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ABSTRACT Echocardiogram (echo) is the earliest and the primary tool for identifying regional wall motion
abnormalities (RWMA) in order to diagnose myocardial infarction (MI) or commonly known as heart attack.
This paper proposes a novel approach, Active Polynomials, which can accurately and robustly estimate the
global motion of the Left Ventricular (LV) wall from any echo in a robust and accurate way. The proposed
algorithm quantifies the true wall motion occurring in LVwall segments so as to assist cardiologists diagnose
early signs of an acute MI. It further enables medical experts to gain an enhanced visualization capability
of echo images through color-coded segments along with their ‘‘maximum motion displacement’’ plots
helping them to better assess wall motion and LV Ejection-Fraction (LVEF). The outputs of the method can
further help echo-technicians to assess and improve the quality of the echocardiogram recording. A major
contribution of this study is the first public echo database collection composed by physicians at the Hamad
Medical Corporation Hospital in Qatar. The so-called HMC-QU database will serve as the benchmark for
the forthcoming relevant studies. The results over HMC-QU dataset show that the proposed approach can
achieve 87.94% accuracy, 92.86% sensitivity and 87.64% precision in MI detection even though the echo
quality is quite poor and the temporal resolution is low.

INDEX TERMS Echocardiogram, left ventricular wall motion estimation, myocardial infarction.

I. INTRODUCTION
Early detection of an acute myocardial infarction (MI) [1], [2]
or in general a coronary artery disease (CAD) requires an
accurate estimation of the regional and global motion of the
left ventricle (LV) of the heart. Early and fundamental signs
of a CAD are believed to show in LV wall motion as abnor-
malities in one or several segments of the LV wall, where
a segment may move ‘‘abnormally’’ or ‘‘non-uniformly’’.
This abnormality can be defined as a ‘‘weak motion’’, known
as hypokinesia, ‘‘no motion’’, known as akinesia or ‘‘out
of sync’’, known as dyskinesia. The primary tool to detect,
identify and quantify such regional wall motion abnormali-
ties (RWMA) is the patient’s echocardiogram (echo), which
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is notoriously difficult, and subjective and, therefore, highly
operator dependent. Although RWMA is the first abnormality
to set in with the onset of myocardial ischemia, preceding
metabolic and electrocardiographic abnormalities, it is cur-
rently only used as a secondary diagnostic tool in patients
with non-diagnostic ECG or when diagnosis is not evidenced
(or shown/proven) by ‘‘standard’’ means, despite the fact
that echo and particularly myocardial strain imaging provide
an early diagnosis of an acute MI when RWMA is present.
The reasons for not using echo as a first line diagnostic
tool, for suspected MI patients, are largely interpretational.
Echocardiographic interpretation, such as ultrasound scan,
is highly operator-dependent as it depends upon the visual
estimation of the left ventricle (LV) muscle-wall motion, its
radial displacement and deformations. As a result, the final
diagnosis suffers severely from the high inter-observer and
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intra-observer variability, making it prone to human errors
and misjudgments.

To address these challenges, there is a need for an auto-
mated, robust and accurate tool that can assist cardiologists
and echo-technicians understand and interpret echo more
accurately, which may lead to saving lives. Despite the need,
there are only few studies in the literature which proposed
an automatic method for the LV wall motion estimation and
abnormality detection from echo [3]. This is not surprising
because first of all, there is no publicly available benchmark
echo database with ground-truth labels. Second, capturing the
global motion of an arbitrary shaped LV segment is difficult
especially when the quality and/or spatial/temporal resolu-
tion of the echo is low. Finally, ‘‘motion estimation’’ in a
video is known to be an ill-posed problem [3]–[5] even for
natural videos with distinct objects/textures. This is true both
for dense (pixel-based) or local (few pixels or block-based)
motion estimation. Therefore, for a typical echo, which may
be too noisy, estimating the true motion of the entire LV wall
from such local (group of) pixels will be difficult and in some
cases, impossible [6]. A recent study [7] has attempted to
address this problem by two Machine Learning approaches.
Both approaches have obtained low accuracies varying 57%
to 85.4% and specificities varying 47% to 77.6% despite the
fact that the echo videos were in relative high quality and
pre-processed.

Due to these limitations and drawbacks, echocardiographic
strain and strain-rate imaging (deformation imaging), instead,
became the main focus of many studies as a non-invasive
method for the assessment of myocardial function. LV wall
motion and wall deformation (strain) are different assess-
ments. First of all, while the motion can be estimated and
assessed by human experts in a subjective way, this is not
possible for the strain because it represents the amount (and
rate) of deformation of the LV wall such as longitudinal
shortening (negative strain) and radial thickening (positive
strain) during myocardial contraction. A human eye, no mat-
ter how trained and experienced the practitioner can be, can-
not sense or measure this from an echo. On the other hand,
strain and strain rate (SR) measurements are also derived
from the myocardial velocities over the LV wall. The most
common technique is called ‘‘Speckle Tracking’’ [6]–[23],
which attempts to capture the motion by tracking ‘‘speckles’’
(natural acoustic markers) in the 2D ultrasonic image (echo).
Speckles are the brightest patches and they usually are about
20 to 40 pixels. In prior studies, they are assumed to be
‘‘stable’’ from frame to frame. So, under the assumption of
an accurate frame-by-frame tracking, the change of a speckle
position gives its velocity and thus the LV wall motion is
somewhat reflected by the motion of the speckles. They are
chosen at the LV segment borders to produce the motion
curves from which (negative) strain (i.e., shortening) and SR
can be estimated. Therefore, the accuracy of the strain and SR
estimation, too, solely depend on the accuracy of the motion
estimation (and tracking) of each joint speckle during one
or more cardiac cycles. Although the motion estimation of

a local group of pixels is much easier than the estimation of
the global motion of the entire LV wall, it still suffers from
this ill-posed nature of the problem, e.g., due to small sensor
movements, medium to very high noise levels, poor temporal
and spatial resolution, and other sources of distortions [6]. For
example, the minimum frame rate required for a reasonable
speckle tracking is 60 fps. A higher frame rate is another
challenge since it reduces the spatial resolution resulting in
poor tracking. Moreover, robustness is a crucial issue since it
is a well-known fact that different speckle tracking algorithms
produce different results. In this study, we shall demonstrate
that even when robust key-points are used instead of those
speckles, robustness still remains the main problem. Even-
tually, the curves resulting from strain imaging are highly
variable and their interpretation for diagnosis is subjective
and experience-dependent [11]. Even under ideal conditions,
many studies [11], [19]–[23] reported around 80-85% sen-
sitivity rate for the detection of the infarcted segments. For
instance, in an earlier study on 30 patients Leitmann et al. [19]
found that 80.3% of the infarcted segments and 97.8% of
normal segments were adequately recognized by speckle
tracking based 2D-strain imaging. Even when the Doppler
echo is used, the longitudinal Doppler strain data displayed
85% sensitivity and specificity for the detection of infarcted
segments [20]. As a result, despite some promising and
recently published studies [21]–[23], strain imaging based on
speckle tracking is not ready yet for routine assessment of MI
viability [11].

