMBs. 

 

The main idea of the measurement setup is to avoid any 

external influence on the machine system that can incur 

additional harmonics. Hence, no frequency converter has been 

used to levitate the machine or to start the synchronous 

reluctance machine. The measurement setup is built keeping in 

focus that the main and additional winding need to be supplied 

with sinusoidal voltage and similar frequency. To achieve this 

objective, sinusoidal voltages are fed to both windings by a 

synchronous generator whose speed can be controlled. The 

BSynRM is first manually synchronized at low speed using a 

small motor and then the frequency is increased in a ramp 

until the rated speed is reached. The main winding is directly 

connected to a synchronous generator and the voltage is varied 

through the synchronous generator. For the additional 

winding, a transformer is used to step down the voltage from 

the synchronous generator, and the current is further varied 

using a resistor. In this way, the same frequency is fed to both 

windings. A schematic representation of the supply to the 

machine is provided in Fig. 9.  

 

2) Measurement with Search Coil 

It can be well understood that the mass inertia of the rotor 

filters much of the effect of rotor displacements which is 

caused by the AMB control. It is worth remembering, that the 

displacement of the rotor induces voltage in the winding. 

Therefore, if the induced voltage is measured using a search 

coil, the effect of AMB control can be reduced. This is a 

primary motivation of using the search coil for the force 

measurement. 

 

 
 

Fig. 9. Schematic representation of the supply to the machine. 

 

The voltages of the search coils, which are put in each slot 

of the machine are measured with respect to time. The data of 

the 36 input channels from the 36 slots are captured by the 

OPAL-RT real-time simulator using 3 analog input ports each 

having the capacity for receiving 16 input signals. A 

customized FPGA and CPU model has been built in the 

OPAL-RT system to access the 36 signals. The voltage 

waveforms from the slots are time-integrated to calculate the 

flux in the search coils. After approximating the fringing flux 

that does not enter in the airgap from the slot, the spatial 

distribution of the flux density can be approximated in the 

airgap. In this case, 15 % leakage has been considered 

between the slots and the airgap. This leakage is estimated 

based on the FE simulations. The airgap flux density achieved 

in the aforementioned way is called a measured flux density in 

this section. The measured and simulated (FE) airgap flux 

density spatial harmonics, at a given time instant, when the 

additional winding terminal voltage is kept at 57 V and main 

winding voltage of 225 V are shown in Fig. 10. In Fig. 10, the  

odd harmonics result from the additional winding, which is a 1 

pole pair winding, whereas, all the even harmonics result from 

the 2 pole pair main winding and 1 pole pair additional 

winding. So, all the even harmonics have contributions from 

both the main and additional winding.  
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The electromagnetic force is then computed from the flux 

density in the tooth using the Maxwell stress tensor [12]. All 

the flux density has been considered as a radial component, 

and the tangential component of the flux density is neglected 

as the machine is operated at no-load condition. The total 

electromagnetic force is obtained as 

( )


 =

= 
2

a r,
0 1

Q

i i
i

rl
k B

Q
F u                         (15)  

where ui is the radial unit direction vector of tooth i, ka is the 

coefficient which implies how much flux is entering into the 

airgap from the teeth, i.e. it describes the flux leakage, Q is the 

number of total slots and Br is the radial flux density as 

measured by the search coil through time-integration of the 

induced voltage. The same measurement and calculation 

procedure have been repeated for different additional winding 

voltages, while the main winding of the motor is supplied with 

the 225 V. The computed and measured forces are presented 

in Fig. 11 [14]. It is worth mentioning that the force 

measurements have been conducted deliberately at no-load 

condition. The shaft is avoided being coupled to another 

machine which has bearing as it can lead to erroneous force 

estimation. Moreover, at loaded condition, the tangential 

component of the flux density cannot be neglected, however, 

its impact on the force computation is negligible. At rated 

operational point, the force computation using (15) can lead to 

an error of 3.83% for neglecting the Btan component.  

 

 
 

Fig. 10. Simulated and measured airgap flux density harmonics of the 

prototype machine at no load with additional winding energised.  
 

