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Abstract—Highly directional millimeter-wave (mmW) connec-
tivity – especially in industry-grade scenarios with complex and
unpredictable device mobility – requires a certain degree of
structural redundancy in the network, which can be provided
by utilizing multi-connectivity mechanisms. To lower the coordi-
nation complexity and overhead of tracking multiple directional
beams, mmW networks can retrieve and leverage timely position-
ing information. In this paper, we develop a holistic framework
for the co-design of networking and positioning in industrial
5G mmW deployments with multi-connectivity capabilities. In
particular, we propose a flexible two-stage positioning solution –
mindful of information uncertainty – that relies upon the 5G NR
system design and can be seamlessly integrated into the mmW
cellular infrastructure with reasonable overheads. We reproduce
a typical 5G mmW network deployment featuring dissimilar
device mobility patterns and assess the performance of the pro-
posed architecture. In particular, we evaluate the precision of our
positioning and base station orientation estimation methods as
well as analyze the impact of the proposed scheme on the system-
level performance. Our numerical results demonstrate that the
proposed solution yields highly accurate position estimates and
significantly improves the average network spectral efficiency.

Index Terms—5G New Radio, multi-connectivity, positioning
and tracking, mobility, directionality, industrial verticals, mmW.

I. INTRODUCTION

After the first full set of technical specifications for stan-
dalone 5G technology was frozen in September 2018, which
is known as Release 15, 3rd Generation Partnership Project
(3GPP) continued its work on the enhanced architecture options,
such as 5G-5G dual-connectivity (see TS 37.340). As this
initial 5G standard offers a stable foundation for early 5G
deployments, the work is underway to facilitate 5G-and-beyond
use cases for a diversity of vertical domains [1]. This includes
support for cyber-physical control applications (see TS 22.104)
and maritime services (see TS 22.119) over 3GPP systems.

Both maritime and cyber-physical communications are
examples of Industrial Internet scenarios [2] and, as such, have
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many specific requirements, which are very different from
those in other verticals or for the legacy systems. These are
primarily along the lines of high reliability and low end-to-end
latency demands when sharing real-time information between
connected machines at various steps of a production cycle [3]
or in other industrial facilities. In this context, the reliance of
5G new radio (NR) operation on a more abundant millimeter
wave (mmW) spectrum allows it to potentially outperform even
the best of today’s real-time Ethernet networks [4].

The prospective industrial mmW deployments need to tame
the unique features of radio connectivity in this band: primarily,
vulnerability to link blockage by potentially moving obstacles
and the need for extreme directionality to combat severe
propagation losses. Fortunately, breakthroughs were made in the
understanding of highly directional and blockage-aware mmW
connectivity at both physical (PHY) [5]–[7] and medium access
control (MAC) [8]–[11] layers. It was made clear that robust
short-range networking requires certain types of structural
redundancy, e.g., multi-connectivity [12], which is a form of
macrodiversity that extends the conventional notion of dual-
connectivity by enabling a device to maintain simultaneous
links with two or more mmW base stations (BSs) [13].

The utilization of multi-connectivity mechanisms that fa-
cilitate the efficient operation of highly-directional 5G mmW
networks may lead to substantial signaling overheads when
tracking multiple directional beams. However, in the light
of heavy reliance of mmW communications on the line-
of-sight (LoS) links, reusing the network radio resources
could ensure higher levels of positioning accuracy [14]–[18]
without incurring a significant overhead, thus, simplifying
the coordination complexity. Fortunately, flexible 5G NR
numerology creates a room for incorporating network-based
positioning functionality, and 3GPP has already summarized
some of the envisioned use cases and their requirements for
Release 16 (see TR 22.872).

Location-based beamforming seamlessly incorporated into
the existing architecture will considerably reduce the levels
of overhead and latency, thus, enabling more efficient multi-
connectivity operation and boosting the network performance
in general. Alongside mmW beamforming procedures, accurate
positioning information might also be utilized by the higher
network layers to facilitate more efficient load-balancing, radio
resource management, and handover procedures [19]–[21].

The literature coverage of dynamic positioning for 5G mmW
cellular networks remains limited, with substantial efforts in
the vehicular context [15], [17] and further contributions on
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joint user positioning and orientation estimation [22]. Recent
fundamental positioning-related results in [23], [24], also
applicable to mmW networks, target the localization accuracy
in the cases where either the network is optimized for the
positioning applications or the positioning algorithm is tailored
to the network geometry. This emphasizes the need for a holistic
framework that facilitates the co-design of reliable networking
and accurate positioning in industrial mmW deployments with
multi-connectivity capabilities, which we aim to develop in
this paper.

In particular, the contributions of this work are as follows:
• We construct a scalable two-stage architecture for device

positioning that can be integrated into an industrial mmW
network deployment with multi-connectivity capabilities.

• We propose a novel positioning solution for tracking of
the device locations and estimation of the orientation
uncertainty at the BSs using downlink (DL) reference sig-
nal received power (RSRP) measurements. The proposed
method extends our approach in [25] by incorporating
power-based direction of departure (DoD) information,
which enables joint 3D orientation estimation and posi-
tioning.

• Relying on a representative evaluation scenario with
a typical 5G cellular deployment (e.g., an automated
maritime container terminal depicted in Fig. 1 [26]–[28]),
we demonstrate that our proposed framework is capable
of achieving high accuracy of positioning and orientation
estimation under complex device mobility patterns.

• We thoroughly evaluate the impact of an uncompensated
BS orientation uncertainty and positioning inaccuracy on
the network performance. The accompanying analysis
demonstrates that while our system outperforms the
conventional beamforming methods in terms of the average
network spectral efficiency, incorporating the orientation
uncertainty information results in further performance
improvements.

The rest of this article is organized as follows. Section II in-
troduces the main system modeling assumptions. The proposed
two-stage positioning solution is detailed in Section III, while
Section IV outlines the evaluation scenario. Finally, Section V
provides the results of our numerical study, and Section VI
concludes the paper. Selected further details of the tracking
solution are provided in the Appendix.

II. SYSTEM MODEL AND ASSUMPTIONS

In this section, we outline the system model and core
assumptions of the proposed framework with respect to the
deployment scenario. We further introduce the employed BS
orientation uncertainty model and describe the beam-based
RSRP measurement estimation procedure. The main system
parameters are summarized in Table I.

A. Network Deployment and Antenna Properties

We study a 5G mmW network that covers a rectangular
area of interest and comprises L stationary BSs, the exact 3D
locations of which are known to the system. Within the target
area, we consider K dynamic users (termed user equipments,

UE mobility
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Fig. 1: Example industrial mmW deployment in an automated maritime
container terminal.

UEs) with multi-connectivity capabilities, which implies that
for each UE, there exist LoS links to several BSs at the same
time. The UE motion follows certain mobility patterns (see
Section IV-B for details); their initial locations are random and
are distributed uniformly within the area.