In this study, we propose a novel and fully automatic
(unsupervised) Computer Vision method, called Active Poly-
nomials (APs) that can capture the global motion of the LV
wall in a robust and accurate way. Our objective is to mimic
an expert cardiologist who can analyze the echocardiogram
records by visually searching for any RWMA for the early
detection of an acute myocardial dysfunction. While the
cardiologist can only perform this subjectively, APs can be
used to capture and measure the true motion of the LV wall;
therefore, it can identify and quantify the regional motion
abnormalities. In order to accomplish this, APs are formed
on the endocardial boundary of the LV wall and chamber.
This boundary is the most promising salient feature of an
echo where the maximum contrast usually occurs. In order
to capture this boundary, we use the Active Contour (or
snake) [24] with an artificial constraint embedded on the LV
wall with the Ridge Polynomials (RPs). RPs will ensure a
converging snake initiated in the LV chamber; however, due
to the high noise level, the snake may still partially fail to
converge over the endocardial boundary of the LV wall. This
is why we shall then fit a 4th order polynomial over the snake
in order to obtain the APs that can cover the boundary of the
entire LV wall in a smooth and continuous manner. Once this
is repeated for all frames in the echo, then the global motion
of the segments on the LV wall can be modelled by ‘‘motion
activity’’ curves and their maximum displacement can be
measured. While the APs can be used as an automatic tool
to detect and identify objectively a possible segment motion
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abnormality (and hence to identify the infarcted segments
causing a possible MI), it can also be used as an enhanced
visualization platform over the raw echo to assist cardiolo-
gists or echo operators for a more accurate diagnosis and echo
quality assessment. Finally, the proposed method is tested
extensively over the first benchmark echo dataset, HMC-QU,
solely created for this purpose by the physicians in Hamad
Medical Corp. (HMC) Hospital and researchers in Qatar Uni-
versity (QU). HMC-QU encapsulates 160 echos, 91 of which
are from acute MI patients and the rest from normal (non-MI)
patients. HMC-QU is the first publicly available dataset and
is the largest by far among the non-public ones used in prior
works [6]–[23]. The 4-chamber view echos of theMI patients
are labelled by a group of physicians in HMC Hospital, and
the proposedmethod is evaluated based on these ground-truth
segment labels of each echo.

The rest of the paper is organized as follows. Section II
provides preliminary work on MI detection on echo and
Active Contours. Section III presents the proposed LV wall
motion estimation for MI detection and identification. The
benchmark echo dataset, HMC-QUwill first be introduced in
Section IV. Then both quantitative and qualitative evaluations
of the proposed approach over the HMC-QU dataset will be
detailed and the MI detection performance will be analyzed
together with a computational complexity analysis. Finally,
Section V concludes the paper and suggests topics for future
research.

II. PRELIMINARIES
A. MI DETECTION BY LOCAL MOTION ESTIMATION
MI is a major cause of death worldwide and gaining momen-
tum especially during the last decade. In pathology,MI can be
defined as myocardial cell death due to prolonged ischemia.
When a coronary artery is blocked, the CAD shows the first
signs of perfusion abnormalities due to the lack of oxygenated
blood flow to the LV tissue within minutes from the occlusion
of the coronary artery, leading to severe ischemia, which pro-
duces regional wall motion abnormalities (RWMAs). These
RWMAs can be visualized by echo. This is the onset of a
MI that can be even before the patient feels a chest pain or
angina. That is why echo is an essential tool to detect the
onset of myocardial ischemia and to identify the arteries with
blockage.

In an echo, there are different standardized LV seg-
mentation models, such as 16-segment, 17-segment, and
18-segment models. The American Heart Association Writ-
ing Group on Myocardial Segmentation and Registration for
Cardiac Imaging recommendation is to use the 17-segment
model [18] shown in Figure 1. In this study, the proposed
technique has been developed and extensively tested on the
4-chamber view. As illustrated in Figure 2, the LV has 7 seg-
ments where 6 of them except the apical cap (segment-4)
exhibit a uniformmotion activity. Prior studies that attempt to
compute the longitudinal strain by speckle-tracking echocar-
diography fix a speckle at each segment boundary and attempt
to track it during one or few cardiac cycles. Due to the

FIGURE 1. The American Heart Association Writing Group on Myocardial
Segmentation and Registration for Cardiac Imaging recommendation for
the 17-segment model [18].

FIGURE 2. The LV wall and its borders (left) in the 4-chamber view.
According to the American Heart Association Writing Group on Myocardial
Segmentation and Registration for Cardiac Imaging recommendation [18]
the segmentation of the LV wall and the start-end points (right).

aforementioned limitations and drawbacks, even in ideal
cases (i.e., low noise, high frame rate, and full contrast),
the speckle tracking methods can achieve around 80-85%
sensitivity and specificity levels.

In this study, we first investigated whether more stable
and robust key-points can indeed cure the drawbacks of
speckles. So, instead of a motion analysis based solely on
a single speckle on each segment boundary along with its
local region, we extract a large number of highly robust
key-points on the LV wall by using the method called,
‘‘Speeded up Robust Feature’’ (SURF) [25], which belongs
to the family of well-known key-point extractors in Computer
Vision [25]–[28] including the first and perhaps the most
popular one, ‘‘Scale Invariant Feature Transform’’ (SIFT).
Juan and Gwun in [25] evaluated the performances of SIFT,
PCA-SIFT and SURF methods for scale, rotation, and affine
transforms as well as for blur and illumination changes. This
study has shown that SIFT performed slightly superior in
most experiments but with the slowest speed (highest com-
putational complexity). Some other experiments have shown
that SURFwas the fastest and themost stable [26]. Obviously,
both SIFT and SURF points show a superior robustness over
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the naïve speckles with the sole feature of ‘‘high brightness’’
which may change abruptly due to noise, sensor disturbance
or other possible factors.

