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Human genetic variants predicted to cause loss-of-function of 
protein-coding genes (pLoF variants) provide natural in  vivo 
models of human gene inactivation and can be valuable indi-
cators of gene function and the potential toxicity of therapeu-
tic inhibitors targeting these genes1,2. Gain-of-kinase-function 
variants in LRRK2 are known to significantly increase the 
risk of Parkinson’s disease3,4, suggesting that inhibition of 
LRRK2 kinase activity is a promising therapeutic strategy. 
While preclinical studies in model organisms have raised 
some on-target toxicity concerns5–8, the biological conse-
quences of LRRK2 inhibition have not been well characterized 
in humans. Here, we systematically analyze pLoF variants 
in LRRK2 observed across 141,456 individuals sequenced 
in the Genome Aggregation Database (gnomAD)9, 49,960 
exome-sequenced individuals from the UK Biobank and over 4 
million participants in the 23andMe genotyped dataset. After 
stringent variant curation, we identify 1,455 individuals with 

high-confidence pLoF variants in LRRK2. Experimental vali-
dation of three variants, combined with previous work10, con-
firmed reduced protein levels in 82.5% of our cohort. We show 
that heterozygous pLoF variants in LRRK2 reduce LRRK2 pro-
tein levels but that these are not strongly associated with any 
specific phenotype or disease state. Our results demonstrate 
the value of large-scale genomic databases and phenotyp-
ing of human loss-of-function carriers for target validation in  
drug discovery.

New therapeutic strategies are desperately needed in Parkinson’s 
disease (PD), one of the most common age-related neurological dis-
eases, which affects about 1% of people over the age of 60 years11,12. 
Around 30% of familial and 3–5% of sporadic PD cases have been 
linked to a genetic cause13. LRRK2 missense variants account for a 
large fraction of cases, including high-penetrance variants14, mod-
erately penetrant variants such as G2019S15 and risk factors iden-
tified in genome-wide association studies16. Although the precise 
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mechanism by which LRRK2 variants mediate their pathogenicity 
remains unclear, a common feature is augmentation of kinase activ-
ity associated with disease-relevant alterations in cell models3,17,18. 
Discovery of Rab GTPases as LRRK2 (ref. 19) substrates highlighted 
the role of LRRK2 in regulation of the endolysosomal and vesicular 
trafficking pathways implicated in PD19,20. LRRK2 kinase activity is 
also upregulated more generally in patients with PD (with and with-
out LRRK2 variants)21. LRRK2 has therefore become a prominent 
drug target, with multiple LRRK2 kinase inhibitors and suppres-
sors22 in development as disease-modifying treatments for PD21,23,24. 
There are three LRRK2 therapeutics currently in early clinical test-
ing from both Denali (small molecules DNL201, ClinicalTrials.
gov Identifier: NCT03710707 and DNL151, ClinicalTrials.gov 
Identifier: NCT04056689) and Biogen (antisense oligonucleotide 
BIIB094, ClinicalTrials.gov Identifier: NCT03976349).

Despite these promising indications, there are concerns about 
the potential toxicity of LRRK2 inhibitors. These mainly arise from 
preclinical studies, where homozygous knockouts of LRRK2 in mice 
and high-dose toxicology studies of LRRK2 kinase inhibitors in rats 

and primates, have shown abnormal phenotypes in the lung, kidney 
and liver5–8. While model organisms are invaluable for understand-
ing the function of LRRK2, they also have important limitations, 
as exemplified by inconsistencies in phenotypic consequences of 
reduced LRRK2 activity seen among yeast, fruit flies, worms, mice, 
rats and nonhuman primates25. Complementary data from natural 
human knockouts are critical for understanding both gene function 
and the potential consequences of long-term reduction of LRRK2 
in humans.

Large-scale human genetics is an increasingly powerful source 
of data for the discovery and validation of therapeutic targets in 
humans1. pLoF variants, predicted to largely or entirely abolish 
the function of affected alleles, are a particularly informative class 
of genetic variation. Such variants are natural models for lifelong 
organism-wide inhibition of the target gene and can provide infor-
mation about both the efficacy and safety of a candidate target2,26–29. 
However, pLoF variants are rare in human populations30 and are 
also enriched for both sequencing and annotation artefacts31. As 
such, leveraging pLoF variation in drug target assessment typically  
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Fig. 1 | Annotation and curation of candidate LRRK2 pLoF variants. a, Flow chart showing the variant filtering and curation of candidate LRRK2 LoF variants 
in the gnomAD, UK Biobank and 23andMe cohorts. Of the 1,103 carriers identified in 23andMe, 749 were confirmed by Sanger sequencing with the 
remainder untested. b, The ancestry distribution of LRRK2 pLoF variant carriers in gnomAD. AFR, African/African American; AMR, American/Latino; ASJ, 
Ashkenazi Jewish; EAS, East Asian; FIN, Finnish; NFE, non-Finnish European; SAS, South Asian. The pLoF variants seen more than ten times appear in color 
with remaining variants in gray. LRRK2 pLoF variants are mostly individually extremely rare (less than 1 in 10,000 carrier frequency), with the exception of 
two nonsense variants almost exclusively restricted to the admixed AMR population (Cys1313Ter and Arg1725Ter) and two largely NFE-specific variants 
(Leu2063Ter and Arg772Ter). All variant protein descriptions are with respect to ENSP00000298910.7. c, Schematic of the LRRK2 gene with pLoF 
variants marked by position, with the height of the marker corresponding to allele count in gnomAD (gray bars) and UK Biobank (blue bars). The 51 exons 
are shown as rectangles colored by protein domain, with the remaining exons in gray. The three variants genotyped in the 23andMe cohort are annotated 
with their sample count in black text.
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requires very large collections of genetically and phenotypically 
characterized individuals, combined with deep curation of the 
target gene and candidate variants32. Although previous studies 
of pLoF variants in LRRK2 have found no association with risk of 
PD10, no study has assessed their broader phenotypic consequences.

We identified LRRK2 pLoF variants and assessed associated phe-
notypic changes in three large cohorts of genetically characterized 
individuals. First, we annotated LRRK2 pLoF variants in two large 
sequencing cohorts: the gnomAD v.2.1.1 dataset, which contains 
125,748 exomes and 15,708 genomes from unrelated individu-
als9 and 46,062 exome-sequenced unrelated European individuals 
from the UK Biobank33. We identified 633 individuals in gnomAD 
and 258 individuals in the UK Biobank with 150 unique candidate 
LRRK2 loss-of-function (LoF) variants, a combined carrier fre-
quency of 0.48%. All variants were observed only in the heterozy-
gous state. Compared to the spectrum observed across all genes, 
LRRK2 is not significantly depleted for pLoF variants in gnomAD 
(LoF observed/expected upper bound fraction9 = 0.64).