Both BSs and UEs are assumed to be equipped with highly
directional mmW antenna arrays having MBS and MUE

beams, respectively. The positioning algorithm does not impose
any further constraints on the BS and UE arrays; however,
to ensure the existence of the LoS channel to several BS
simultaneously, the UE array should have a relatively wide
coverage. In particular, we assume that UEs rely on 2D
beamforming and, thus, control their antenna radiation patterns
in the azimuth plane covering 360°. The BSs can steer the
antenna beams in both azimuth and elevation planes. The
directivity gain of a single UE/BS antenna is denoted as
GUE/BS(∆ϕ,∆ϑ), where ∆ϕ and ∆ϑ are the azimuth and
the co-elevation angles between the boresight of the antenna
array and the direction at which the power is measured, further
referred to as antenna misalignment.

The information on the BS orientations is available with a
certain level of accuracy. In our model, we explicitly consider
non-zero bearing and downtilt angle differences between the
actual orientation of the BS antenna array and its orientation as
assumed by the network. This 3D BS orientation uncertainty
can be described by the azimuth and elevation uncertainty
angles denoted as φ and θ, respectively. The BS orientation
uncertainty is assumed to be relatively small (i.e., |θ|, |φ| ≤ 5°)
and time-invariant during the considered time frame. The
uncompensated orientation information used in location-based
beamforming should be estimated by the mmW network
accurately. Otherwise, it may lead to significant positioning
errors and cause severe channel gain degradation in the case
of highly directional transmissions.

B. Transmission and Reception of Reference Signals

We assume that each BS periodically transmits beamformed
orthogonal frequency-division multiplexing (OFDM)-based
reference signals (RSs) regardless of the connection state of
the UEs within the service area. In a 5G NR system, RSs can
be represented by, for instance, a set of synchronization signal
(SS)-blocks (see TS 38.211). The time interval between the
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TABLE I: SUMMARY OF MAIN SYSTEM PARAMETERS AND QUANTITIES

Notation Description
L,K Number of BSs and UEs

MBS / MUE Number of BS / UE beams
ϑ, ϕ Co-elevation and azimuth angles
θ, φ BS orientation uncertainty (co-elevation, azimuth)

GUE / GBS Gain of UE / BS antenna
τ Time interval between two consecutive RS emissions

Mf Number of subcarriers
bUE / bBS Complex-valued UE / BS antenna pattern

n Measurement noise
σ̃2 Measurement noise variance

Ptx / Prx Transmit / receive power
y OFDM RS observation at the UE
S Transmitted OFDM symbol
bf Channel frequency response
γ Channel path weight
β BRSRP measurement

two consecutive transmissions of RS used for positioning is
denoted as τ . Note that τ can be equal to one or more DL RS
emission periods for a specific beam. For example, in the case
of SSs, τ corresponds to the SS burst set period.

The RSs are then received by the UE as per the receiver
(Rx) beam sweeping process, which is illustrated in Fig. 2.
The BS beams are assumed to be orthogonal, thus ensuring
that the UE is able to distinguish different BS beams. This
assumption typically holds in mmW systems, where either the
BS beams are orthogonal in terms of the reference symbol
sequences, or beamformed RSs are transmitted for different
beams in a time-multiplexed manner.

For the LoS propagation, the multicarrier DL RS observation
yi,j ∈ CMf at the UE is given by

yi,j = Sbfb
i
UE(ϑa, ϕa)bjBS(ϑd, ϕd)γi,j + ni,j , (1)

where the subscripts i and j refer to the ith UE Rx beam and
the jth BS transmitter (Tx) beam, respectively. Furthermore,
S ∈ CMf×Mf is a diagonal matrix representing the transmit-
ted frequency-domain reference symbols, while bf ∈ CMf

is the frequency response of the channel and Tx-Rx radio
frequency chains, and Mf denotes the number of subcarriers.
The complex-valued beam pattern of the jth BS beam is
denoted as bjBS(ϑd, ϕd) ∈ C, while biUE(ϑa, ϕa) ∈ C addresses
the corresponding beam pattern of the ith UE beam.

Here, the departure co-elevation and azimuth angles at the
BS are referred to as (ϑd, ϕd), while (ϑa, ϕa) stands for the
corresponding arrival co-elevation and azimuth angles at the
UE side. Finally, the complex-valued path weight between
the considered beam pair is denoted as γi,j ∈ C, and the
measurement noise is accounted for as ni,j . We assume that
the latter is a complex circular Gaussian random variable
distributed with the zero mean: ni,j ∼ NC(0, σ̃2I) ∈ CMf ,
and it is uncorrelated and independent of the beam pair, i.e.,
σ̃2
i,j = σ̃2,∀i, j, where σ̃ ∈ R is unknown.
Further, we define the beam reference signal received power

(BRSRP) measurement βi,j for the ith UE Rx beam and the
jth BS Tx beam. In particular, according to 3GPP TS 38.215,
βi,j ∈ R – as measured and quantized by the UE – relates to

the multicarrier observation given in (1) as follows:

βi,j =
1

Mf

Mf∑
k=1

|[yi,j ]k|2, (2)

where i = 1, . . . ,MUE, j = 1, . . . ,MBS, and MUE/BS

denotes the number of beams at the UE/BS.
In our assumptions, reporting the BRSRP measurements back

to the BS does not require any specific feedback channel. The
only condition is that the DL RS transmission and reception
as well as the feedback transmission and reception occur
within the time interval of τ . Since the proposed positioning
algorithm is essentially angle-based, it does not impose further
restrictions on the time synchronization within the network
or between UEs and BSs other than those necessary for the
communication purposes. Typically, synchronization within
the cyclic prefix (CP) length is required, which is at the
microsecond level, unlike the nanosecond-level synchronization
needed for the time-based positioning [29], [30]. In addition,
our approach does not demand any range measurements. We
also emphasize that the proposed solution exploits the existing
spatial multiplexing features and does not rely upon the actual
structure of the utilized RSs. Therefore, it is assumed that any
periodic beamformed DL RS may be employed.

III. POSITIONING ARCHITECTURE AND METHOD

In this section, we introduce a novel solution that offers not
only accurate 3D UE positioning but also provides estimation
and tracking of possible BS orientation uncertainties. The
uncompensated inaccuracy of orientation information may lead
to significant positioning errors and cause severe channel gain
degradation in highly directional systems with location-based
beamforming. Hence, the BS orientation uncertainty should
also be estimated accurately by the network. In what follows,
we outline the two-stage positioning architecture and detail the
proposed estimation algorithms. The general structure of our
positioning scheme is summarized in Algorithm 1, while the
main algorithmic notations are summarized in Table II.

A. Two-Stage Positioning Architecture

The proposed positioning procedure is based upon the
BRSRP measurements converted into the DoD angle estimates.
The obtained angle estimates are then utilized in the subsequent
joint UE positioning and BS orientation uncertainty estimation.
Our proposed approach is naturally decomposed into two stages,
which are schematically illustrated in Fig. 2 and described in
Algorithm 1. Particularly, BSs transmit beamformed RSs that
are received by all of the connected UEs directionally. At the
first stage of the proposed positioning procedure, the BRSRPs
measured at the UEs are reported back to the corresponding BS,
where the BRSRP measurements are then converted into the
DoD angle estimates using extended Kalman filter (EKF)-based
solutions.