Our aim is to investigate whether a large number of
key-points can indeed be used to capture the global motion
of the LV wall. Accordingly, we can also find out whether
they can be used to compute the strain in a robust and accurate
manner. For the former, the results have shown that especially
when the noise level is high, even the majority of the robust
SURF points may lead to erroneous tracking as shown in Fig-
ure 3.While SURF points are coherent and able to capture the
global motion for those echos on top of the figure, the zoomed
sections of the echos on the bottom clearly show that the
majority of the SURF points, despite their robust and stable
nature, could not be tracked due to the high level of noise
appearing on the next frame. Obviously for the latter aim,
tracking of SURF points on the boundaries of the segments
may fail too and this will result in erroneous strain compu-
tations, which in turn yield misdiagnosis of the heart status.
This shows that such ‘‘bottom-up’’ approaches to capture the
true motion of the LV wall using the local key-points may
neither be robust nor reliable for MI detection. This clearly
indicates that the global motion should instead be captured
in a ‘‘top-down’’ fashion. The two possible solutions for this
approach are the (accurate) segmentation of the LV wall or
extraction of the entire endocardial boundary at each frame of
the echo. For the latter approach, in an earlier study [29], the
anchor points over the LVwall boundaries (both endocardium
and epicardium) are manually located and tracked through
the rest of the echo. There are few recent attempts for the
former using recent Deep Learning paradigms [30]–[33];
however, they cannot still guarantee an accurate segmentation
especially when the echo quality is poor. Another interesting
attempt was in [34] where a non-rigid image registration
method on two-dimensional echocardiographic images was
proposed for computing the left ventricle (LV) myocardial
motion field over a cardiac cycle. The results were evaluated
only over 24 subjects (10 healthy and 14 with pathology).

In this study, we shall focus on the latter, the extraction
of the endocardial boundary, which can indeed be performed
with a high accuracy using the proposed approach. The start-
ing point for this is the Active Contours [24], which will be
reviewed next.

B. ACTIVE CONTOURS
An active contour (or snake) is an elastic 2D spline whose
contour is guided by internal (smoothness and curvature)
and external (image gradients and edges) constraints. The
problem is transferred to the minimization of a joint (total)
energy, ET , that can be expressed as follows:

ET = EI + γEX =
∫
s
(EI (v (s))+ γEX (v (s)) ds. (1)

where EI is internal and EX is external energy terms that
define the respective constraints, γ is the regularization coef-
ficient. In this study, we used a more recent and improved

FIGURE 3. Between the consecutive two echo frames, an accurate (top)
vs. erroneous (bottom) tracking of the SURF points on the LV wall due to
high noise.

FIGURE 4. Snake method for endocardial LV boundary extraction on
6 echo frames. Reasonable (top) vs. erroneous (bottom) results.

version of snake [34] the details of which are covered in
Supplementary (A).

Snake method has been directly used for LV segmentation
in a recent study [35]; however, it has only been tested on
the frames of a single echo. Although the result was satis-
factory, obviously such a limited evaluation is not sufficient.
In three studies [37]–[39] a variant of the snake algorithm, the
so-called B-spline snake method has been used to compute
the left ventricular volume and ejection fraction estimation.
Especially when the quality of echo degrades, e.g., excessive
noise and/or low or no contrast on the LV wall, the snake
may fail to converge to the true boundary of the LV wall.
Typical examples can be seen in Figure 4 (bottom) where the
snake not only failed to converge to the true boundary due
to lack of contrast, it also presents severe noise sensitivity on
the boundaries as shown by the white arrows. This basically
demonstrates the fact that the ‘‘snake-only’’ approach can-
not exhibit the required robustness and accuracy to capture
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FIGURE 5. The overview of the proposed method for MI detection and identification. The three end-points are manually pointed for the first frame of the
input echo and the RPs and APs are automatically extracted and then used for MI detection. The yellow shaded blocks generate the outputs on the
right-most side.

the LV endocardial boundary along with its global motion.
In the next section, we shall detail how the proposed method
addresses effectively this drawback by using the proposed
approach with Active Polynomials (APs).

III. METHODOLOGY
The proposed method consists of two consecutive phases,
as illustrated in Figure 5. The first phase is the LV wall
extraction. In the second phase, using the APs formed on the
LV wall, 7 segments are extracted for MI detection, identifi-
cation and for further enhanced visualization capabilities to
assist cardiologists perform their diagnosis. In the following
sections, we shall detail each phase.

A. LV WALL EXTRACTION
As illustrated in Figure 5, the formation of Active Polyno-
mials (APs) is performed in three stages over each frame of
the echo. The first stage is the formation of an artificial wall,
Ridge Polynomials (RPs), to prevent the divergence of the
snake. The second stage is the formation of the snake within
the LV. Finally, the third stage is the composition of the APs
over the snake. In the following sub-sections we shall detail
each stage.

1) RIDGE POLYNOMIALS
The proposed approach to capture the endocardial boundary
is designed to address the two drawbacks of the active con-
tours on echos. The first and the foremost problem is the par-
tial divergence of the snake when the contrast is poor, e.g., see

the three echos in Figure 4 (bottom) where the snake fails to
converge to the boundaries of segments 4, 5 and 6. To prevent
this, we artificially enhance the contrast by building a white
wall on top of the brightest section (i.e., the ridge) of the LV
wall. In those problematic echos in the figure, the ridge can
even be invisible to the naked eye due to the lack of contrast;
however, it still exists with low brightness values while still
having the maximum intensity in a local neighborhood. So,
the idea is to build a sufficiently thick wall (e.g. 6 pixels)
by incrementally increasing the intensity value (e.g. 200 to
255 for 8-bit image representation) on top of the connected
series of brightest pixels (i.e. the ridge). To obtain the anchor
points on the ridge, we use the start and end reference points
as illustrated in Figure 2 along with the topmost point of
the apical cap. For the first frame of the echo, these three
points are manually given. For the 2nd frame onwards until
the last frame of the echo, their positions are automatically
tracked by the Kanade-Lucas-Tomasi algorithm, which tracks
the selected points from the previous to the current frame
(forward tracking) and, then to the previous frame again
(backward tracking) to compute a bidirectional error. The
error is defined as the distance from the original to the final
location after the backward tracking. The tracked points are
valid when the given threshold (e.g., set to 9 for our case)
is satisfied with the final error. In order to determine the
other anchor points in between the reference points, as shown
in Figure 6 considering that the LV boundary is divided into
left and right parts equally from the apex point, two lines
are fitted from the top to the start and end points. The ridge
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FIGURE 6. The 14 anchor points (yellow) on LV wall are automatically
located at the maximum-intensity points of the LV wall (left). The final
ridge polynomial (RP) is then fit over the anchor points (right).

(maximum intensity) points are detected as moving the
14 equally distanced anchor points towards the boundary.
New set of anchor points are defined by stretching the anchor
points horizontally to obtain a pair of left and right anchor
points shown in Figure 6. Finally, over the left and right
anchor points, two 4th order ridge polynomials (RPs) are
initially fit which will constitute the borders of the search
region, i.e., the ‘‘Region of Interest’’ (RoI) inside of which the
actual ridge points will be searched. Once the ridge points are
detected, the 4th order ridge polynomial is fit to these ridge
points using the regularized Least-Square (LS) optimization.
The details of fitting an nth order polynomial over m > n+ 1
points using regularized LS method is given in Supplemen-
tary (B). The RPs are then used as the artificial wall (barrier)
so that the snake is guaranteed to converge to the LV wall.