We manually curated the 150 identified variants to remove 
those of low quality or with annotation errors suggesting that they 
are unlikely to cause true LoF (Fig. 1a and Supplementary Tables 1  
and 2). We removed 16 variants identified as low confidence by the 
LoF transcript effect estimator ((LOFTEE); 6 variants in 409 indi-
viduals)9 or manually curated as low quality or unlikely to cause 
LoF (10 variants in 129 individuals). One additional individual was 
excluded from the UK Biobank cohort as they carried both a pLoF 
variant and the G2019S risk allele.

Our final dataset comprised 255 gnomAD individuals and 97 UK 
Biobank individuals with 134 unique high-confidence pLoF vari-
ants (Fig. 1a) and an overall carrier frequency of 0.19%; less than 
half the frequency estimated from uncurated variants, reaffirming 
the importance of thorough curation of candidate LoF variants32. 
A subset of 25 gnomAD samples with 19 unique LRRK2 pLoF vari-
ants with DNA available were all successfully validated by Sanger 
sequencing (Supplementary Table 3).

Second, we examined LRRK2 pLoF variants in over 4 million 
consented and array-genotyped research participants from the per-
sonal genetics company 23andMe. Eight putative (LOFTEE high 
confidence) LRRK2 LoF variants were identified. After manual cura-
tion, all putative carriers of each variant were submitted for valida-
tion by Sanger sequencing and variants with <5 confirmed carriers 
were excluded. The resulting cohort comprised 749 individuals, each 
a Sanger-confirmed carrier for one of three pLoF variants (Fig. 1a  
and Supplementary Table 4). The high rate of Sanger confirma-
tion for rs183902574 (>98%) allowed confident addition of 354 
putative carriers of rs183902574, from expansion of the 23andMe 
dataset, without Sanger confirmation. Analyses with and with-
out these genotyped-only carriers were not significantly different 
(Supplementary Table 5). Across the two most frequent pLoF alleles 
we observed an extremely small number (<5) of sequence-confirmed 
homozygotes; however, given the very small number of observations, 
we can make no robust inference, except that homozygous inactiva-
tion of LRRK2 seems compatible with life. For the remainder of this 
manuscript we focus on heterozygous pLoF carriers.

The three combined datasets provide a total of 1,455 carrier 
individuals with 134 unique LRRK2 pLoF variants. These vari-
ants are found across all major continental populations (Fig. 1b 
and Extended Data Fig. 1) and show neither any obvious cluster-
ing along the length of the LRRK2 protein, nor specific enrichment 
or depletion in any of the known annotated protein domains (chi 
squared P = 0.22; Fig. 1c), consistently with signatures of true LoF32.

To confirm that LRRK2 pLoF variants result in reduced LRRK2 
protein levels, we analyzed total protein lysates from cell lines with 
three unique pLoF variants. We obtained lymphoblastoid cell lines 
(LCLs) from two families with naturally occurring heterozygous 
LoF variants and a third variant was CRISPR/Cas9-engineered into 

embryonic stem cells (Extended Data Fig. 2), which were differ-
entiated into cardiomyocytes. In all instances, LRRK2 protein lev-
els were visibly reduced compared to noncarrier controls (Fig. 2). 
These results agree with a previous study which assessed three sepa-
rate pLoF variants and found significantly reduced LRRK2 protein 
levels10. Together, these six functionally validated variants represent 
82.5% of pLoF carriers in this study (1,201 of 1,455). Although het-
erozygous pLoF carriers have LRRK2 protein remaining, we believe 
that this state represents a plausible genetic model for therapeutic 
inhibition of LRRK2, as target engagement by pharmacological 
inhibitors is unlikely to be complete.

We next sought to determine whether lifelong lowering of LRRK2 
protein levels through LoF results in an apparent reduction in lifes-
pan. We found no significant difference between the age distribu-
tion of LRRK2 pLoF variant carriers and noncarriers in either the 
gnomAD or 23andMe datasets (two-sided Kolmogorov–Smirnov 
P = 0.085 and 0.46 respectively; Fig. 3a), suggesting no major 
impact on longevity, though we note that this analysis is based on 
age at sample collection, which is not equivalent to longevity and at 
current sample sizes we are only powered to detect a strong effect 
(Supplementary Table 6).

For a subset of studies within gnomAD, phenotype data are 
available from study or national biobank questionnaires or from 
linked electronic health records (Methods). We manually reviewed 
these records for all 60 of the 255 gnomAD LRRK2 pLoF carriers 
with available data and recorded any phenotypes affecting the lung, 
liver, kidney, cardiovascular system, nervous system, immunity and 
cancer (Supplementary Table 7). We found no over-representation 
of any phenotype or phenotype category in LRRK2 pLoF carriers.
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Fig. 2 | LRRK2 pLoF heterozygotes have reduced LRRK2 protein compared 
to cells harboring no LoF variants. a, Immunoblot of LRRK2 and loading 
control GAPDH on LCLs from five individuals harboring no pLoF variants 
(LRRK2-WT) and three individuals harboring a heterozygous (Het) pLoF 
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control lines and one CRISPR/Cas9-engineered LRRK2 heterozygous 
line of cardiomyocytes differentiated from embryonic stem cells (ESCs) 
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The 23andMe dataset includes self-reported data for thousands 
of phenotypes across a diverse range of categories. We performed a 
phenome-wide association study comparing LRRK2 pLoF carriers 
to noncarriers for 366 health-related traits and found no significant 
association between any individual phenotype and carrier status 
(Fig. 3b). In particular, we found no significant associations with any 
lung, liver or kidney phenotypes (Supplementary Tables 5 and 8).

The UK Biobank resource includes measurements for 30 blood 
serum and four urine biomarkers. We found no difference in 
any of these biomarkers between pLoF carriers and noncarriers 
(Supplementary Table 9 and Supplementary Fig. 1). In particular, 
there was no difference between carriers and noncarriers for urine 
biomarkers transformed into clinical measures of kidney function 
(Fig. 4a and Methods) and no difference in six blood biomarkers 
commonly used to assess liver function (Fig. 4c). We also observed 
no difference in spirometry measurements of lung function (Fig. 4b).

We grouped self-reported disease diagnoses in UK Biobank indi-
viduals into categories corresponding to the organ system and/or 
mechanism (Supplementary Table 10). We observed no enrichment 
for any of these phenotype groups in LRRK2 pLoF carriers when 
compared to noncarriers (Supplementary Table 11). We also mined 

ICD10 codes from hospital admissions and death records for any 
episodes relating to lung, liver and kidney phenotypes, removing 
any with a likely infectious or other external cause (Supplementary 
Table 12 and Methods) and identified six pLoF carriers with ICD10 
codes relating to these organ systems (6.19%), compared to 4,536 
noncarriers (9.87%; Supplementary Tables 13 and 14).