At the second stage, these DoD angle estimates from all
of the BSs are collected by the network and fused into the
UE location and the BS orientation uncertainty estimates
by employing a novel EKF-based approach. This two-stage
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Algorithm 1 Two-stage EKF for joint 3D UE positioning and
BS orientation uncertainty estimation

for every time-instant n = 0, 1, 2, . . . , N

for every available BS in the network
step 1: The BS transmits beamformed DL reference

signals using all Tx beams.
step 2: Each UE measures the BRSRPs for all Tx-Rx

beam pairs with the BSs.
step 3: Each UE selects the Rx beam corresponding

to the largest sum of BRSRP measurements
over all Tx beams.

step 4: According to the selected Rx beam, each UE
reports MBS BRSRP measurements and Tx
beams in a feedback channel.

step 5: Based on the received BRSRP measurements,
the BS estimates and tracks the DoD of each
UE using the EKF. After that, the obtained
DoD estimates of all UEs are delivered to the
central network control unit.

end for
step 6: 3D UE positions and BS orientation uncertainties

are estimated jointly and tracked in the network
by collecting the DoD estimates from all BSs in
the second EKF-based solution.

end for

architecture allows the network to distribute the computations
associated with each stage, thus, decreasing the computational
burden of the users. Another advantage of the proposed two-
stage architecture is a possibility to use the DoD angle estimates
derived at the first stage of the EKF, directly for the BS
beamforming in DL. Alongside the direct DL beamforming, the
UE positioning information obtained at the second stage can be
further utilized by the enhanced location-based beamforming
on the newly established connection, e.g., in the case of a
reconnection after a LoS-blockage or in a handover procedure.

We employ the EKFs in both first – the DoD angle estima-
tion – and second – the UE positioning and BS orientation
estimation – phases. The EKF, as a sequential estimator, utilizes
the information on the state evolution as well as the previous
measurements, by remaining computationally more attractive
than the commonly used numerical solutions, such as particle
filters. Due to the use of such prior information, sequential
estimation methods allow for assessing and tracking larger state
vectors even in the cases of smaller numbers of observations.

We adopt and devise the so-called information form of the
EKF, which is less computationally complex as compared to
the conventional Kalman-gain form, especially when the state
vector has smaller dimensions than the observation vector. For
example, in the case of the available beam-based measurements
for MBS = 64 beams and the state vector of two variables
(ϑ, ϕ) in the first-stage EKF, only a 2 × 2 matrix needs to
be inverted in the information form of the EKF. For the
corresponding Kalman-gain version of the EKF, inversion of a
64× 64 matrix is required. In the following, we first address

DoD tracking 

at the BS

5G
gN

king 

BS

Mobile
UE 1

3D orientation uncertain

Joint UE positioning and 

BS orientation estimation 

Mobile
UE 2

NR
B 2

BRSR

Fig. 2: Illustration of proposed architecture. Each BS (with a small orientation
misalignment) directionally transmits DL-RSs. Based on received DL-RSs,
each active UE first measures BRSRPs for each BS and then delivers quantized
BRSRPs to the corresponding BSs in a feedback channel. The BRSRP
measurements are used for estimating and tracking the DoDs at the BSs
to facilitate joint positioning, orientation uncertainty estimation, and user
tracking at the central network node.

the first-stage DoD estimation and tracking EKFs that utilize
BRSRP measurements at each BS. Then, we formulate the
proposed second-stage EKF, which subsequently fuses the
DoD estimates from the first-stage EKFs into the joint 3D UE
location and BS orientation uncertainty estimates.

B. Stage 1: Proposed EKF for RS-Based DoD Tracking

Let us denote the vector of BRSRP measurements at a given
time instant n as β[n] = [βi∗,1[n], . . . , βi∗,MBS

[n]]T ∈ RMBS ,
where i∗ = arg maxi

∑MBS

j=1 βi,j [n] stands for the index of the
Rx beam with the largest sum of the measured BRSRP values
over all of the BS beams. Note that the particular method of
selecting the receiving UE beam index i∗ is not essential for
the operation of our algorithm.

More specifically, the measurement vector β[n] is determined
in the process of beam search and is reported back to the BS
through the appropriate feedback procedures. In addition, let
us denote the state vector of the DoD estimation and tracking
EKF at the time instant n as sDoD[n] ∈ R4. In particular,
sDoD[n] = [ϑ[n], ϕ[n], ϑ̇[n], ϕ̇[n]]T, where ϑ[n] ∈ [0, π] and
ϕ[n] ∈ [0, 2π) are the co-elevation and azimuth departure
angles from the BS to the UE, while ϑ̇[n] and ϕ̇[n] are the
corresponding rates of change.

We assume that the state of the considered system evolves
according to a continuous white-noise acceleration (CWNA)
model; hence, the prediction step of the EKF is given in a
linear form as in [31]:

s−DoD[n] = FDoDs
+
DoD[n− 1]

C−DoD[n] = FDoDC
+
DoD[n− 1]F T

DoD +QDoD,
(3)

where FDoD ∈ R4×4 is the state-transition matrix, QDoD ∈
R4×4 is the process noise covariance matrix, and C−DoD ∈
R4×4 is the a priori covariance matrix of the state. After the
prediction step of the EKF, the available BRSRP measurements
are incorporated into the estimation process as part of the update
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TABLE II: SUMMARY OF MAIN EKF NOTATIONS

Notation Description
p 3D position of the UE
ẋ Rate of change of x

∆x Difference / distance in x
s−
DoD/pos

State prediction, DoD-tracking / positioning EKF

s+
DoD/pos

State update, ——————————"————–
FDoD/pos State-transition matrix, ——————"————–
C−

DoD/pos
Covariance matrix prediction, ———-"————–

C+
DoD/pos

Covariance matrix update, —————"————–
QDoD/pos State-noise covariance matrix, ———-"————–

I Observed Fisher information matrix
q Gradient of log-likelihood function

ϑ̃, ϕ̃ Co-elevation and azimuth DoD angles corrupted by BS
orientation uncertainty

ε Vector of estimated DoD angles
ξ Mean of ε

step of the EKF [31]

C+
DoD[n] =

(
C−DoD[n]−1 + I(s−DoD[n])

)−1
∆sDoD[n] = C+

DoD[n] q(s−DoD[n])

s+DoD[n] = s−DoD[n] + ∆sDoD[n],

(4)

where I(s−[n]) ∈ R4×4 denotes the observed Fisher infor-
mation matrix (FIM) and q(s−DoD[n]) ∈ R4 is the gradient
of the log-likelihood function of the state given the BRSRP
measurements β[n]. Further details of the first-stage EKF
derivations are provided in the Appendix for the reader’s
convenience. Importantly, to estimate and track the DoD angles,
the DoD-EKF relies upon the directions of the Tx beams.

C. Stage 2: Proposed EKF for Joint UE Positioning and BS
Orientation Uncertainty Tracking

In the proposed second-stage EKF, the azimuth and co-
elevation DoD angle estimates from the first-stage DoD-EKFs
are fused into the 3D location estimates of the UEs and
the orientation uncertainty estimates of the available BSs
in a sequential manner. Let us denote the 3D location of
the kth UE in the global Cartesian coordinate system as
pk = [xk, yk, zk]T ∈ R3, where k = 1, . . . ,K, K is the
number of active UEs. The actual DoD angles of the LoS path
between the kth UE and the `th BS at a time instant n are
(ϑ`k[n], ϕ`k[n]), where ` = 1, . . . , L.