2) THE CONSTRAINED SNAKE
As illustrated in Figure 7 (left), the snake is initialized as a
mini-form of the RPs within the LV wall which is encap-
sulated by the actual RPs. After 300 iterations, the snake
converges to the true endocardial boundary of the LV wall in
Figure 7 (right). In this particular echo, without the artificial
wall made by the two RPs, the snake would have diverged on
the right side of the LVwall due to lack of contrast of the echo
shown in this figure. In this echo and on several others where
the snake is divergent, the artificial wall solved this problem.
However, the second drawback of the snake approach, the
high noise sensitivity, is still evident. The snake may fail to
converge to the true boundary due to the noisy speckles within
the blood chamber. Furthermore, excess noise level usually
makes the snake unnecessarily detailed at the boundaries as
shown in Figure 4 (white arrows at the bottom). In order
to address these drawbacks, the formation of the proposed
Active Polynomials (APs) will be detailed in the next sub-
section.

3) ACTIVE POLYNOMIALS
Although some sections of the snake suffer from occasional
‘‘over-fitting’’ problem possibly due to the excess noise,
even such a problematic snake can still serve as the initial
‘‘reference’’ to capture the endocardial boundarywith smooth
polynomials.

FIGURE 7. The automatic initialization of the snake inside the two RPs
(t = 0) and the final snake is converged after N = 300 iterations.

FIGURE 8. Snake points (left) are used to create a pair of APs (right) that
are then partitioned into 7 segments of the 4-chamber view.

For this purpose, a pair of 4th order polynomials, for the
left and right side of the LV wall are fit to the points of the
snake using the regularized LS. For the left one, the 9 equally
spaced snake points between the start to apex, and for the
right one, between apex and the end are used. Since each
polynomial will assume a smooth shape of the active con-
tour, we call them Active Polynomials (APs). As shown
in Figure 8, the two parts of the snake (purple and yellow)
are used to compose a pair of APs and finally, they are used
to create 7 segments (segments 1 to 7 counter-clockwise) of
the 4-chamber view echo.

B. MI DETECTION, IDENTIFICATION AND VISUALIZATION
This is the second block in Figure 5 which uses the output of
the first block, APs, to perform the global motion analysis.
APs are divided into 7 segments as shown in Figure 8 (right)
and their movement (displacement) is monitored. Once the
global motion of each segment is captured by simply eval-
uating the ‘‘rate of displacement’’, we can mimic a typical
cardiologist’s diagnosis of a motion anomaly by detecting
which segment or segments are showing signs of abnormal
(non-uniformity or lack of) motion activity. However, before
going into motion analysis, the LV Ejection-Fraction (LVEF)
ratio is first computed as follows:

LVEF =
EDV − ESV

EDV
≈ 1−

Amin
Amax

(2)

where EDV and ESV are the end-diastolic and end-systolic
volumes, respectively. In a 2D echo, one can estimate them
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by computing Amin and Amax , which are the minimum and
maximum area of the LV chamber, respectively. They are
proportional to the total number of pixels encapsulated by
the snake or by the two APs. The recommendation for LVEF
to indicate a ‘‘reference’’ (normal) and ‘‘severely abnormal’’
LV activities for both men and women, are LVEF ≥ 55%
and LVEF < 30%, respectively [40]. Following this recom-
mendation, the proposed motion analysis will no longer be
performed when LVEF ≥ 55% and the echo can directly be
classified as normal. However, for the lower limit, we empir-
ically use a more conservative threshold, LVEF ≤ 15, which
is obviously a sensitive marker of myocardial dysfunction
and a clear sign of MI. For this severe case of myocardial
dysfunction, the echo with all the segments can directly be
classified as MI. Therefore, motion analysis will only be
performed when 55%> LVEF> 15% and the outcome of the
motion analysis will determine whether the echo is normal or
MI. In this case, if there is at least one myocardial segment
with abnormal (hypokinesia or akinesia) motion activity then
MI is detected and the corresponding arteries with blockage
can be identified.

When a cardiologist visually evaluates the motion activity
of a 4-chamber view echo, the infarcted segments that show
a ‘‘reduced’’ motion (or almost no motion at all) compared
to other segments are identified either as hypokinesia or
akinesia. The motion assessment is obviously independent
from the resolution of the echo. The study over the seg-
ments labeled as abnormal by the cardiologists in HMC-QU
database has indicated that those segments that move less than
20% of the minimum interval to the corresponding segment
on the other side of the chamber are diagnosed as MI. Since
the minimum interval between corresponding segments is
resolution dependent, the ratio of maximum displacement to
this minimum interval will therefore allow us to mimic the
cardiologist’s evaluation in a quantitative way.

Let dS be the maximum displacement of the segment,S
where S ∈ {1, 2, 3, 5, 6, 7}. Let dmin(Sleft ,Sright )

be the minimum
interval during a cardiac cycle of an echo of the corresponding
segments, SleftandSright where Sleft = 1, 2or3 and Sright =
5, 6or7, respectively. Since the maximum motion (of a seg-
ment), dS , is proportional to the (maximum) displacement
occurred from end-diastole to end-systole, the proposed
method computes dS as the maximum displacement of each
segment and normalizes them by dmin(Sleft ,Sright )

. Both measure-
ments are one-pixel accurate and the ratio is then compared
with an empirical threshold (e.g., 19%) that is selected just
below 20%.

Figure 9 illustrates a sample echo from a MI patient where
cardiologists labeled segment 3 as akinetic, and the rest as
normal. The two APs extracted for the frames correspond-
ing to end-diastole and end-systole are shown in the figure.
Knowing the end-diastole as the first frame, one can easily
find the frame of the end-systole by simply searching for
the maximum overall segment displacement. However, in this
study instead of considering the segments in the end-systole
frame, we search for the maximum displacement of each

FIGURE 9. Computation of the normalized maximum displacement of the
6 segments of the 4-chamber view echo with the ground-truth labels
(normal = 1, infarcted = 2). The normalized motion ratio is computed for
each segment by measuring the maximum displacement of the uniformly
sampled nS = 5 points on the segment.

individual segment, which may not necessarily come from
the end-systole frame. Experiments show that most of the
segment-wise maximum displacement indeed occurs at the
end-systole frame; however, occasionally it may also occur
at the frames within a close vicinity (e.g., ±1-2 frames). It is
straightforward to notice the ‘‘reduced’’ motion from the gap

between
(

dS
dmin(sleft ,Sright )

)
, ratios of segment 2 and the rest where

the latter group has ratios above 19%. Therefore, the results
are in full agreement with the ground-truth labels made by the
cardiologists.