 

 

 
Fig. 11.  Comparison of the forces measured with the search coil method and 

the simulated ones under different additional winding voltages [14]. 

 It can be observed that the forces feature almost linear 

dependency on the additional winding voltage, especially the 

y-axis force. Since the machine is operated without any 

control, the force has increased in both directions of the 

machine. The measured and simulated forces match quite 

closely, however, between 0 and 20 V additional winding 

voltage there is a difference in the simulated and measured 

forces. This difference is attributed to the inherent eccentricity 

of the rotor. As the rotor position calibration has some 

inaccuracy, it leads to a slight eccentricity. The Fourier 

analysis of the simulated and measured force is then 

performed for the operation point corresponding to the 

additional winding terminal voltage of 57 V with the main 

winding voltage still at 225 V. These results are presented in 

Fig. 12, without the DC component of the forces for clarity of 

representation. The Fourier analysis of the measured forces 

shows high noises, especially in the lower temporal frequency 

region. The existence of the AMB induces additional 

harmonic in the search coil due to two reasons- 1. 

Electromagnetic coupling of the AMB and the motor, 2. The 

rotor is not perfectly centred but has a small static eccentricity 

due to the rotor calibration error which is quite common in this 

kind of measurement setup and very hard to overcome. These 

issues explain, to a large extent, the differences between the 

modelling and simulation. However, the overall force 

measurement including harmonics has been found more 

accurate and less noisy using search coil than measuring 

directly from the AMB. Moreover, the slot harmonics in the 

measured forces at 900 Hz can be noticed clearly in Fig 12. 

 

 
 

  (a) 

 
     
        (b) 

 

Fig. 12.  Fourier analysis of the resultant y-axis force (without the dc 

component) for (a) FE computation and (b) Prototype measurement with the 
search coil method.      
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V. CONCLUSION 

The primary motivation to express the electromagnetic 

forces as a function of spatial harmonics is to understand 

which spatial harmonics are helpful to produce the DC forces 

and which are the one that needs to be reduced. The presented 

methods can be used to analyze any bearingless machine as 

the model only requires the airgap flux density distribution in 

the airgap to compute the force harmonics. The proposed 

method gives a comprehensive structure to understand which 

specific pair of the flux density spatial harmonics produce 

force at a specific temporal frequency. To achieve this, the 

temporal harmonics are computed using the force 

decomposition method to segregate the force temporal 

harmonics from any given pair of the flux density spatial 

harmonics. To represent this, the concept of SHI is introduced. 

The advantage of the method is the easiness of understanding 

that how a pair of spatial harmonics behaves in the temporal 

spectrum. There are numerous literatures on torque ripple 

reduction by current harmonic injection which basically can 

be estimated by the behaviour of the spatial harmonics. A 

similar approach can be used if the force harmonic is needed 

to be compensated in real-time. Though in this paper the 

analysis is done using FE method, the presented force 

decomposition model can be also used for analytical models 

which makes it suitable in dynamic simulations. In addition, 

the torque harmonic is reduced by minimising certain spatial 

harmonic components by manipulating the airgap flux density 

distribution in the airgap with correct design choices. 

Similarly, the presented force harmonic model leverages the 

capability for the designer to choose the correct spatial flux 

distribution in the airgap to maximise the design objective.  

It can be understood that some SHIs have dominant 

temporal footprint at 0 Hz, which means those spatial 

harmonics will produce mainly DC levitation force. Again, 

there are also some SHI, which have dominant temporal 

footprint in non-zero frequencies. This means that there are 

certain spatial harmonics, which will mainly produce force 

ripples. Therefore, this detail spatial harmonic information can 

be extracted from an initial design of a BSynRM with a time-

stepping simulation and design objective can be chosen 

accordingly.  

In this paper, we presented a force model and its usage in a 

novel way to compute the electromagnetic forces. The model 

is applied for the analysis of a BSynRM. The detailed analysis 

of the flux density harmonics provides an elaborate 

understanding on which harmonic component of the flux 

density is responsible for which force harmonic of the 

BSynRM. A novel harmonic indexing (SHI) method is 

presented to identify the spatial flux density harmonics 

responsible for different time harmonics of the forces.  
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