We also introduce a pair of variables (ϑ̃`k[n], ϕ̃`k[n]), which
are network-assumed DoD angles distorted by the orientation
uncertainties, i.e.,

ϑ̃`k[n] = ϑ`k[n] + θ`,

ϕ̃`k[n] = ϕ`k[n] + φ` mod 2π

k = 1, . . . ,K, ` = 1, . . . , L,

(5)

where θ` ∈ [0, π] and φ` ∈ [0, 2π) stand for the orientation
uncertainty of the `th BSs in the elevation and the azimuth
directions, respectively.

Let us consider vectors ϑ̃[n] ∈ RKL and ϕ̃[n] ∈ RKL that
contain distorted co-elevation and azimuth angles between K
UEs and L BSs as given in (5)

ϑ̃[n] = [ϑ̃11[n], . . . , ϑ̃L1 [n], ϑ̃12[n], . . . , ϑ̃LK [n]]T

ϕ̃[n] = [ϕ̃1
1[n], . . . , ϕ̃L1 [n], ϕ̃1

2[n], . . . , ϕ̃LK [n]]T.
(6)

The corresponding DoD estimates obtained from the first-
stage DoD-EKFs are denoted as ϑ̂[n] ∈ RKL and ϕ̂[n] ∈ RKL
for the co-elevation and the azimuth directions, respectively,
and [

ϑ̂[n]
ϕ̂[n]

]
∼ N

([
ϑ̃[n]
ϕ̃[n]

]
,C[n]

)
, (7)

where ϑ̃[n] and ϕ̃[n] are the DoD angles affected by the BS
orientation uncertainties (6).

Finally, the covariance matrix for the DoD estimates
CDoD[n] ∈ R2KL×2KL is given by

CDoD[n] = blkdiag
{
C1

1 [n], . . . ,CL
1 [n],C1

2 [n], . . . ,CL
K [n]

}
,

(8)

where blkdiag{·} represents a block-diagonal matrix. In (8),
each C`

k[n] ∈ R2×2 equals to the upper-left (2×2) sub-matrix
of the a posteriori covariance matrix C+

DoD[n] in the DoD-
EKF (see Section III-B). For the sake of simplicity, we assume
that CDoD[n] is independent of ϑ̃[n] and ϕ̃[n].

For the proposed second-stage EKF, we denote the state
vector as spos ∈ R6K+4L:

spos = [pT
1, . . . ,p

T
K ,θ

T,φT]T, (9)

where pk is the 3D location of the kth UE, while θ ∈ RL
and φ ∈ RL are the orientation uncertainties of L BSs in the
elevation and the azimuth domain, respectively.

According to the continuous white-noise velocity (CWNV)
state propagation model, the prediction step of the EKF is
given as

s−pos[n] = Fposs
+
pos[n− 1]

C−pos[n] = FposC
+
pos[n− 1]F T

pos +Qpos,
(10)

where Fpos ∈ R(6K+4L)×(6K+4L) is the linear state-transition
matrix, Cpos ∈ R(6K+4L)×(6K+4L) is the state-covariance
matrix, and Qpos ∈ R(6K+4L)×(6K+4L) is the state-noise
covariance matrix.

We employ CWNV model for the state dynamics of both
the UE location and the BS orientation uncertainties. Hence,
the matrices Fpos and Qpos can be established, e.g., as per
[32, Ch.2]. The update step equations of the second-stage EKF
are given here in a general form:

C+
pos[n] =

(
C−pos[n]−1 + Ipos(s−pos[n])

)−1
∆spos[n] = C+

pos[n] q(s−pos[n])

s+pos[n] = s−pos[n] + ∆spos[n],

(11)

where I(s−pos[n]) ∈ R(6K+4L)×(6K+4L) denotes the observed
FIM, while q(s−pos[n]) ∈ R(6K+4L) represents the gradient of
the log-likelihood function of the UE positions and the BS
orientation uncertainty given the DoD estimates from multiple
BSs.
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To derive the observed FIM I(s−pos[n]) and the gradient of
the log-likelihood function q(s−pos[n]), we denote the estimated
DoDs of L BSs toward K UEs as ε = [ϑ̂T, ϕ̂T]T ∈ R2KL.
From (7), it follows that ε ∼ N (ξ(spos),Cε), where

ξ(spos) =
[
ϑ̃T(spos), ϕ̃

T(spos)
]T

Cε = blkdiag
{
C1

1 , . . . ,C
L
1 ,C

1
2 , . . . ,C

L
K

}
.

(12)

One may rewrite the DoD angles in (5) as a function of
spos as

ϑ̃`k(spos) = arctan 2
(
d2D`k

,∆z`k

)
+ θ`,

ϕ̃`k(spos) = arctan 2
(
∆y`k,∆x

`
k

)
+ φ`,

(13)

where d2D`k
=

√
∆x`k

2
+ ∆y`k

2, while ∆x`k = xUEk − xBS` ,
∆y`k = yUEk−yBS` , and ∆z`k = zUEk−zBS` are the distances
between the kth UE and the `th BS along the axes of the global
coordinate system. The expressions for the gradient of the log-
likelihood function of spos and for the respective observed
FIM follow from [33, Ch.3] as:

[q(spos)]m =

(
∂ξ(spos)

∂[spos]m

)T

C−1ε (ε− ξ(spos)) ,

[I(spos)]m,n ≈
(
∂ξ(spos)

∂[spos]m

)T

C−1ε

∂ξ(spos)

∂[spos]n
.

(14)

IV. EVALUATION SCENARIO AND SETTINGS

In this section, we outline the target industrial application
scenario, which is followed for the subsequent evaluation of
the proposed framework and methods. As a concrete example,
we consider an automated container port deployment setup that
was depicted in Fig. 1.

A. Deployment Scenario and Mobility

In today’s world of highly intensive trade and shipping
services, an automated maritime container terminal, termed
“smart port” or “smart harbor”, is one of the popularly envi-
sioned deployment scenarios for 5G-and-beyond networks [26]–
[28]. For example, 5G port automation was deployed and is
currently being tested in multiple container terminals around
the world [35]–[38]. In terms of the radio channel modeling,
we follow METIS methodology [34] on a Madrid grid, which
we adjust to represent a container terminal (see Fig. 3) with the
stockpiles of metal containers and concrete storage buildings.
The parameters of the deployed mmW system are presented
in Table III.

In our setup, BSs represent 5G NR gNBs, and UEs
correspond to automated guided vehicles (AGVs), which are
semi-autonomous container-hauling vehicles. The AGVs are
expected to function autonomously with a possibility for a
remote operator to intervene in case of emergency; hence,
their mobility pattern depends on the type of routing. For
example, the simplest fixed-path routing allows AGVs to travel
along pre-programmed trajectories, which can be captured by
a deterministic routing model. More complex routing models

Fig. 3: Illustration of simulation layout for performance evaluation of proposed
two-stage EKF positioning algorithm. In container port area, gray rectangles
represent buildings and colored rectangles depict stocks of metal containers.
Black circles correspond to BS positions, while UE trajectories are plotted as
color curves. Radio channels between UEs and BSs are modeled according to
METIS ray-tracing model [34].

