
Journal of Magnetism and Magnetic Materials 524 (2021) 167663

Available online 25 December 2020
0304-8853/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Permeability and resistivity estimations of SMC material particles from 
eddy current simulations 

J. Vesa *, P. Rasilo 
Unit of Electrical Engineering, Tampere University, Tampere 33720 Finland   

A R T I C L E  I N F O   

Keywords: 
B-H curve 
Geometry generation 
Magnetic contact 
Material identification 
Soft magnetic composite 
Voronoi tessellation 

A B S T R A C T   

In this article, we estimate numerical values of a complex permeability and an electrical resistivity of soft 
magnetic composite (SMC) material particles. The estimations are carried out against a measured loss curve and 
a measured effective dynamical permeability curve. The SMC material is imitated using automatically generated 
geometries with control over the scalings of the geometries as well as the thicknesses of the electrical insulations 
between individual particles. The estimation procedure is repeated for a wide range of insulation thicknesses and 
scalings. Consistency with the measured effective dynamical permeability suggests the estimated relative 
permeability of the particles to be of the order of hundreds. An estimate of 250–500 is found. If the scalings of the 
geometries are chosen using a microscope image of the SMC material as a reference, the estimated resistivity of 
the particles is of the order of 10− 7 Ωm.   

1. Introduction 

Soft magnetic composite (SMC) materials consist of ferromagnetic 
particles compressed and annealed. SMC materials have some advan
tages over laminated steels. SMCs usually have very fine particle-scale 
structures and thus they are applicable in wide frequency ranges. Isot
ropy of the material, observed in macroscale, may be imposed. Two 
well-written literature reviews of SMCs are referred to [1,2]. A micro
scope image of an SMC material is found in Fig. 1a. 

In this article, we focus on estimating localized material parameters 
of an SMC material. Such parameters cannot be directly measured, but 
they play an important role in modeling of SMC materials. Particularly, 
we estimate the resistivity and the complex permeability of the 
magnetizing particles of a specific material, so that computations are in 
agreement with measurements of frequency-dependent losses and 
effective permeability. 

In the literature, numerical values of conductivities in SMC materials 
seem to be reasonably consistent. Maruo et al. used 107 S/m [3]. In the 
computational articles of Ren et al., a conductivity of 1.12⋅107 S/m was 
used [4–6]. Bordianu and Bottauscio et al. used 107 S/m as well [7,8]. 
Permeabilities of SMC particles, however, have very large discrepancies 
in the literature. As pointed out by Sato et al., a direct measurement of 
such permeability is very difficult to obtain [9]. Ito and Maruo et al. used 
100 as a relative permeability in the computations [3,10]. Vesa et al. 
used nonlinear relations with zero-field relative permeabilities of 270 

and 420 [11]. Bordianu et al. used a relative permeability of 450 [7]. Ito 
and Waki et al. used relative permeabilities of 1000 [12,13]. In the ar
ticles of Ren et al. a relative permeability of 4000 was used [4–6]. The 
zero-field relative permeability in the article by Henneron et al. was 
close to 10 000 [14]. Vesa et al. showed that a wide range of relative 
permeabilities of SMC particles provide consistent results with a mea
surement of an effective permeability, provided that the thicknesses of 
the electrical insulations between the magnetizing particles have been 
chosen appropriately [15]. These discrepancies in the literature suggest 
that the localized properties of the models of SMC materials have not 
been properly understood. 

In this article, we put forward evidence that for one specific SMC 
material, a relative permeability with magnitude of just a few hundred 
yields results more consistent with measurements compared to a model 
with the localized relative permeability of the order of several thou
sands. On the other hand, we show that the conductivity 107 S/m used in 
the literature is realistic. 

2. Measurements 

A Magnetics Inc. C055106A2 MPP was used as a test sample [16]. 
The toroid was wound and a two-coil setup was used, with the primary 
circuit consisting of the primary coil and a resistor in series. The primary 
circuit was fed with a sinusoidal voltage excitation. The primary current 
was measured by measuring the voltage over the resistor. The magnetic 
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field strength H in the material was calculated from the primary current. 
The magnetic flux density B in the material was calculated from the 
integral of the secondary voltage. A frequency sweep up to 20 kHz was 
carried out. With each frequency, the peak value of the magnetic flux 
density was iterated to be 0.05 T. 

One period of each signal was captured and energy loss densities of 
wmeas :=

∫
HdB over one period of excitation were computed. In Fig. 2a, 

there is a blue patch, inside which there are 20 measurement series. The 
black crosses indicate the mean values of each collection of losses. In this 
article, we refer to these mean values as ’measurement values’. 

Sinusoidal curve fitting was done for the measured waveforms of B 

and H, and complex permeabilities, defined by the ratios of complex B 
and H phasors, were computed for each 20 measurements and each 
frequency. The magnitude of the complex relative permeability μ r,eff,meas 

has been visualized in Fig. 2b. Each 20 measurements are inside the blue 
patch, and the black crosses indicate the mean values of the measure
ments. In this article, we refer to these mean values as ’measurement 
values’. 

3. Methods 

In this section, we discuss two matters. First, we consider the finite 
element model and the estimation problem used in finding material 
parameters for SMC particles. Second, we describe two sets of geometry 
imitations that are used in the computations. 

3.1. Computational methods 

Let us consider a geometry, for instance the right one shown in Fig. 1. 
It is much like the simplified schematic image appearing in Fig. 3. 
Denote the conductive particles with Ωc and the non-conductive insu
lation layers, denoted by the thick black lines and the number 1 shown 
in Fig. 3, by Ωnc. Furthermore, denote the thicker empty regions, visu
alized in Fig. 3, by Ωe. 