Our results indicate that approximately 1 in every 500 humans 
is heterozygous for a pLoF variant in LRRK2, resulting in a sys-
temic lifelong decrease in LRRK2 protein levels and that this partial 
inhibition has no discernible effect on survival or health at current 
sample sizes. These results suggest that partial reduction of LRRK2 
protein in humans is unlikely to result in the severe phenotypes 
observed in knockout animals. This is consistent with initial phase 1  
studies of therapeutic LRRK2 kinase inhibitors, which have shown 
promising safety results24, but are not yet able to address long-term, 
on-target pharmacology-related safety profiles.

The rarity of pLoF variants in LRRK2, combined with the rela-
tively low prevalence of PD, prevents direct assessment of whether  
LRRK2 inhibition reduces the incidence of PD with current sam-
ple sizes (Supplementary Table 5). Future cohorts with many more  
sequenced and phenotyped individuals (probably millions of  
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samples) will be required to answer this question. As such, our study 
focuses entirely on whether partial genetic LRRK2 inactivation has 
broader phenotypic consequences that might correspond to adverse 
effects of chronic administration of LRRK2 inhibitors.

We acknowledge multiple limitations to this work. First, we 
relied on heterogeneous phenotype data mostly derived from 
self-reported questionnaires. Both 23andMe and gnomAD record 
only age at recruitment, which is an imperfect proxy for lifespan 
and participants are relatively young compared to the typical age 
of onset for PD. In addition, at current sample sizes we are only 
powered to detect a strong effect on lifespan. Our ascertainment 
of LRRK2 pLoF variants in 23andMe was necessarily incomplete, 
due to the availability of targeted genotyping rather than sequenc-
ing data; this means that a subset of the 23andMe individuals 
treated as noncarriers could be carriers of LRRK2 pLoF variants 
not genotyped or imputed in this dataset. We have not directly 
assessed whether LRRK2 pLoF variants reduce kinase activity and 
instead take reduction in protein levels as a proxy. Previous stud-
ies have, however, shown that Rab10 phosphorylation is markedly 
reduced when LRRK2 levels are lowered by ~80% using siRNA34,35. 
Additionally, lifelong LoF of LRRK2 may not be equivalent to 
therapeutic inactivation later in life if biological compensation 
occurs. Finally, the low-frequency of naturally occurring LRRK2 

pLoF variants results in a relatively small number of carriers that 
could be assessed for each biomarker and phenotype, meaning 
that we are not well powered to detect subtle or infrequent clinical 
phenotypes arising from LRRK2 haploinsufficiency. However, our 
study suggests that any clinical phenotype associated with partial 
reduction of LRRK2 is likely to be substantially more benign than 
early-onset PD.

This study provides an important proof of principle for the value 
of very large genetically and phenotypically characterized cohorts, 
combined with thorough variant curation, in exploring the safety 
profile of candidate drug targets. Over the coming years, the avail-
ability of complete exome or genome sequence data for hundreds 
of thousands of individuals who are deeply phenotyped and/or 
available for genotype-based recontact studies, combined with deep 
curation and experimental validation of candidate pLoF variants, 
will provide powerful resources for therapeutic target validation as 
well as broader studies of the biology of human genes.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
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Fig. 4 | LRRK2 pLoF carriers do not have impaired lung, liver or kidney function. For all plots, points for individual pLoF carriers are shown in teal and 
noncarriers in gray. The mean and 1 × s.d. are represented by the black circle and line. a, Urine biomarkers albumin and creatinine were transformed 
into two clinical markers of kidney function (Methods). No pLoF carriers showed signs of severely impaired kidney function. ACR, albumin to creatinine 
ratio. b, Z scores of age-, sex- and height-corrected spirometry measures of lung function36. FVC, forced vital capacity; FEV1, forced expiratory volume in 
1 s. c, Blood serum biomarkers of liver function. The plots for alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, bilirubin and 
creatinine were top-truncated, removing 47, 29, 92, 8 and 27 noncarriers respectively. The violin plots and summary statistics were calculated on the full 
dataset. All pLoF carriers are within each plot area.
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data and code availability are available at https://doi.org/10.1038/
s41591-020-0893-5.
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Methods
gnomAD variant annotation and curation. The gnomAD resource, including 
both sample and variant quality control (including sample ancestry assignment), is 
fully described in our companion paper9. Analysis was conducted using gnomAD 
v.2.1.1. Putative LoF variants were defined as stop-gained, frameshift or essential 
splice site (splice donor or splice acceptor) as annotated by the Ensembl Variant 
Effect Predictor37.

Variants were included if they were annotated as LoF on any of the three 
high-confidence GENCODE annotated protein-coding transcripts that are 
expressed in the lung, liver or kidney. All variants also underwent transcript 
expression-aware annotation which evaluates cumulative expression status of 
transcripts harboring a variant in the Genotype Tissue Expression (GTEx) project 
dataset38. All high-confidence variants were found in exons with high evidence of 
expression across all relevant tissues in GTEx. In addition, all were high-confidence 
pLoF on the canonical transcript, which is the only transcript to include the kinase 
domain.

Variants were filtered out if they were flagged as low confidence by LOFTEE9. 
For the remaining variants, manual curation was performed, including inspection 
of variant quality metrics, read distribution and the presence of nearby variants 
using the integrative genome viewer and splice-site prediction algorithms using 
Alamut.

A single splice-site variant (12-40626187-T-C), found in 77 gnomAD 
carriers, was identified in an individual with RNA-seq data in the GTEx project. 
The RNA-seq reads were manually inspected to look for any effect on splicing. 
Assessing the read distribution of a linked heterozygous variant in this individual 
showed convincingly that the variant has no discernible effect on transcript 
splicing (Extended Data Fig. 3). All available tissues were assessed with reads 
from lung tissue shown in Extended Data Fig. 3. The variant was also identified in 
eight UK Biobank carriers and in 23andMe and was similarly excluded from these 
cohorts.

This study complied with all relevant ethical regulations and was overseen by 
the Broad Institute’s Office of Research Subject Protection and the Partners Human 
Research Committee. Informed consent was obtained from all participants.