In order to compute the maximum displacement of a seg-
ment, at first, uniformly sampled nS points are taken over the
segment and then the segment displacement can be approx-
imated by averaging the point-wise distances, as expressed
below for the 6th segment (S = 6) shown in the figure (e.g.,
for nS = 5).

dS =
1
nS

nS∑
i=1

dS (i) (3)

where dS (i) is the ith point’s maximum displacement of the
segment S = 2 as shown in the figure. There are several
options to compute individual point-wise distances, dS (i).
When they visually assess echo, cardiologists consider the
motion in both x and y directions. Therefore, we can use L1,
L2 or L∞ norms to compute dS which are expressed as below.

dL1 = |x2 − x1| + |y2 − y1|

dL2 =
√
(x2 − x1)2 + (y2 − y1)2

dL∞ = max (|x2 − x1| , |y2 − y1|) (4)
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FIGURE 10. Segment displacement plots (normalized motion of each
segment vs frame no.) drawn for one cycle (end-systole to end-diastole)
for the echo shown in Figure 9.

where (x1, y1) and (x2, y2) are the x- and y-coordinates of the
corresponding ith points on the segment at the end-diastole
and end-systole frames, respectively. A closer look will reveal
the fact that dL∞ does not exactly mimic the aforementioned
way the cardiologist assess motion since dL∞ only reflects
the distance in either x- or y-direction. Between the remaining
norms, we use the L2 norm for maximum displacement cal-
culation since it is the natural distance metric for the human
perception. On the other hand, the minimum interval during
a cardiac cycle is calculated using L1 norm in order to fit the
ratios of segments in [0,1] more precisely.

An alternative way to assess the segment motion is the
segment displacement plots as shown in Figure 10, which
show the displacement of each segment during one cardiac
cycle. This plot is in fact more informative than the maximum
motion ratios given in Figure 9 because the instantaneous
and average motion of each segment can also be computed
besides their maximum displacements. However, we still per-
form our motion analysis based on the maximum displace-
ment due to the simple fact that the derivative operator is
noise sensitive and the displacement curves will inevitably
bear certain level of measurement noise.

Finally, the proposed method presents several enhanced
visualization options that will significantly assist medical
experts perform their diagnosis. For instance, the color-coded
segments formed over the two APs provide a cardiologist
with a better motion estimation than the one from the raw
(gray-scale) echo since the cardiologist can now see, dis-
tinguish and assess each individual segment displacement
and (instantaneous) motion in a visually enhanced manner.
Another bi-product of the proposed method is the maximum
displacement snapshot as shown in Figure 9, which allows
cardiologists to visualize the displacement anomaly.

IV. RESULTS
A. HMC-QU BENCHMARK DATASET
HMC-QU benchmark echo dataset has been created by col-
laboration between Qatar University (QU) and Hamad Medi-
cal Corporation (HMC) Hospital in Doha, Qatar. The local

ethics board of (HMC reviewed the study and approved
the use of the echo data in February, 2019. HMC-QU con-
tains 160 4-chamber view echo recordings obtained at the
HMC hospital between 2018 and 2019. These cases are
from over 10000 echos performed in a year including more
than 800 cases admitted with acute ST elevation Myocardial
infarction. The echos included in our assessment belong-
ing to the 91 MI patients (all first time and acute MI) and
the rest are normal. There are 13 women and 76 men in
the MI patient group. All MI echos were obtained from
patients who were admitted with a diagnosis of acute MI
with evidence obtained from ECG, cardiac enzymes and
who underwent coronary angiogram/angioplasty to treat the
MI. These patients had echos obtained within 24 hours of
admission or in some cases before they underwent coronary
angioplasty. All ‘‘normal’’ echos were defined, as the echos
of the patients not admitted for MI (acute or previous) but
acquired for other reasons including health check and inves-
tigation of murmurs. All 4-chamber view echos have been
labelled segment-wise by cardiologists in HMC hospital.
The 6 segments of 4-chamber view of each echo is labelled
as: normal=1, hypokinetic=2 and akinetic=3. Echos are
acquired by devices from different vendors, such as Phillips
Ultrasound machines and GE Vivid (GE-Healthcare-USA)
Ultrasound Machine. The temporal resolution (frame rate per
second) of the echos is 25 fps. The spatial resolution also
varies from 422 × 636 to 768 × 1024 pixels. The duration
of each echo taken for analysis is one cardiac cycle.

B. EXPERIMENTAL SETUP AND RESULTS
In this study, each echo is categorized as normal or MI
while each segment in a 4-chamber view echo is catego-
rized as normal (1) or infarcted (either hypokinesia = 2 or
akinesia = 3). As illustrated in Figure 5 the motion analysis
is only performed if 15% < LVEF < 55%. If LVEF ≥ 55%,
all segments are assumed to be normal (1) and if LVEF ≤
15% all segments are assumed to be akinetic. Otherwise,
the motion analysis will determine whether the echo is nor-
mal or MI. If there is at least one infarcted segment with
abnormal motion activity, then the echo is assumed to beMI;
otherwise, normal. A segment is assumed to be infarcted if
its motion ratio is below 19%. The thresholds, 55% and 30%
for LVEF are recommended in [40]. Once all echos in the
dataset together with their segments are categorized by the
proposed algorithm, then the confusion matrices (CM) are
formed by evaluating the assigned categories with respect
to the ground-truth labels. This enables us to compute the
following standard performance metrics for MI detection and
infarcted segment identification performances: classification
accuracy (Acc), sensitivity (Sen), specificity (Spe), and posi-
tive predictivity (Ppr). CM elements are the hit/miss counters
such as true positive (TP), true negative (TN), false positive
(FP), and false negative (FN). The following standard perfor-
mance metrics can now be expressed using them: accuracy
is the ratio of the number of correctly detected echos (or
segments) to the total number of echos (segments); sensitivity
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FIGURE 11. End-diastole, middle and end-systole frames of a normal (top) and MI (bottom) echos. Their
maximum displacement snapshots are shown on the right.

TABLE 1. The performance of the proposed method (per-segment) on detecting the infarcted segments.

TABLE 2. The performance of the proposed method on detecting the infarcted segments.

(or Recall) is the rate of correctly detected MI echos among
all MI echos in the dataset; specificity is the sensitivity of the
normal echos; and, positive predictivity (or Precision) is the
rate of correctly detected MI echos in all the echos detected
as MI. Finally, the false alarm rate (FAR) can be defined as:
FAR = 1 – Spe.

Figure 11 shows the end-diastole, middle and end-systole
frames of a normal and MI echos where the 7 segments are
color-coded over the two APs along with their maximum
displacement snapshots. The relative motion (displacement)

of the segments 1, 2, 3 and 5makes it straightforward to detect
the motion abnormality on the MI echo while apparently all
segments of the normal echo move in a uniform manner.
Despite the fact that the quality is quite poor with a signif-
icant noise in the interior (blood) chamber and the temporal
resolution is low (25 fps) in both echos, the proposed method
successfully captures the global motion of the LV wall.