TABLE III: SIMULATION PARAMETERS

Parameter Value
Central frequency 28 GHz∗

Number of subcarriers 800
Subcarrier spacing 120 kHz∗∗

NR slot duration 125 µs∗∗

RS time interval 160 ms∗∗

Bandwidth, W 96 MHz∗∗

Number of UEs, K 3
Number of UE beams, MUE 52

UE array coverage, azimuth, and elevation (360°, 40°)
UE velocity (“fast”/“slow”), v 7 / 3 kmph∗

UE height, hUE 1.5 m∗

Number of BSs, L 4
Number of BS beams, MBS 64

BS orientation uncertainties, θ, φ = δ 0°, 3°, 5°, 10°
∗ Evaluation parameters according to 3GPP TR 38.855
∗∗ Deployment parameters compatible with 3GPP TS 38.211, 38.213

include dynamic routing wherein AGVs move in a mesh layout.
Further, free-range routing, which allows AGVs to use the entire
available area for motion and independent decision-making,
can be implemented in the system of collaborative AGVs with
distributed control methods. More complex routing improves
the performance of the transport system at the expense of
increased signaling and computational loads [39]–[41].

In the subsequent numerical evaluation, we model two
extreme cases of the AGV routing, namely, static and free-
range, by employing three synthetic mobility models (one
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Fig. 4: Random trajectories (blue, red, green) generated by employed mobility models for varying parameters that control movement randomness. Subplots
(a)-(c) correspond to Gauss-Markov mobility model and demonstrate different degrees of randomness by α: from Brownian motion (a) to linear mobility (c).
Subplots (d)-(f) depict smooth mobility trajectories for varying parameter p.

deterministic and two random options) that characterize the
two-dimensional motion of the UEs (UE antenna elevation
hUE is assumed to remain constant):
• Rectilinear movement (static routing) where machines

move along the predetermined straight paths parallel to
one of the axes.

• Gauss-Markov mobility (free-range routing) model [42],
[43] where machine speeds and directions are correlated
in time, while the degree of randomness is controlled
by a single parameter, α ∈ [0, 1]. In particular, α = 0
corresponds to a memoryless process (Brownian motion)
and α = 1 represents strong process memory (that is,
linear motion). Speed vn and distance dn at each discrete
instant of time n can be established as:

vn = αvn−1 + (1− α)v +
√

(1− α2)wvn
dn = αdn−1 + (1− α)d+

√
(1− α2)wdn ,

(15)

where vn−1, dn−1 correspond to the previous time instant,
s, d are constants, and wvn , wdn are independent Gaussian
random variables.

• Discrete smooth mobility (free-range) model that is
constructed by analogy with the smooth mobility from
[44], [45]. In this model, once per a time interval that is
distributed geometrically with the parameter qDSM, the
AGV selects a new random direction. Then, the vehicle
gradually rotates by incrementally changing its direction
towards the target values, thus, avoiding unrealistic sharp
turns.

We constrain all of our mobility trajectories by introducing
bounces from the boundaries of the area of interest. We
also note that the AGVs always face the direction of their
movement and their antennas are tightly coupled with the

solid body motion. Example trajectories for three devices in
an arbitrary area of 100 m×100 m are illustrated in Fig. 4(a-c)
and Fig. 4(d-f) for the Gauss-Markov and the smooth model,
respectively.

B. Positioning and MAC-Layer Abstraction

Our joint framework for the co-design of networking
and positioning comprises of two large blocks, “positioning”
module and “system-level” module. While the former relies
upon more detailed modeling and ray tracing, the latter mimics
the MAC functionality, beamtraining, and data transmission.
It aims at the estimation of the performance metrics, such as
spectral efficiency, which is averaged over time, space, and the
UEs.

To achieve encapsulation between the employed blocks, we
abstract the details of the positioning algorithm by modeling
its output (i.e., the resulting positioning error) as a random
variable. In particular, we assume that the positioning errors
follow a circular multivariate Gaussian distribution with the
standard deviation of σpos and the zero correlation matrix. We
have validated our abstraction by comparing its performance to
the output of the setup with the full information; however,
the details of that comparison are out of the main scope
of this work. We emphasize that σpos may also serve as a
quantitative measure of the positioning method, depending on
the deployment geometry, UE speed, UE/BS antenna arrays,
and the degree of uncertainty δ.

In our evaluation, we assume that each UE-BS pair may
perform beamtraining with a certain periodicity of τBF time
slots. In our setup, the default beamtraining is conducted by
using exhaustive search, i.e., the UEs are required to explore
all of the available transmit and receive antenna configurations,
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while the sought beams are selected based on the best received
signal strength indicator (RSSI). Alternatively, if the positioning
information is available, the beams are selected based on the
estimated UE-BS alignment, while the beamtraining overhead
is substantially reduced.

Therefore, we envision two potential options with respect to
the availability of the positioning and tracking information:

1) Proposed solution: Using the positioning scheme devised
and detailed in this work, the network estimates the UE
location with the accuracy of σpos, compensates for the
BS uncertainty, and then selects the appropriate mmW
beams every τ time units. Importantly, the information on
the direction of the BS antenna arrays may be distorted
by an uncertainty component a′BS = aBS + ∆a, where
aBS is the exact direction that the mmW antenna array
is inclined to, while ∆a is a vector with the spherical
coordinates of (±δ,±δ, 1). Below, we refer to δ as to the
degree of uncertainty.

2) Comparison baseline: The positioning information is
unavailable at the BS; hence, the UE performs a straightfor-
ward brute-force search and updates the beam alignment
information with the periodicity of τBF. In this case,
by assuming no channel reciprocity, we calculate the
beamtraining overhead proportionally to the number of the
available UE and BS beams. The orientation uncertainly
does not affect the results of the beamforming procedure
by design.

The instantaneous data rate may then be obtained by using
the Shannon’s formula ηW log(1 + SNR) = ηW log(1 + Prx

PN
),

where PN is the noise power, η is the share of radio resources
after subtracting the beamtraining overheads (estimated accord-
ing to the 5G NR timings, TTI, and frame structure), and Prx
is the receive power that can be derived as

Prx = PtxL
−1(d)GUE(∆ϕUE,∆ϑUE)GBS(∆ϕBS,∆ϑBS),

(16)

where L(d) =
(
4πd
λ

)2
is the path loss for a LoS-link at

the distance of d meters, while GUE(∆ϕUE,∆ϑUE) and
GBS(∆ϕBS,∆ϑBS) are the antenna gains at the UE and the
BS, given the respective antenna misalignment ∆ϕ.,∆ϑ..

The BS transmit power Ptx is fixed across the entire
network. The gains are calculated based on the information
about the antenna array direction, the selected beams, the
directions to the UE/BS, and the initial/developed beam
misalignment. Importantly, we require that the BSs employ
5G-grade interference coordination mechanisms; hence, one
may assume noise-limited operation.