Sanger validation of gnomAD variant carriers. Sanger validation was performed 
on genomic DNA derived from peripheral blood under the following PCR 
conditions: 98 °C 2 min; 30 cycles 20 s 98 °C, 20 s 54 °C, 1 min 72 °C; 3 min 72 °C 
using Herculase II Fusion DNA polymerase (Agilent, 600679). PCR products (5 μl) 
were analyzed on a 2% agarose gel and the remaining product was purified with 
the Qiagen PCR Purification kit. Sequence analysis was performed with both PCR 
primers at Quintarabio. Details of variants and PCR primers used for each are 
listed in Supplementary Table 3.

gnomAD phenotype curation and cohort descriptions. The below described 
studies with LRRK2 pLoF carriers had available phenotype data. For each study, 
all available records were manually reviewed to identify any reports of health 
problems, which were categorized into the following classes: lung, liver, kidney, 
cardiovascular, nervous system, immune and cancer.

The genomic psychiatry cohort project. The genomic psychiatry cohort project is 
a longitudinal resource with the aim of making population-based data available 
through the National Institute of Mental Health. The repository contains 
whole-genome sequencing (WGS) data and detailed clinical and demographic 
data, particularly focused on schizophrenia and bipolar disorders. A large 
proportion of participants (88%) have consented for recontact39. The screening 
questionnaire consisted of 32 yes/no questions about mental health issues and 
23 yes/no questions covering other medical problems including liver, digestive 
and cardiovascular problems. There were no specific questions relating to lung or 
kidney phenotypes, although participants were asked to answer yes/no to having 
any additional health problems. If a participant answered yes to this question, 
we marked the existence of lung or kidney disease as ‘unknown’. One sample was 
excluded due to conflicting questionnaire answers.

The age of the 25 LRRK2 carriers ranged from 19 to 67 years. Two carriers, 
aged 55 and 60 years, reported having had liver problems and four participants 
over 60 years reported no liver problems.

The Pakistan risk of myocardial infarction study. The Pakistan risk of myocardial 
infarction study comprises 10,503 individuals characterized using a phenotype 
questionnaire with >350 items covering demographic and dietary characteristics 
and over 80 blood biomarker measurements40. The predominant focus of the 
questionnaire was cardiac function and phenotype. While the participants were 
specifically asked to report suffering from asthma, no other lung, liver, kidney, 
nervous system or immune phenotypes were directly assayed and so these were 
marked as ‘unknown’ for these individuals. The 12 LRRK2 LoF carriers in the study 
did not differ in terms of age, sex and myocardial infarction status when compared 
to the entire cohort.

The Swedish schizophrenia and bipolar studies. Cases with schizophrenia 
or bipolar disorder were identified from Swedish national hospitalization 

registers41,42. Controls were selected at random from population registers. All 
individuals had whole-exome sequencing data43. All available ICD codes from 
inpatient hospitalizations and outpatient specialist treatment contacts were 
provided for each patient.

The national FINRISK study. The FINRISK study has been carried out for 40 
years since 1972 every 5 years using independent, random and representative 
population samples from different parts of Finland. For this work, we used 
sequencing and health register data from FINRISK surveys between 1992  
and 2007 (ref. 44).

Full health records including ICD10 codes were reviewed by study coordinators 
who provided us with yes/no answers for each of our phenotype classes.

The BioMe biobank at the Charles Bronfman Institute for Personalized Medicine at 
Mount Sinai. The Mount Sinai BioMe Biobank, founded in September 2007, is an 
ongoing, broadly consented electronic health record (EHR)-linked bio and data 
repository that enrolls participants nonselectively from the Mount Sinai Medical 
Center patient population (New York City). BioMe participants represent broad 
racial, ethnic and socioeconomic diversity with a distinct and population-specific 
disease burden, characteristic of the communities served by Mount Sinai Hospital. 
Currently comprising over 47,000 participants, BioMe participants are of African 
(24%), Hispanic/Latino (35%), European (32% of whom 40% are Ashkenazi 
Jewish) and other/mixed ancestry.

BioMe is linked to Mount Sinai’s system-wide Epic EHR, which captures a 
full spectrum of biomedical phenotypes, including clinical outcomes, covariate 
and exposure data from past, present and future healthcare encounters. The 
median number of outpatient encounters is 21 per participant, reflecting 
predominant enrollment of participants with common chronic conditions 
from primary care facilities. Clinical phenotype data have been meticulously 
harmonized and validated.

Genome-wide genotype data and whole-exome sequencing data are available 
for >30,000 participants. In addition, WGS data are available for >11,000 
participants. The full EHRs of three BioMe LRRK2 pLoF carriers were reviewed by 
local clinicians and we were provided with detailed summaries.

Estonian Biobank of the Estonian Genome Center, University of Tartu. The Estonian 
Biobank cohort is composed of volunteers from the general Estonian resident adult 
population45. The current number of participants of close to 165,000 (representing 
15% of the Estonian adult population) makes it ideally suited to population-based 
studies. Participants were recruited throughout Estonia by medical personnel and 
participants receive a standardized health examination, donate blood and fill out a 
16-module questionnaire on health-related topics such as lifestyle, diet and clinical 
diagnoses. A detailed phenotype summary from a health survey and linked data 
including ICD10 codes, clinical laboratory values and treatment and medication 
information is annually updated through linkage with national electronic health 
databases and registries.

UK Biobank variant detection and curation. The 49,960 exome-sequenced 
individuals from the UK Biobank were restricted to a subset of 46,062 unrelated 
individuals of European ancestry. Relatedness was determined using KING kinship 
coefficient estimates from the genotype relatedness file with a cutoff of 0.0884 to 
include pairs of individuals with greater than third-degree relatedness. European 
ancestry was determined by projecting individuals onto the 1000 Genomes Project 
phase 3 (ref. 46) principal-component analysis (PCA) coordinate space, followed 
by Aberrant R package47 clustering to retain only those individuals falling within 
the 1000 Genomes Project EUR PC1 and PC2 limits (λ = 4.5). We further removed 
individuals who self-reported as non-European ethnicity.

We identified all individuals with putative LoF variants detected in the FE 
analysis pipeline, which used GATK 3.0 for variant calling and filtering33. We 
did not use the SPB pipeline calls due to advertised errors in the Regeneron 
Genetics Center pipeline at the time we were conducting these analyses. Variants 
were included if they were annotated as LoF on any transcript expressed in the 
lung, liver or kidney. As with the gnomAD analysis, variants were filtered out if 
they were flagged as low confidence by LOFTEE, before manual curation of the 
remaining variants. This curation included inspection of variant quality metrics, 
read distribution and the presence of nearby variants using integrative genome 
viewer and splice-site prediction algorithms using Alamut.

In addition, 266 individuals in the full genotyped cohort of 488,288 samples 
who were carriers of the G2019S risk allele were identified. One individual who 
was a carrier for both a LRRK2 pLoF variant and G2019S was excluded from all 
analyses. Carriers of G2019S were not included in the ‘noncarrier’ cohort in any 
of the analyses.