The MI detection and identification (detection of the seg-
ments with abnormal motion activity) performances are pre-
sented in Table 1 (per segment), Table 2 (over all segments)
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TABLE 3. MI detection performance of the proposed method over the HMC-QU benchmark dataset with 160 echos.

FIGURE 12. A frame from the 5 (out of 19) echos with severe quality problems such as excess noise, LV segments out of view and lack of contrast.

FIGURE 13. Typical low-quality echos in HMC-QU dataset.

TABLE 4. The performance of the proposed method (per-segment) on detecting the infarcted segments over echos with a reasonable quality.

and Table 3 (over all echos), respectively. Several important
observations can be made based on these results. First of all,
all results are based on the selected motion ratio threshold,

19%. No optimization or fine-tuning was performed on this
threshold for maximizing certain criteria. The high accuracies
achieved for detecting infarcted segments and echos approve
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TABLE 5. The performance of the proposed method on detecting the infarcted segments over echos with a reasonable quality.

TABLE 6. MI detection performance of the proposed method over echos with a reasonable quality in the HMC-QU benchmark dataset.

the validity of this threshold; however, there is still room
for improvement. The most crucial performance criterion
is of course sensitivity (Recall) for infarcted segments and
especially MI echos. Especially the latter, Sen(MI) > 91%,
indicates an elegant performance level considering the low
temporal resolution and the poor quality of many echos in
the dataset. The secondary objective is to minimize the false
alarms (or equivalently to maximize the specificity). This is
a misdiagnosis case for MI, which can be corrected by the
cardiologists when the proposed method causes a false alarm.
The FAR was rather low ( i.e., < 9%) for detecting segment
motion abnormality; however, the results in Table 3 show
a rather high FAR. The main reason is that mis-diagnosing
a normal segment as infarcted suffices to misclassify the
echo as MI. On the other hand, the fixed threshold used for
detection, 19%, may yield such misdiagnosis because the
proposed method has a certain sensitivity for capturing the
global motion, i.e., in the vicinity of±2 pixels and, therefore,
a slight variation from the actual displacement may cause
such a misclassification even if it is as low as 1-2 pixels, e.g.
assume that for a normal segment, dmin(sleft ,Sright )

= 100 pixels
and dS is measured as 18 pixels with +2 pixels bias. Since(
dS/dmin(sleft ,Sright )

)
= 18% < 19%, this will cause a false

alarm.
The main reason for some of the false alarms encoun-

tered was the extremely poor image quality of some of the
echos in the dataset (19 out of 160), which degrades signifi-
cantly the actual performance level of the proposed method.
Figure 12 shows some sample maximum displacement snap-
shots of these echos where the echo frames are degraded with
excessive noise, lack of contrast or ‘‘out-of-view’’ segments.
In such cases, even an expert cardiologists may not perform
an accurate diagnosis on these echos. The reason we have
included them in the dataset is to accomplish a realistic
case and show the main source of misdiagnosis. When those
19 echos with such poor quality are excluded from the eval-
uation, the actual performance of the proposed method is
presented in Table 4, Table 5 and Table 6. However, many
of the echos in the database are just slightly better than these
19 echos. For instance, Figure 13 shows 5 sample echos with
similar issues, perhaps only slightly lesser. Finally, the poor
temporal resolution is also the common drawback among all
the echos and as discussed earlier, this, alone, is sufficient

to render out the usage of any method based on Speckle
Tracking or local motion estimation. The results presented
in the above tables indicate that the proposed approach is
quite robust against this drawback and certain level of quality
degradations.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
Due to the unoptimized and sequential execution of the pro-
posed method, its computational complexity is the sum of
the individual computational complexities of the individual
blocks illustrated in Figure 5. Please refer to Supplemen-
tary (C) for the computational complexity of each block
along with the overall computational times in an unoptimized
implementation.

V. CONCLUSION AND FUTURE WORK
In this study, we propose a global method for estimating the
true motion of the LV wall by Active Polynomials which
are formed at the endocardial boundary of the LV wall for
each frame of an echo. Since the proposed method does not
depend on local motion estimation and tracking, it is largely
immune to the well-known ill-posed behavior and noise sen-
sitivity of the 2D motion estimation. The proposed method
is designed to ‘‘mimic’’ an expert cardiologist to capture the
global motion in a similar manner so as to assess the regional
motion with respect to the motion uniformity. The global
extraction of the true motion of the LV wall enables to detect
and identify the regional wall motion abnormalities (RWMA)
which in turn can diagnose a myocardial infraction (MI) in an
objective way. Since echo is the primary tool that can indicate
the onset of a Myocardial Ischemia long before the ECG,
this will help the detection of a MI at the earliest possible
stages -practically as soon as the echo is acquired. More-
over, the proposed method voids the subjectivity and oper-
ator dependability of the echo interpretation and assessment
since it can quantify the true measures of LV wall motion,
(maximum) displacement and LVEF. Besides a standalone
diagnostic tool, the proposed method can also offer several
assistive bi-products such as enhanced visualization capabil-
ities by color-coded APs over the raw echo, a snapshot of
the maximum segment displacements to localize the motion
abnormalities, segment displacement plots that can provide
a deeper motion analysis and even a quality assessment
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tool for the echo acquisition. The last feature is especially
important since an echo technician can fine-tune the echo
probe manually until the proposed method can successfully
compose the APs over the LV wall boundary. Especially,
when the diagnosis of the proposedmethod and the (group of)
cardiologist(s) differs, it can also be used as a ‘‘verification’’
tool that can give a second chance to the cardiologists to re-
assess the cases or segments with mismatching diagnosis.
Finally, when a range is used instead of a fixed threshold for
classifying the segments, the proposed method can draw the
attention for the Unsure cases where the segment motion is
not definitive. Cardiologists can handle such difficult cases
and make the final decision perhaps by assessing other echo
views.

A crucial objective of this study is to achieve an utmost
robustness against the high noise level in echos with a poor
temporal resolution. Experiments over such echos show that
this objective has been well-accomplished. This is particu-
larly important because it is infeasible to analyze such echos
with the current state-of-the-art MI detection methods such
as ‘‘Speckle Tracking’’ or any other method based on local
motion estimation. This has been verified in this study by a
case study using the SURF key-points for tracking. Finally,
for a proper performance evaluation, the HMC-QU dataset
contains ground-truth labels. This is not only the first bench-
mark dataset that will be publicly available for the research
community, it is also the largest collection ever compiled
which consists of normal echos and echos of both male and
female acute MI patients with different ages. An extensive
set of experiments over this benchmark dataset demonstrates
that the proposed method achieves an 95.12% sensitivity
and 87.64% precision for detecting MI and diagnosing the
RWMA. For the latter, specificity is quite high yielding a low
false-alarm rate. However, for the MI detection, the proposed
method yields a significant false alarm rate; although not as
severe as the false negatives, we aim to reduce false alarms
with the joint analysis of the other views. Moreover, we aim
to improve the speed of the proposedmethod by parallel com-
puting paradigms and optimized implementation to achieve
real-time analysis of the acquired echo. We expect to achieve
an even better detection and identification performance with
a proper analysis on the motion curves using a Machine
Learning approach. These will be the topics of our future
work.