V. NUMERICAL RESULTS

In this section, we present the results of our numerical
evaluation and analyze the impact of positioning accuracy on
the system-level performance.

A. Positioning Algorithm Evaluation

We begin with evaluating the impact of user mobility
and network parameters on the performance of the proposed
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v = 3 kmph (blue curve) and 7 kmph (red curve), for perfect alignment (solid
line), and for different example values of the orientation uncertainty (dashed
lines). Note that this performance is for the case of uncompensated orientation
uncertainty. Green arrows highlight potential improvement if estimated value
of orientation uncertainty is used to compensate the BS antenna misalignment.

solution. We rely upon the combined results of the steady-
state EKF operation for a large number of trajectories that
follow smooth user mobility. In this subsection, we target two
metrics: (i) the absolute error for the horizontal positioning and
(ii) the standard deviation of the UE positioning error, σpos
(see Section IV-B). We particularly focus on the horizontal
positioning since the UE antenna elevation remains constant
when users move predominantly in the horizontal plane. To this
end, we adjust the second-stage-EKF state noise covariance
matrix by increasing the positioning error margin in the x- and
y-dimensions and decreasing it in the z-dimension. We note
that the proposed positioning algorithm, by its design, is not
limited to horizontal mobility and can be configured according
to another desired use case.

1) Comparison of positioning performance for different mo-
bility models: First, we compare the positioning performance
for the three mobility models as outlined in Section IV-A. In
particular, Fig. 5 illustrates the cumulative distribution functions
(CDFs) of the horizontal positioning accuracy for the three
cases: rectilinear, smooth (p ∈ [0.006 − 0.01]), and Gauss-
Markov (α = 0.3) under zero orientation uncertainty. While
for the Gauss-Markov model the position estimation accuracy
is the lowest, our positioning algorithm slightly improves the
respective performance in the case of the rectilinear model and
achieves the best accuracy in the case of the smooth mobility
trajectories. This result may be attributed to the distribution
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Fig. 7: Empirical values of σpos with v = 3 kmph and 7 kmph under smooth
mobility model for different values of the orientation uncertainty.

of the UE locations along different trajectories as well as to
the changes in UE orientation due to the motion pattern.

The Gauss-Markov mobility model produces trajectories with
rapid changes of the motion direction. Hence, the UE heading
angles alter abruptly, which causes DoD tracking errors and
results in reduced positioning accuracy. We conclude that in
the considered scenario, first- and second-stage EKFs limit
the performance of the positioning algorithm in the cases of
rectilinear and Gauss-Markov mobility. However, for a more
realistic smooth mobility model and the velocity of v = 3 kmph,
our positioning algorithm reaches sub-meter accuracy with 90%
availability.

Interestingly, the rectilinear mobility model is comparable
to the Gauss-Markov case for about 40% of the most accurate
locations. However, for 5% of the least accurate locations,
its behavior remains closer to the smooth mobility model,
which is due to the similarity of the rectilinear and the Gauss-
Markov options for larger values of α. Here, we emphasize
that especially for the values of parameter α ≥ 0.5 (see Fig. 4),
Gauss-Markov trajectories resemble a set of linear trajectories
with abrupt changes of the moving direction at the boundaries.
This somewhat reduces the positioning accuracy for certain
locations but does not introduce significantly higher errors, as
confirmed by the absence of a heavy tail in the CDF.

2) Joint estimation of position and orientation uncertainty:
We continue by studying the dependence of the second-stage
EKF estimation accuracy on the orientation uncertainty for a
smooth UE mobility and the velocities v = 3 kmph (a “slow”
user) and v = 7 kmph (a “fast” user). Orientation uncertainties
in the azimuth and the co-elevation direction are introduced to
all of the BSs, and then estimated and tracked alongside the
position of the UE. For the sake of simplicity, the values of θ
and φ are chosen as (θ, φ) = (±δ,±δ), where δ = 3°, 5°, 10°,
while the sign is set randomly; the baseline value is δ = 0° (no
orientation uncertainty). We remind that the proposed algorithm
performs best for smaller orientation uncertainties of δ ≤ 5°.
However, to explore its applicability limits, we also include
δ = 10° as part of our analysis.

The introduced orientation uncertainty decreases the accu-
racy of positioning, as can be concluded based on the CDF
plots in Fig. 6. The positioning accuracy also depends on the
UE speed; however, for the selected parameters, its impact is
marginal. For example, for the UE velocity of v = 3 kmph,
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Fig. 9: Absolute error in horizontal positioning for different values of BRSRP
measurement interval τ = [80, 480] ms, v = 7 kmph.

the effect of ∆δ = 5° substantially exceeds the influence of
∆v = 4 kmph. In Fig. 7, we explore the dependence of the
standard deviation of the positioning error, σpos (as detailed
in Section IV-B), on the orientation uncertainty, δ. Notably,
for lower uncertainties φ, θ = δ ≤ 3°, σpos remains stable,
marginally increasing within the range 3° ≤ δ ≤ 5°.

The absolute accuracy of the orientation uncertainty es-
timation decreases with the actual value of the orientation
uncertainty δ, as can be confirmed in Fig. 8. The bar
plot presents the root-mean-squared errors (RMSEs) of the
orientation uncertainty estimation. Notably, the impact of
smaller orientation uncertainties δ ≤ 3° is negligible. Further
visual illustrations of the positioning and orientation estimation
accuracy are available in the form of the supplementary
multimedia materials accompanying this contribution (also
available here for readers’ convenience).

We emphasize that the presented performance results assume
that the system with the BS orientation misalignment does not
utilize any feedback for correction purposes. In other words,
the orientation uncertainty is estimated, but not compensated.
Since the orientation uncertainty is expected to remain static
(or change slowly), the network can estimate its value for a
limited time and then employ the obtained estimate to improve
the BS orientation knowledge. Then, for the compensated
BS orientation, (|θ|, |φ|) / (0.4°, 0.4°) (see Fig. 8). In this
case, the positioning performance is essentially equivalent to
that without orientation uncertainty. We indicate the potential
improvement in the positioning performance by the green
arrows in Fig. 6 and also later with green bars in Fig. 12.

3) Comparison of positioning performance for different
durations of RS measurement period: Finally, we analyze the
positioning accuracy as a function of the BRSRP measurements
period τ in Fig. 9. The performance degrades very mildly

https://research.tuni.fi/wireless/tvt2020_networking/
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Fig. 10: Illustration of the decrease in the total antenna directivity Gtx +Grx

due to beam misalignment for three uniform rectangular antenna arrays: 8× 8
(red), 16× 16 (blue), and 32× 32 (green). Ideal information on UE locations
corresponds to solid lines σpos = 0, while gradients (dashed lines) illustrate
the effect of increased positioning inaccuracy σpos > 0.

for the values of τ between 80 ms and 320 ms. Hence, we
may increase the periodicity of the BRSRP measurements and
the EKF updates to reduce the overheads without loss in the
positioning performance. We note that in terms of the resulting
positioning performance, the scaling of τ is identical to the
velocity scaling. For example, the degradation of the positioning
performance for τ = 320 ms with respect to τ = 160 ms
is equivalent to the case where the velocity is varied from
v = 7 kmph to v = 14 kmph.