LRRK2 pLoF carriers, G2019S risk allele carriers and noncarriers are well 
matched for both sex (Extended Data Fig. 4) and age (Extended Data Fig. 5).

UK Biobank phenotype analysis. Blood serum and urine biomarkers. The 
first recorded value of all fields relating to ‘blood biochemistry’ (field codes 
30600–30890) and ‘urine assays’ (field codes 30510–30535) was extracted 
for all individuals. The distribution of values for all biomarkers was plotted 
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(Supplementary Fig. 1) and a two-sided Wilcoxon test was used to test for a 
difference between LRRK2 pLoF carriers and noncarriers.

These data were also extracted for G2019S risk allele carriers and these 
individuals were compared to both pLoF carriers and carriers of neither G2019S 
nor LRRK2 pLoF variants. There was no significant difference in any of the 34 
biomarkers between pLoF and G2019S carriers after accounting for multiple 
testing (Supplementary Table 15). When comparing G2019S carriers to noncarriers 
we found significant associations with cystatin C and phosphate levels.

Clinical measures of kidney function. ACR was calculated by dividing the urine 
microalbumin value (field code 30500; mg l−1) by the urine creatinine value 
(field code 30510; μmol l−1) multiplied by a factor of 0.0001131222. Estimated 
glomerular filtration rate was calculated using the CKD Epidemiology 
Collaboration (CKD-EPI) creatinine equation48. Normal range values for both 
ACR and estimated glomerular filtration rate were taken from the National Kidney 
Foundation website (https://www.kidney.org/kidneydisease/).

Spirometry measures of lung function. To assess lung function we used Global 
Lung Initiative 2012 reference equation z scores standardized for age, sex and 
height for FEV1, FVC and FEV1/FVC ratio measured using spirometry. These 
calculations are available in field codes 20256, 20257 and 20258 and were 
described previously36.

Grouped phenotype analysis. The list of all codings within the field ‘20002 
Non-cancer illness code, self-reported’, were taken from the UK Biobank showcase 
(http://biobank.ctsu.ox.ac.uk/crystal/coding.cgi?id=6). All selectable codings were 
given a primary grouping pertaining to the main system relating to that disease. 
In rare instances where more than one grouping could be assigned, the second 
was included as a secondary grouping. Diseases with an autoimmune basis were 
given a secondary grouping to reflect a similar underlying mechanism. Due to 
the opposing effects of some respiratory diseases, where appropriate, phenotypes 
in this category were given a secondary grouping of airway, interstitial or 
pleural. Any codings reflecting symptoms, trauma/injury, benign cancer, mental 
health phenotypes or diseases arising as a result of infection were excluded. All 
phenotype codings and assigned groupings are listed in Supplementary Table 10. 
Any coding within the field ‘20001 Cancer code, self-reported’ was assigned a 
grouping of ‘cancer’.

To test for an association between any phenotype group and LRRK2 pLoF 
carrier status, each individual was counted once as either having self-reported any 
of the phenotypes within a group or having reported none. A Fisher’s exact test was 
used to test for an association.

Analysis of ICD10 codes. All ICD10 codes relating to diseases of the liver (K70–
K77), diseases of the respiratory system not specific to the upper respiratory 
tract (J20–J22, J40–J47, J80–J99) or kidney diseases (N00–N29) were curated to 
exclude any with a primary infectious or external cause (Supplementary Table 12). 
Asthma was excluded from all analyses to avoid any issues caused by the deliberate 
ascertainment of the exome-sequenced portion of the cohort on the basis of 
asthma status.

For each individual, we extracted all ICD10 codes from the fields ‘41270 
Diagnoses: ICD10’ (recorded from episodes in hospital), ‘40001 Underlying 
(primary) cause of death: ICD10’ and ‘40002 Contributory (secondary) causes 
of death: ICD10’. The number of carriers and noncarriers with any ICD10 code 
relating to lung (5 pLoF carriers; 2,378 noncarriers), liver (0 pLoF carriers; 
652 noncarriers) or kidney disease (3 pLoF carriers; 2,272 noncarriers) were 
counted. For J43 (emphysema), J44 (other chronic obstructive pulmonary 
disease) and J47 (bronchiectasis), ICD10 codes were not counted if they were 
reported alongside exposure to or history of tobacco use (Z77.22, P96.81, 
Z87.891, Z57.31, F17 or Z72.0).

23andMe variant annotation and curation. 23andMe participants have been 
genotyped on a variety of platforms and imputed against a reference panel 
comprising 56.5 million variants from the 1000 Genomes Project phase 3 (ref. 46) 
and UK10K49. Putative LRRK2 LoF variants were defined as those classified as high 
confidence by LOFTEE. Variants were manually assessed for call rate, genotyping 
and imputation quality and manually curated to ensure they were expected to 
cause true LoF.

For each of the two genotyped LRRK2 pLoF, we determined carrier status 
by manually inspecting and custom calling the probe intensity plots. For the 
imputed variants, carrier status was determined from the minimac-imputed 
dosage. As these calling methods might produce false positives, we confirmed the 
participants’ genotypes through Sanger sequencing. Individuals with discordant 
genotypes were excluded. This resulted in a cohort of 749 individuals, each of 
whom is a Sanger sequence-confirmed carrier for one of three pLoF variants 
(Supplementary Table 4).

During initial selection and sequencing, expansion of the database led to 
inclusion of a number of additional individuals genotyped for one of the pLoF 
variants, rs183902574. We performed custom calling on these individuals and 
found 354 deemed as high-confidence carriers (Supplementary Table 4). As these 

individuals were not Sanger sequenced, all subsequent analyses were performed 
both including and excluding these individuals.

Participants provided informed consent and participated in the research 
online, under a protocol approved by the institutional review board, Ethical & 
Independent Review Services, an organization accredited by the Association for the 
Accreditation of Human Research Protection Programs.

Testing the power to detect an age effect in 23andMe. As a positive control for 
age analysis, we tested the apolipoprotein E (APOE) Alzheimer’s disease risk allele 
rs429358, which has a known effect on lifespan. This effect is highly significant in 
this dataset (P = 1.2 × 10−211).

Given that the carrier count for rs429358 is much higher than for LRRK2 pLoF, 
we assessed the power of the 23andMe dataset to detect an age effect associated 
with LRRK2 pLoF variants that is of the same effect size as the known effect of the 
APOE allele rs429358 by sampling carriers of this variant. We randomly selected N 
carriers of rs429358 from the 23andMe dataset, performed a Kolmogorov–Smirnov 
test on the age distribution of those carriers versus 4,000,000 noncarriers and 
considered the resulting P value. We repeated this process 100 times and then 
computed the proportion of these simulations with P < 0.05. This tells us our power 
to reject the null hypothesis that APOE does not have an effect on age at α = 0.05, if 
we had N carriers in the dataset. We repeated this for different values of N between 
1,000 and 20,000 (Supplementary Table 6).