SUPPLEMENTARY MATERIAL
A. ACTIVE CONTOURS
In this study, we used a recent variation of snake method pro-
posed in Chan-Vese, [40]. In this variant, the problem defined
by [40] is the minimization of an energy-based segmentation.
Consider a bounded open subset� ofR2, the image u0 : �→
R, the evolving curve C in �, as the boundary of an open
subset ω of �. Then, the inside(C) represents the region ω,
and outside(C) is the region �ω̄. The boundary of the image
u0 is denoted as C0. Then, the fitting term, F is defined as in
Eq.(5) whereC the snake curve, and the variables is c1, c2 are

the averages of u0 inside C and outside C , respectively.

F1 (C)+ F2 (C) =
∫

inside(C)

|u0 (x, y)− c1|2 dxdy

+

∫
outside(C)

|u0 (x, y)− c2|2 dxdy (5)

In this case, the optimal curve is the boundary of the image
C0 which is also the minimizer term in the Eq. (6) as follows:

inf
C
{F1 (C)+ F2 (C)} ≈ 0 ≈ F1 (C0)+ F2(C0) (6)

By adding some regularization terms to the minimization
equation above, the final energy functional F (c1, c2,C) is
defined by,

F (c1, c2,C) = µ.Length (C)+ v.Area (inside (C))

+ λ1

∫
inside(C)

|u0 (x, y)− c1|2 dxdy

+ λ2

∫
outside(C)

|u0 (x, y)− c2|2 dxdy (7)

where µ ≥ 0, v ≥ 0 and λ1, λ2 > 0 are the fixed
parameters. Therefore, the minimization problem proposed
by the Chan-Vese method is as follows,

inf
c1,c2,C

F (c1, c2,C). (8)

The problem can be redefined in a level set form where C ⊂
� represented by φ : �→ R as;

c = ∂ω = {(x, y) ∈ � : φ (x, y) = 0}
inside (C) = ω = {(x, y) ∈ � : φ > 0}
outside (C) = �\ω̄ = {(x, y) ∈ � : φ < 0}

(9)

The evolution of curve, C in the above level of set functions
of Eq.(9) is illustrated in Figure 14 which also reflects the
relation between Chan-Vese [34] and Kass et al. [24] meth-
ods. Using the Heaviside function, H in Eq.(10) and Dirac
measure, δ0 in Eq. (11) the energy function can be rewritten
as Eq.(12),

H (z) =

{
1, z ≥ 0
0, z < 0

(10)

δ0 (x) =
d
dz
H (z) (11)

F (c1, c2, φ) = µ
∫
�

δ (φ (x, y)) |∇φ (x, y)| dxdy

+ v
∫
�

H (φ (x, y))dxdy

+ λ1

∫
�

|u0 (x, y)− c1|2 H (φ (x, y)) dxdy

+ λ2

∫
�

|u0 (x, y)− c2|2 (1− H (φ (x, y)))

× dxdy (12)

The variables c1 and c2 are fixed, and the energy function
in Eq.(12) is minimized with respect to φ which concludes
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FIGURE 14. The propagation of curve C = {(x, y) : φ(x, y) =} in normal
direction.

the Euler-Lagrange equation for φ. The descent direction is
chosen as an artificial time t where the partial differentiation
equation is expressed as follows;

∴
∂φ

∂t
= δ (φ)

[
µdiv

(
∇φ

|∇φ|

)
− v

− λ1 (u0 − c1)2 + λ2 (u0 − c2)2
]

= 0 in (0,∞)X�,
δ (φ)

|∇φ|

∂φ

∂En
= 0 on ∂� (13)

where En represents the exterior normal to the boundary ∂�,
and ∂φ

∂En denotes the normal derivative of φ at the bound-
ary. Lastly, Eq.(13) can converge to its solution by gradient
descent method.

B. REGULARIZED LEAST-SQUARE FOR nth ORDER
POLYNOMIAL FITTING
Assume that we have m points in 2D surface, pi =
(xi, yi) , i = 1..m, and we want to fit nth order polynomial
where m � n. The nth order polynomial, P(x) can be
expressed with n+ 1 coefficients as follows:

y = P(x) =
n∑

k=0

ckxk (14)

One can turn this to a LS optimization problem byminimizing
the total error,

cLS = min
c∈Rn+1

‖y− P(x)‖2 = min
c∈Rn+1

(
m∑
i=1

(yi − P(xi))2
)
(15)

By defining the matrix, A coefficient vector, x and output
vector, b, this problem can be turned to a linear system
as,

1 x1 x21 x31 ... xn1
1 x2 x22 x32 ... xn2
1 x3 x23 x33 ... xn3
... ... ... ... ... ...

1 xm x2m x3m ... xnm



c0
c1
c2
...

cn

 =

y1
y2
y3
...

ym


(16)

or equivalently in a linear system equation,

Am×(n+1)cn+1 = bm (17)

where A is the mx(n+1) matrix with the nth power of the x
coordinates of the 2D points are the elements of the (n+ 1)-
dimensional column vector, c, of the polynomial coefficients,
(cu) and b is the m-dimensional column vector of y coordi-
nates of the 2D points. For m > n + 1, this is clearly an
over-determined linear system, which means that there are
more constraints (linear equations) than unknowns (param-
eters). In such systems there is no (exact) solution, one may
only get a unique least-square (LS) solution as defined in Eq.
(15) or equivalently, the LS solution of this equation, cLS , can
be expressed as follows:

cLS = min
c∈Rn+1

‖b-Ac‖2 =
(
ATA

)−1
AT b (18)

However, A may not be even of full rank matrix, i.e.,
rank(A) = r < n + 1, in which case, ATA will be singular
and the inverse cannot be computed. To address this problem,
we make use of the Singular Value Decomposition (SVD) of
A as follows,

A = U6V T
=

r∑
i=1

σiuivTi (19)

where U and V are mxm and (n+1)x(n+1) orthogonal matri-
ces which holds the eigenvectors of the square matrices, AAT

and ATA, respectively, as the column vectors. The mx(n+1)
matrix, 6, can be expressed as,

6 =



σ1 0 0 ... 0 0 ... 0
0 σ2 0 ... 0 0 ... 0
0 0 σ3 ... 0 0 ... 0
... ... ... ... ... ... ... 0
0 0 0 ... σr 0 ... 0
0 0 0 ... 0 0 ... 0
... ... ... ... ... ... ... ...