B. Connectivity Impact of Positioning and Orientation Inaccu-
racy

1) Effects on directivity gain and instantaneous data rate:
Assuming positioning-based beamforming, we continue by eval-
uating synthetically the effects of both σpos and uncompensated
orientation uncertainty, δ, on the connectivity between the UE
and the BS. In Fig. 10, we provide the results of our simulation
study for three realistic BS antenna patterns derived in Phased
Array MATLAB toolbox – namely, uniform rectangular arrays
of 8× 8 (solid red curve for ideal positioning σpos), 16× 16
(blue), and 32× 32 (green) antenna elements. The UE antenna
pattern is obtained similarly but as a uniform linear array of 4
elements.

Specifically, in Fig. 10, we assess the change in the total
directivity gain Gtx + Grx after introducing the positioning
(x-axis) and the uncompensated orientation uncertainty (dashed
curves with faded color for increased σpos). Naturally, wider
antenna beams are more robust to both degrees of uncertainty,
while narrower ones demonstrate unstable behavior over almost
the entire range of σpos. However, as demonstrated in the
previous subsection, the proposed estimation scheme results in
the positioning error values of below 3 m (see Fig. 6), which
may support even very narrow beams if δ is sufficiently small,
as in the lower-left corner of the plot. Interestingly, the trend of
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Fig. 11: Impact of positioning (σpos) and orientation (δ) uncertainties on share
of achievable UE data rate w.r.t. ideal scenario for three uniform rectangular
antenna arrays: 8x8 (red), 16x16 (green), and 32x32 (blue).

increased directivity loss with decreased positioning uncertainty
changes to the opposite situation as the orientation uncertainty
grows for a fixed antenna design. This effect can be attributed
to mutual compensation of the two uncertainties; however, it
becomes negligible as the antenna beam widens as can be
observed from the group of red curves.

Further, Fig. 11 highlights the impact of the considered
uncertainties on the degradation in the instantaneous data
rate that occurs due to mmW beam misalignment. Here, we
assume 400 MHz channel with the noise power of −88 dBm.
We vary the BS antenna beamwidth by considering the uniform
rectangular antenna arrays of 8× 8 (the group of red curves),
16 × 16 (green color), and 32 × 32 (blue) antenna elements.
We observe that the narrowest beams are prone to the most
severe data rate degradation, and the uncertainty δ in the
orientation (the steeper slope) plays a more significant role
than the precision of the positioning algorithm. We note that the
use of narrower beams entails faster decrease in the data rate,
which may rapidly lead to near-zero data rates if the accuracy
drops. However, our proposed approach yields the uncertainty
of less than 1°, as shown in Fig. 7. Therefore, it can be reliably
applied in the settings with narrower beams. The use of highly
directional antennas being supported by our solution may thus
significantly improve the coverage and the spatial reuse in
mmW networks without excessive beamforming overheads.

2) Comparison with conventional beamforming: Finally, we
employ the smooth mobility model to capture the temporal
dynamics of the mmW network operation. To illustrate the
impact of our solution on the system spectral efficiency,
we compare the results of (i) the proposed algorithm in
the case of zero or compensated BS orientation uncertainty
(residual uncertainty δ = 0°, solid green line) and (ii) our
positioning algorithm with the positioning accuracy as shown
in Fig. 7, but uncompensated BS uncertainty (dashed and dotted
green lines for δ = 5° and δ = 10°, correspondingly). In
addition, we provide the spectral efficiency of the conventional
beamforming scheme (blue line), where we assume brute-force
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beam-search with the signaling overheads based on the 3GPP
recommendations for the mmW system operation [46].

As reported in Fig. 12, the heavy overhead incurred by the
beamtraining for both transmit and receive beams results in
decreased data rates as the beamforming (BF) or beam-update
period τBF shortens. On the other hand, the increased period
between the consecutive beamtraining procedures leads to a
dramatic data rate degradation due to the high mobility of the
UEs. As a result, traditional beamforming schemes may have
an optimum point that maximizes the network performance
by selecting the best τBF. However, the performance of our
proposed scheme exceeds this upper bound for the conventional
beamforming training by more than 10% when orientation
uncertainty compensation is applied. Even in the case of higher
uncompensated orientation uncertainty of δ = 5°, our solution
demonstrates better performance than the conventional beam-
search. Finally, in the extreme case of δ = 10°, the position-
based BF approach is clearly compromised, if the orientation
uncertainty is not compensated for.

In the selected setup, the proposed solution improves the
system-level performance if the period τ remains within
the interval [0, 400] ms, unless a very large uncompensated
orientation uncertainty is present. Beamforming mechanisms
based on other positioning solutions may also bring noticeable
benefits at the system level, if the BS orientation uncertainty
remains reasonably small (that is, less than 5° in our example).
Otherwise, if the uncertainty increases to the levels that the
employed positioning and orientation estimation algorithm
cannot account for, conventional beamforming mechanisms
could become more efficient. We emphasize that the addressed
baseline suffers from the highest overhead, and there exist more
complex and dynamic beamtraining solutions. However, more
sophisticated beamforming procedures might be sensitive to
the modeling environment and, thus, become less predictable.

VI. CONCLUSION

Since multi-connectivity is being recognized as a key solution
to combat the unreliability of highly directional mmW connec-
tions, simplifying the UE antenna system and beamforming
coordination complexity becomes vital for maintaining efficient
network performance. To reduce the beamforming overheads,
the mmW system can rely on accurate and timely information
regarding the device locations. Today, various positioning
schemes may already exploit the flexible numerology of
the latest 5G NR specifications and be designed within the
actual protocol structure, e.g., by utilizing the existing 5G NR
reference signals (RSs) in a typical multi-connectivity setup.

In this work, we developed a flexible and scalable framework
for the co-design of mmW networking and positioning in a
system with the multi-connectivity capabilities. Our proposed
solution enables unassisted, DoD-based, and high-accuracy 3D
user positioning and tracking in 5G NR deployments with
simultaneous estimation of the BS orientation uncertainty in
3D space. The proposed approach employs measurements of
the beam pair based RSRPs and remains flexible with respect
to the actual structure of the utilized reference signals.

We confirmed that our proposed positioning framework is
capable of performing accurately under complex, random,
or time-correlated device mobility as well as can yield the
positioning inaccuracies that are sufficiently low to support even
very narrow mmW beams, e.g., those having the horizontal and
vertical half-power beamwidth in the order of 5°. The possibility
of tracking such extremely narrow beams may significantly
improve the coverage and the spatial reuse in 5G-and-beyond
mmW systems, thus, reflecting the features that are difficult
or costly to achieve without the use of appropriate positioning
algorithms embedded into the existing network architecture.

Importantly, we also established that for the small-scale
BS orientation uncertainties, the proposed positioning scheme
outperforms the upper bound on the conventional brute-force
beam-training based beamforming by 10% in terms of the
data rate. In the case of higher inaccuracies, our algorithm
can estimate and, therefore, help compensate the associated
discrepancy. Hence, it should deliver better performance and
reliability than those offered by the more conventional brute-
force type beamforming methods. Hence, we conclude that
the proposed method and our overall framework provide a
notable contribution toward the true co-design of networking
and positioning in prospective mmW networks with multi-
connectivity operation.