Association testing in the 23andMe dataset. Phenotype selection. The 23andMe 
dataset includes self-reported phenotype data for thousands of phenotypes across 
a diverse range of categories. These phenotypes have different sample sizes and 
prevalence, so the power to detect associations varies widely. We began with a 
curated set of 748 disease phenotypes. We then applied a liberal filter based on our 
power to detect an association with carrier status. More specifically, assuming a 
minor allele frequency of 2 × 10−5, we restricted to phenotypes where we had power 
0.1 to detect an association effect with odds ratio (OR) > 1.3 (for binary traits) 
or β > 0.2 (for quantitative traits) at α = 0.0001 significance. This left us with 460 
binary and 14 quantitative phenotypes.

Association testing. For the subset of 366 health-related phenotypes (excluding 
any related to diet, drug use, lifestyle and personality), we first restricted testing to 
individuals for whom we had phenotypic data. We calculated pairwise identity by 
descent (IBD) over all individuals using a modified version of the IBD64 program 
and then iteratively removed individuals until we were left with a set of participants, 
no two of whom shared >700 cM in IBD. We then tested the association between 
phenotype and carrier status, controlling for age, sex, genotyping platform and 
the first ten genetic principle components. We used logistic regression for binary 
phenotypes and linear regression for quantitative phenotypes.

To control for population structure we restricted our analyses to participants 
with >97% European ancestry, but the results did not qualitatively change when we 
dropped this restriction. We also tested associations using only individuals whose 
carrier status was confirmed by Sanger sequencing, but this also did not result in 
any meaningful difference.

A Bonferroni-corrected P value threshold for 366 independent tests of 
1.37 × 10−4 was used to assess statistical significance.

Power analysis. For each phenotype, we computed the theoretical OR we were 
powered to detect (given in Supplementary Tables 5 and 8) as follows: let m be 
the proportion of individuals used in the association study of that phenotype who 
are LRRK2 pLoF carriers and let n0 and n1 be the number of controls and cases, 
respectively. For each OR in the interval (1, 10) at steps of 0.02, we computed the 
power of the Cochran–Armitage trend test to detect an association between a 
variant with minor allele frequency m and OR at α = 0.05, with n0 controls and n1 
cases50. We reported the smallest OR such that the power was ≥0.8.

Analysis of LRRK2 protein levels. Cell culture. All cell lines tested negative for 
Mycoplasma contamination on a monthly basis with the MycoAlert Detection kit 
(Lonza, LT07-118) and MycoAlert Assay Control Set (Lonza, LT07-518). Cells were 
grown at 37 °C with 5% CO2.

Human embryonic stem cell culture. All pluripotent stem cells were approved by 
Harvard ESCRO protocol E00052 and E00067. Human ESCs (hESCs) were obtained 
from WiCell Research Institute (WA01, H1) under a material transfer agreement. 
Cell lines were authenticated by visual inspection of cell morphology with bright-field 
microscopy, staining with anti-Oct4 antibody to determine maintenance of 
pluripotency (Santa Cruz, sc-5279, data not shown), sent to WiCell Research Institute 
after 6 months of passaging or after isogenic cell line generation for karyotyping and 
in some cases PCA of RNA-seq data to confirm clustering with other pluripotent stem 
cell lines. Pluripotent stem cells were plated onto hESC-qualified Matrigel (VWR, 
BD354277)-coated six-well plates, mTeSR1 medium was changed daily (StemCell 
Technologies, 85850) and cells were passaged every 5–7 d with 0.5 mM EDTA.

Lymphoblastoid cell culture. LCLs were obtained from Coriell Biorepository 
(GM18500, GM18501, GM18502, HG01345, HG01346) and approved by the 
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Broad Institute Office of Research Subject Protection protocol 3639. Cell lines were 
authenticated by visual inspection of cell morphology with bright-field microscopy 
and in some cases PCA of RNA-seq data to confirm clustering with GTEx LCLs. 
LCL medium was changed every other day with RPMI 1640 medium (Life 
Technologies), 2 mM l-glutamine (Life Technologies) and 15% FBS (Sigma).

Cardiomyocyte differentiation. Cardiomyocyte differentiation of the control and 
engineered H1 hESC lines was performed according to the protocol by Lian et al.51. 
Briefly, 500,000 cells were plated on hESC-qualified Matrigel (VWR, BD354277), 
grown in mTeSR1 medium for 4 d (StemCell Technologies, 85850) and switched 
to RPMI medium (Life Technologies) with B27 supplement (Life Technologies), 
switching to B27 with insulin at day 7 for the remainder of the protocol. On day 0 of 
differentiation, 12 µM CHIR99021 (Tocris) was applied for 24 h. At day 3, cultures 
were treated with 5 µM IWP2 (Tocris) for 24 h. Bright-field images and movies were 
acquired at day 17 and cells were collected for protein/RNA extraction at day 19.

Isogenic cell line engineering. The following guide and homologous recombination 
(HR) template were delivered into single cell H1 hESCs via nucleofection (Lonza 
4D-Nucleofector X unit) using the P3 Primary Cell kit (V4XP-3024), pulse code 
CA137 and pX459 (Addgene): AATAAGGCATTTCATATAGT and ACAGGCC
TGTGATAGAGCTTCCCCATTGT GAGAACTCTGAAATTATCATCTGACTA
TATGAAATGCCTTATTTTCCAATGGGATTTTGGTCAAGATTAA. Cells were 
allowed to recover from nucleofection in mTeSR supplemented with 10 µM Rock 
Inhibitor (Y-27632, Tocris) overnight. For the following 3 d the cells were treated with 
0.25 µg ml−1 puromycin (VWR) in mTeSR. Cells were then cultured in mTeSR until 
colonies were ready to be split. Engineered cells were split into single cells and plated 
in Matrigel-coated 96-well plates at a density of 0.5 cells per well. Plates were screened 
for colonies 8–10 d after plating and grown until colonies were ready to be split. 
Colonies were then split with 0.5 mM EDTA into two identical 96-well plates, one for 
DNA extraction/PCR/sequencing and one for freezing cells. Once colonies were ready 
to be split, 96-well plates were frozen in mFreSR (Stem Cell Technologies) and stored 
at −80 °C until HR-positive wells were identified. HR-edited cells were then thawed 
and expanded for four generations, validated by Sanger sequencing, karyotyping and 
OCT4 staining before proceeding with cardiomyocyte differentiation.