0 0 0 0 0 0 ... 0


(20)

where σ1 > σ2 > ... > σr are the singular values or
equivalently the eigenvalues of matrices, ATA and AAT . This
can yield the LS solution, cLS , regardless whether or not A is
singular,

cLS = V6−1UT b =
∑r

i=1

1
σi
viuTi b (21)

However, the LS solution, cLS , can still yield large values,
the so-called ‘‘explosion’’ of the LS solution, due to noisy
values in matrix A (the input = powers of x coordinates of
the m points) or in vector b (the output = y coordinates of
the m points), or both. A crucial disadvantage here is that
the smaller non-zero singular values will result in even larger
explosion of cLS . In order to prevent this, we shall regularize
the LS solution by optimizing the LS error together with the
magnitude of the LS solution as,

cRLS = min
c∈Rn+1

(‖b-Ac‖2 + λ2‖c‖2) (22)
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where λ is the regularization parameter. It is straightforward
to show that this joint optimization can be expressed as,

cRLS = min
c∈Rn+1

∥∥∥∥(b0
)
−

(
A
λI

)
c

∥∥∥∥2 = min
c∈Rn+1

‖bλ − Aλc‖2

(23)

where Aλ is now an (m + n + 1) × (n+ 1) full-rank matrix
(r=n+1) and therefore, the LS solution over Aλ can be
obtained by using Eq. (18) as,

cLS (λ) = min
c∈Rn+1

‖bλ − Aλc‖2 =
(
ATλAλ

)−1
ATλ bλ

=

(
ATA+ λ2I

)−1
AT b (24)

The ith eigenvector of
(
ATλAλ

)
can be obtained by solving,

ATλAλvi =
(
ATA+ λ2I

)
vi =

(
σ 2
i + λ

2
)
vi (25)

So it is clear that matrix ATλAλ has the same eigenvector, vi,
as matrix ATA but a larger eigenvalue,

(
σ 2
i + λ

2
)
. Therefore,

using the orthogonality of the eigenvectors, one can write
the eigenvector decomposition of ATλAλ, and its inverse as
follows:

ATλAλ =
n+1∑
j=1

(
σ 2
j + λ

2
)
vjvTj = V3V T

(
ATλAλ

)−1
= =

n+1∑
j=1

1(
σ 2
j + λ

2
)vjvTj = V3−1V T (26)

Finally, using Eqs. (19) and (26) yields the regularized LS
solution, cRLS , expressed as,

cRLS = cLS (λ) =
(
ATλAλ

)−1
AT b

=

n+1∑
j=1

1

σ 2
j + λ

2
vjvTj

( r∑
i=1

σiviuTi

)
b

=

 r∑
j=1

σj

σ 2
j + λ

2
vjuTj b

 (27)

A direct comparison of Eq. (21) and (27) will reveal the fact
that the regularized LS solution will no longer be effected
from the noisy eigenvectors with very small eigenvalues, σj
since the when σj→ 0, also σj

σ 2j +λ
2 → 0 toowith a reasonable

choice of the regularization parameter, λ (e.g., λ ≥ 0.1).

C. COMPUTATIONAL COMPLEXITY ANALYSIS
In this appendix, we shall first detail the computational com-
plexities of the three main blocks: Active Contours (snakes)
with N vertices, nth order polynomial fitting and motion
(displacement) computation of each segment.

1) ACTIVE CONTOURS
The active contour method used in the proposed method
is Chan-Vese [34] which defines a minimization problem
of an energy-based segmentation. The energy functional
F (c1, c2,C) is defined by [34] is as follows;

F (c1, c2,C) = µ.Length (C)+ v.Area (inside (C))

+ λ1

∫
inside(C)

|u0 (x, y)− c1|2 dxdy

+ λ2

∫
outside(C)

|u0 (x, y)− c2|2 dxdy

(28)

where µ ≥ 0, v ≥ 0 and λ1, λ2 > 0 are the fixed parameters.
The algorithm has a complexity of O(mn) for each iteration
(N= 300) wherem is the number of rows and, n is the number
of columns in the image. The sizes of the echo records in the
dataset vary from 422× 636 to 768× 1024 pixels.

2) nth ORDER POLYNOMIAL FITTING
The regularized LS solution for the nth order polynomial
fitting to the m points in 2D is expressed in Eq. (15). The
regularized LS solution, cRLS is expressed as,

cRLS = cLS (λ) =
(
ATλAλ

)−1
AT b (29)

which can be expressed as a linear system as follows:(
ATλAλ

)
cRLS = AT b (30)

where Aλ is an (m+ n+ 1) × (n+ 1) full-rank matrix and
hence

(
ATλAλ

)
is a (n+ 1) × (n+ 1) is a full-rank square

matrix, AT b is a n× 1 column vector. The solution of a linear
system, Ax=bwhere A is an n×n full-rank matrix is inO(n3)
in the worst case. This is negligible in this application since
4th order polynomials are used both for RPs and APs, and
thus n + 1 = 5 is the rank of the matrix A. Since we have
m points in 2D surface, pi = (xi, yi) , i = 1..m, and m � n,
the significant computational complexity will result from the
matrix multiplication, ATλAλ, which is in O(n2(m + n)) and
matrix-vector multiplication,, which is in O(nm). Therefore,
both computational complexities are linearly proportional
with the number of 2D points, m.

3) SEGMENT MOTION ESTIMATION AND LVEF
COMPUTATION
This is the least computationally demanding block of all since
the segment displacement can be approximated by averaging
the point-wise distances as expressed in Eq.(3).With L2 norm
and ns = 5 points, this requires only 5 summations and
10 differences, a total of 15 summation operation, which is
negligible. This will be repeated by 6 segments for each frame
in the echo, and for all frames so as to compute the maximum
displacement of each segment. Similarly, the LVEF computa-
tion is even simpler than the segment-wise motion estimation
since it requires only the counting (incrementing) the number
of pixels inside the evolved snake.
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TABLE 7. Execution time percentages of each block of the proposed
method illustrated in Figure 5.

4) COMPUTATIONAL TIMES
In the current un-parallelized and un-optimized MATLAB
(version 2018a) implementation of the proposed method over
a PC with 3.2GHz CPU and 16GB memory, the total exe-
cution time to process a cardiac cycle is about 36.9 seconds
by 2 seconds per frame. The individual time share of each
operation as illustrated in Figure 5 is given in Table 7. It is
obvious that the majority of the computational complexity
arises from the formation of the snake and then the formation
of the both types of polynomials, RPs and APs.
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