APPENDIX
DERIVATION OF STAGE 1 DOD-EKF

It can be shown [47] that the BRSRP measurements (2) in
a LoS-dominated channel follow a non-central χ2-distribution
with 2Mf degrees of freedom. The corresponding probability
density function (PDF) is given by [48, Ch.2]:

p(βi,j) =
Mf

σ̃2
i,j

(
Mfβi,j
λi,j

)Mf−1

2

e
−
λi,j+Mfβi,j

σ̃2
i,j

× IMf−1

(
2
√
λi,jMfβi,j

σ̃2
i,j

)
,

(17)
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where σ̃2
i,j is the BRSRP measurement noise variance and

Ix(·) ∈ R denotes a modified Bessel function of the first kind,
and the non-centrality parameter is proportional to the received
signal power:

λi,j =

Mf∑
m=1

|[S]m[bf ]mb
i
UE(ϑa, ϕa)bjBS(ϑd, ϕd)γi,j |2. (18)

The measurement noise between the ith UE beam and the
jth BS beam is a complex circular Gaussian random variable
ni,j ∼ NC(0, σ̃2

i,jI) ∈ CMf . We also assume that the noise
is uncorrelated for different beam pairs, i.e., E{ni,jnHk,l} = 0
where i 6= k or j 6= l, while the variances are identical for all
the beam-pairs σ̃2

i,j = σ̃2,∀(i, j).
For a large number of subcarriers, Mf , (17) converges to

a Gaussian distribution [47]; hence, βi,j ∼ N (µi,j , σ
2
i,j), with

the mean and variance of the BRSRP measurements given by

µi,j =
λi,j
Mf

+ σ̃2
i,j (19)

σ2
i,j =

σ̃4
i,j

Mf
+

2σ̃2
i,jλi,j

M2
f

. (20)

At the third step of the positioning Algorithm 1, each
UE selects the Rx beam corresponding to the largest sum
of the BRSRP measurements over all of the Tx BS beams:
maxi

∑MBS

j=1 βi,j . Let us denote the vector containing the
BRSRP measurements for all of the BS beams and the chosen
UE beam as β ∈ RMBS . Hence, β ∼ N (µ(Θ),C(Θ)), where
the mean and the covariance matrix can be expressed as follows:

µ(Θ) = a(ϑd, ϕd)ρ
PTx

Mf
+ 1σ̃2 (21)

C(Θ) = diag

{
a(ϑd, ϕd)ρ

2σ̃2PTx

M2
f

+ 1
σ̃4

Mf

}
, (22)

where Θ = [ϑd, ϕd, ρ, σ̃
2]T is the vector of unknown parame-

ters: (ϑd, ϕd) is the DoD azimuth and co-elevation angles,
while ρ = |biUE(ϑa, ϕa)|2|γi,j |2 ∈ R is related to the
user beam pattern biUE and the path weight γi,j . Moreover,
PTx =

∑Mf

m=1 |[S]m[bf ]m|2, and a(ϑd, ϕd) ∈ CMBS is given
by

a(ϑd, ϕd) =

[∣∣b1BS(ϑd, ϕd)
∣∣2 , . . . , ∣∣∣bMBS

BS (ϑd, ϕd)
∣∣∣2]T

.

(23)
The received signal-to-noise ratio (SNR) of the beam pair

(i, j) can be expressed in terms of the original distribution
parameters as

SNRi,j ,
λi,j
Mf σ̃2

i,j

. (24)

We consider the low-SNR regime, where Mf σ̃
2
i,j > λi,j and

assume the covariance of β to be independent of the DoD. In
the case of unknown BSs orientation uncertainty (θ, φ), the
first-stage DoD estimates are biased; however, our assumption
remains valid for the values of (θ, φ) that do not exceed the

BS beamwidth. Hence, the resulting log-likelihood function
has the following form:

`aprx(Θ, σ2|β) =− MBS

2
ln 2π − MBS

2
lnσ2

− 1

2σ2
‖β − µ(Θ))‖2.

(25)

This expression is separable with respect to the DoDs(ϑd, ϕd)
and other unknown parameters (ρ, σ̃2, σ2). The maximum
likelihood estimators (MLEs) of ρ, σ̃2, and σ2 can be
established in the closed-form for a given (ϑ, ϕ) [49], [50] as[

ρ̂
ˆ̃σ2

]
=

[
a(ϑd, ϕd)

PTx

Mf
, 1

]†
β

σ̂2 =
1

MBS
‖P⊥a1(ϑd, ϕd)β‖2,

(26)

with (·)† denoting the Moore-Penrose pseudo-inverse operator.
Here, Pa1(ϑd, ϕd) ∈ RMBS×MBS is the orthogonal projection
matrix and P⊥a1(ϑd, ϕd) = I − Pa1(ϑd, ϕd) is an orthog-
onal projection onto a null-space of Pa1(ϑd, ϕd). Further,
Pa1(ϑd, ϕd) = Pa(ϑd, ϕd) + P1, where Pa(ϑd, ϕd) and P1

are the oblique projection matrices. In particular, the range of
Pa(ϑd, ϕd) is Span(a(ϑd, ϕd)) and its null-space is Span(1).
Conversely, the range of P1 is Span(1), while its null-space
is Span(a(ϑd, ϕd)) [51].

The above MLEs (26) can be substituted into (25) to obtain
the concentrated log-likelihood function:

`caprx(ϑd, ϕd|β) =− MBS

2
ln 2π − MBS

2

− MBS

2
ln
‖P⊥a1(ϑd, ϕd)β‖2

MBS
.

(27)

We choose the information form of EKF, where the co-
variance of the state in (4) is updated by using the observed
FIM and the gradient of the log-likelihood function (27). The
expression for the log-likelihood function in the case of the
Gaussian distribution can be found in [33, Ch.3]. For the
employed approximations, the gradient and the observed FIM
(or Hessian) for the concentrated log-likelihood function follow
from the results provided in [52], [53].

For convenience, instead of the concentrated log-likelihood
function, we utilize its exponent exp{`caprx(ϑd, ϕd|β)}, which
does not change the location of the global maximum. The
gradient of the said exponent with respect to the azimuth and
the co-elevation directions can be expressed as

[q(ϑd, ϕd)]1 = 2

(
∂

∂ϑd
P⊥a1(ϑd, ϕd)β

)T

P⊥a1(ϑd, ϕd)β

[q(ϑd, ϕd)]2 = 2

(
∂

∂ϕd
P⊥a1(ϑd, ϕd)β

)T

P⊥a1(ϑd, ϕd)β,

(28)

while the first-order approximation of the FIM has the following
form:

[I(ϑd, ϕd)]1,2 ≈ 2

(
∂

∂ϑd
P⊥a1(ϑd, ϕd)β

)T

× ∂

∂ϕd
P⊥a1(ϑd, ϕd)β, (29)
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which offers better convergence [53].
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