Off-target analysis of CRISPR/Cas9 engineering. To detect any potential off-target 
effects caused by CRISPR/Cas9 genome editing, WGS was conducted for both 
engineered and control cell lines. DNA extraction, quality control and 30× 
PCR-free WGS were performed by the Genomics Platform at the Broad Institute. 
An AllPrep DNA/RNA extraction kit was used, following its protocol. Alignment, 
marking of duplicates, recalibration of quality scores and variant calling were all 
performed using GATK best practices52.

We identified 157,230 variants in the engineered cell line that were not found 
in the control cell line as candidate variants. For the guide RNA (gRNA) used, we 
defined potential off-target regions as those with a <4-bp mismatch against the 
full 20-bp gRNA sequence (334 regions) and/or a <2-bp mismatch against the 
seed (PAM proximal) 12 bp of the gRNA sequence (5,780 regions), each followed 
by the NGG PAM. We looked for any candidate variant that fell into the potential 
off-target region, resulting in detection of only one variant (chr8-65084564-A-AT) 
that fell onto a region with one mismatch against the seed 12 bp of gRNA sequence 
(chr8:65084560-65084575). No variants with a <4-bp mismatch against the full 
20-bp gRNA sequence or perfect match at the seed region were detected. Because a 
mismatch at the seed region decreases the likelihood of off-target variants and also 
because the single variant we detected is a known variant (rs1161563412) observed 
in the population without apparent phenotypic association, we concluded that no 
major off-target effect exists at the level of violating the main steps of our research. 
All the analysis for the detection of potential off-targets were conducted using 
pybedtools53 and CRISPRdirect54 software.

Western blot analysis. Cell pellets were snap-frozen in liquid nitrogen and stored 
at −80 °C. Cells were Dounce-homogenized in ice-cold radioimmunoprecipitation 
assay buffer (89901; Thermo Fisher Scientific) containing protease inhibitors 
(Halt Protease Inhibitor, Thermo Fisher Scientific). Homogenates were rotated 
at 4 °C for 30 min, followed by centrifugation at 15,000g for 20 min at 4 °C. Equal 
amounts of protein (50 µg) were electrophoresed on 4–20% SDS–PAGE (Bio-Rad) 
and transferred to nitrocellulose membranes. The following antibodies were used 
for immunoblotting: LRRK2 (75-253, UC Davis/National Institutes of Health 
NeuroMab Facility), anti-actinin (A7811, Sigma), GAPDH (sc-25778, Santa Cruz), 
anti-rabbit IgG HRP (7074, Cell Signaling) and anti-mouse IgG HRP (7076, Cell 
Signaling). Immunoblots were developed using enhanced chemiluminescence 
(SuperSignal West Pico Chemiluminescent Substrate, Thermo Fisher Scientific) on 
an Amersham Imager 600.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The gnomAD 2.1.1 dataset is available for download at http://gnomad.
broadinstitute.org, where we have developed a browser for the dataset and provide 

files with detailed frequency and annotation information for each variant. There 
are no restrictions on the aggregate data released. The UK biobank resource was 
accessed under application number 42890.

Code availability
The code used to make the figures is available at https://github.com/macarthur-lab/
gnomad_lrrk2.
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Extended Data Fig. 1 | Ethnicity distribution of LRRK2 LoF carriers in the 23andMe cohort. Bars are coloured according to the detected variant.  
AFR, African/African American; AMR, American/Latino; NFE, non-Finnish European; SAS, South Asian.

Nature Medicine | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


LettersNature Medicine

Extended Data Fig. 2 | Details of CRISPR/Cas9-engineered embryonic stem cells and cardiomyocyte differentiation. a, Sanger sequence of isogenic 
hESC engineered colony for heterozygous LRRK2 variant 10, clone 13 (GRCh37:12-40714897-C-T). The engineered cell line maintains b, a normal 
karyotype, c, normal colony morphology and expression of OCT4, and d, differentiates into the cardiomyocyte lineage. The bright field image of 
cardiomyocytes was captured at day 17 of the differentiation protocol. The cardiomyocyte differentiation was repeated 12 times and the staining for Oct4 
was repeated on 30 independent colonies.
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Extended Data Fig. 3 | IGV visualization of the splice donor variant GRCh37:12-40626187-T-C in the GTEx LRRK2 pLoF carrier exome sequencing 
data and lung tissue RNA-seq data compared to a control GTEx lung RNA-seq sample. The pLoF variant is observed on reads containing an anchoring 
missense variant, GRCh37:12-40626185-A-G (A green and G orange), and these reads are presenting normal splicing as seen in the control RNA-seq 
sample.
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Extended Data Fig. 4 | Sex distribution of LRRK2 pLoF carriers, G2019S risk allele carriers and non-carriers in the UK Biobank. Males are shown in dark 
grey and females in light grey.
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Extended Data Fig. 5 | Age distribution of LRRK2 pLoF carriers, G2019S risk allele carriers and non-carriers in the UK Biobank. Data are shown as 
overlapping density plots.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
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Data collection No software was used to collect the data used in this study.

Data analysis Data analysis Custom code was used to analyse data and create the figures in this study. This code has been shared in a GitHub 
repository. The Genome Analysis ToolKit (GATK) was used to analyses sequencing data generated from CRISPR edited cell lines, according 
to best practice guidelines. Pybedtools and CRISPRdirect software were used to detect potential off-target edits. The Integrative genome 
viewer (IGV) and Alamut software were used to curate variants.
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Life sciences study design
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Sample size This study was opportunistic, and involved secondary use of all available data. No sample size was predetermined. We have included the 
theoretical odds ratios that our sample size is powered to detect for our pheWAS study with the 23andMe data, and a power analysis for our 
age distribution analysis to demonstrate the size of effect that our sample size can discover.

Data exclusions Identified loss-of-function variant carriers were extensively curated and variants excluded if they were flagged as low-confidence by the Loss-
of-function Transcript Effect Estimator (LOFTEE), or failed a manual inspection of variant quality metrics, read distribution and the presence of 
nearby variants that could rescue the loss-of-function effect. An additional variant was removed as it was shown to not fully disrupt splicing in 
the GTEx dataset. Variants from 23andMe were excluded if there were fewer than 5 Sanger validated carriers. Finally, one sample was 
removed from the UK Biobank that was a carrier of both a LRRK2 pLoF variant and the G2019S risk allele.

Replication We did not attempt to reproduce any findings in a separate dataset, instead all available data was used for discovery analyses.

Randomization As this was a population-based study, no randomization was performed.

Blinding Blinding was not relevant for this population-based study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
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Eukaryotic cell lines
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Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used The following antibodies were used for immunoblotting: LRRK2 (1:500, 75-253, UC Davis/NIH NeuroMab Facility, lot# 

455.7JD.04, clone N241A/34), α-actinin (1:5000, A7811, Sigma, Batch# 024M4758, monoclonal EA-53), GAPDH (1:10,000, 
sc-25778, Santa Cruz, FL-335), anti-rabbit IgG HRP (1:5000, 7074, Cell Signaling), and anti-mouse IgG HRP (1:5000, 7076, Cell 
Signaling).

Validation These antibodies were selected based on their use in other publications and validation through IF and WB by the companies 
providing the antibodies. Company provided information is as follows: 
  
LRRK2: Immunogen: Fusion protein amino acids 970-2527 (C-terminus) of human LRRK2 (also known as Leucine-rich repeat 
serine/threonine-protein kinase 2, Dardarin and PARK8, accession number Q5S007) Mouse: 89% identity (1393/1557 amino 
acids identical) Rat: 89% identity (1392/1557 amino acids identical) <30% identity with LRRK1 Epitope mapped to within amino 
acids 1836-1845 (EGDLLVNPDQ) by PEPperPRINT through work funded by The Michael J. Fox Foundation for Parkinson’s 
Research. Monoclonal antibody info: Mouse strain: Balb/C Myeloma cell: SP2/0 Mouse Ig Isotype: IgG2a NeuroMab Applications: 
Immunoblot, Immunocytochemistry, Immunohistochemistry and Immunoprecipitation Species Reactivity: human, rat, mouse 
MW: > 200 kDa Immunoblot versus crude membranes from adult rat brain (RBM) and wild-type (WT) and LRRK2 KO mouse 
brains probed with N241A/34 (left) and K89/41 (right) TC supe. Mouse brain samples provided by Xiaojie Li, Ted Dawson and 
Valina Dawson (Johns Hopkins University). Adult rat brain immunohistochemistry (with antigen retrieval via sodium citrate 
pretreatment). 
  
α-actinin: from product sheet, antibody validated for Immunoblotting (chemiluminescent) in rat leg muscle at 1:5000, 100kDa 
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GAPDH: GAPDH (FL-335) is recommended for detection of GAPDH and GAPDH-2 of mouse, rat, and human origin by Western 
Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 μg per 100-500 μg of total protein (1 ml 
of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50- 1:500) and immunohistochemistry (including 
paraffin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500). Molecular Weight of GAPDH: 37 kDa. Positive 
Controls: 293T Lysate: sc-159909, Hep G2 cell lysate: sc-2227 or KNRK whole cell lysate: sc-2214. 
  
anti-rabbit IgG HRP: Product Description - Designed for use with rabbit polyclonal and monoclonal antibodies, this affinity 
purified goat anti-rabbit IgG (heavy and light chain) antibody is conjugated to horseradish peroxidase(HRP) for chemiluminescent 
detection.  This product is thoroughly validated with CST primary antibodies and will work optimally with the CST western 
immunoblotting protocol, ensuring accurate and reproducible results. 
Product Usage Information - Recommended Antibody Dilutions: 
1:1000–1:3000 
20X LumiGLO® Reagent and 20X Peroxide #7003 1:1K–1:3K 
SignalFireTM ECL Reagent #6883 1:1K–1:3K 
SignalFireTM Plus ECL Reagent #12630 1:5K-1:15K 
SignalFireTM Elite ECL Reagent #12757 1:10K-1:20K 
  
anti-mouse IgG HRP: Affinity purified horse anti-mouse IgG (heavy and light chain) antibody is conjugated to horseradish 
peroxidase(HRP) for chemiluminescent detection.  This product is thoroughly validated with CST primary antibodies and will 
work optimally with the CST western immunoblotting protocol, ensuring accurate and reproducible results. 
Product Usage Information - Recommended Antibody Dilutions: 
1:1000–1:3000 
20X LumiGLO® Reagent and 20X Peroxide #7003 1:1K–1:3K 
SignalFireTM ECL Reagent #6883 1:1K–1:3K 
SignalFireTM Plus ECL Reagent #12630 1:5K-1:15K 
SignalFireTM Elite ECL Reagent #12757 1:10K-1:20K 

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) Human embryonic stem cells (hESCs) were obtained from WiCell Research Institute (WA01, H1) under an MTA. 
Lymphoblastoid cell lines (LCLs) were obtained from Coriell Biorepository (GM18500, GM18501, GM18502, HG01345, 
HG01346) and approved by the Broad Institute Office of Research Subject Protection protocol #3639.

Authentication Cell lines were authenticated by visual inspection of cell morphology with brightfield microscopy, staining with anti-Oct4 
antibody to determine maintenance of pluripotency (Santa Cruz, sc-5279, data not shown), sent to WiCell Research Institute 
after 6 months of passaging or after isogenic cell line generation for karyotyping, and in some cases PCA of RNA sequencing 
data to confirm clustering with other pluripotent stem cell lines or lymphoblastoid cell lines, as appropriate.

Mycoplasma contamination All cell lines tested negative for mycoplasma contamination on a monthly basis with the MycoAlertTM Detection kit (Lonza, 
LT07-118) and MycoAlertTM Assay Control Set (Lonza, LT07-518). Cells were grown at 37°C with 5% CO2.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used.

Human research participants
Policy information about studies involving human research participants

Population characteristics As an opportunistic collection of data, the participants in this study were not selected based on age, gender, or genotypic 
information. Individuals in the gnomAD dataset have an average age of 53.6 years and 45.8% are female. Individuals were mainly 
recruited from complex disease studies. Any individuals with severe pediatric disease were removed. In the UK Biobank, 
individuals have an average age of 56.8 years and 54.4% are female. 23andMe individuals have an average age of 48.8 years and 
54.5% are female.

Recruitment Participants were either customers of the personal genetics company 23andMe, Inc., who consented to participate in research 
and answer survey questions online, were consented participants of the UK Biobank, or were aggregated as part of the genome 
aggregation database (gnomAD). Individuals from 23andMe were identified based on their genotyping results and as such were 
not specifically recruited. Therefore they share the same selection biases such as under representation of certain ethnic and 
socioeconomic groups relative to the general population. This limits our ability to make any firm conclusions in those groups. 
Similar biases exist within the gnomAD and UK Biobank datasets which represents secondary use of available sequencing.

Ethics oversight 23andMe - Participants provided informed consent and participated in the research online, under a protocol approved by the 
external AAHRPP-accredited IRB, Ethical & Independent Review Services (E&I Review). 
gnomAD - We have complied with all relevant ethical regulations. This study was overseen by the Broad Institute’s Office of 
Research Subject Protection and the Partners Human Research Committee. Informed consent was obtained from all participants. 
UKBB - This work was done as part of approved UKBB project #42890

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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