We assume that the permeability ratio between Ωc and Ωe is high. 
Hence, it makes sense to assume that B⋅n = 0 holds on the surfaces be
tween Ωe and Ωc. The surfaces are denoted by the number 2 in Fig. 3. 
Furthermore, we assume that the caves, indicated by the dashed 
boundary line and the number 3 in Fig. 3, admit no currents. Therefore 
the integrals of H along such boundary loops vanish. Finally, we assume 
that time derivatives of surface integrals of B over surfaces cutting the 
caves, denoted by the number 3 in Fig. 3, are insignificant. This is a 
consequence of the high permeability ratio between Ωc and Ωe. Thus, the 
changes in magnetic fluxes in the caves, denoted by the number 3 in 
Fig. 3, do not contribute to electromotive forces over loops around the 
caves. Due to these assumptions, we neglect the thick insulation regions 
Ωe and solve the necessary fields in Ω = Ωc ∪ Ωnc. 

The conductive regions Ωc are meshed with tetrahedra. The non- 
conductive regions Ωnc are meshed with degenerate prisms whose 
thicknesses may be adjusted freely [15]. Effectively, the degenerate 
prisms are just right-angled prisms whose Jacobians are modified in 
order to imitate a finite thickness. All the components of Ωc and Ωnc are 
simply connected. Hence, we use a tree-gauged T-φ formulation on Ω. 
Let us denote the resistivity of the material particles by ρ and the com
plex relative permeability of the particles by μ r (complex-valued 
quantities underlined). The equations in Ωc are given by 

∇×
(

ρ∇× T
)
= − j ωμ

r
μ0

(
T − ∇φ

)
,∇⋅μ

r
μ0

(
T − ∇φ

)
= 0. (1) 

The potential T vanishes on ∂Ωc and in Ωnc. In Ωnc it holds that 

∇⋅
(

μ
r
μ0∇φ

)

= 0. (2) 

Fig. 2. Measurement data. (a) Measured energy loss density over one period of 
excitation. (b) Measured absolute effective permeability. 

Fig. 1. (a) A microscope image of a Fe-Ni-Mo alloy SMC [11,16]. (b) A 
generated imitation of an SMC material geometry. 

Fig. 3. A schematic of the geometries.  
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The potential T is interpolated using an edge basis neglecting the 
spanning trees of each material particle in Ωc. The potential φ is inter
polated using a nodal basis. The equations are discretized by the 
Galerkin method. 

Boundary conditions for φ are set on Γ1 and Γ2, depicted in Fig. 3. 
We set φ = 0 on Γ1 and φ = H eff l, where H eff represents an externally 
applied field and l is the total width of the material inclusion. This H eff is 
chosen to be real. Furthermore, it is frequency-dependent and it is taken 
directly from the measurements. Effective B eff may be computed by 

B eff =
1

Vol

∫

Ω
B ⋅e1, (3)  

where Vol stands for the total volume of the material inclusion and e1 is 
the basis vector perpendicular to Γ1 and Γ2. Effective complex relative 
permeability μ r,eff is defined as the ratio of B eff and H eff divided by the 
vacuum permeability. 

In addition to dynamical permeabilities, we are interested in losses. 
From complex field solutions, eddy current loss densities may be 
computed by 

wed = Re
{

1
Vol

1
f

∫

Ωc

1
2

J⋅ρJ
}

(4)  

and hysteresis losses by 

why = Re
{

1
Vol

∫

Ωc

H⋅πj B
}

. (5) 

The derivations of these formulas are similar to the one presented by 
Ren et al. [6]. 

The perspective in this article is inverse modeling. We know by 
measurements what to expect for losses and the dynamical effective 
permeability. The computational model takes two material parameters, 
a complex relative permeability μ r and a resistivity ρ as inputs, and 
computes losses w = wec +why and the effective complex relative 
permeability μ r,eff . We define a squared error  

where F = {5,15} kHz. We find suitable material parameters μ r and ρ by 
minimizing e using the dogbox algorithm implemented in the Scipy least 
squares package [17]. 

3.2. Geometry imitations 

Following our previous articles, we generate imitations of the SMC 
material automatically [11,15]. For details about SMC geometry imi
tations, we refer to these works. Consider the left geometry shown in 
Fig. 4. The geometry has been generated based on the parameters given 
in Table 1. 

In a nutshell, in the cube [0, 1]3, total N = 33 = 27 points have been 
randomly selected under the restriction that each point is at least the 
distance d = 0.45/3 away from one another. A Voronoi tessellation is 
computed from these points. Each face of each cell of the tessellation has 
been refined, and the refined faces have been shrunk to form gaps and 
contacts between neighbouring particles, based on the numerical in
formation given in the vectors wF and wC. Total 200 randomized ge
ometries of such kind were generated, with each of them having a 
fraction of 90% of the volume filled with SMC particles. Furthermore, 
each particle initially has 36% of their surface area in contact with the 
neighbouring particles. However, we emphasize that even though there 
are contacts in the generated geometries, there are no galvanic contacts 
among the particles in any of the computational models of this article. 
Instead, the ’contact surfaces’ are modeled as non-conducting regions 
discretized by degenerate prisms with finite thicknesses, as explained in 
3.1, to imitate insulations. 

Another set of 200 geometries was generated, based on the param
eters given in Table 2. These geometries are similar to the former set but 
with each inclusion having 125 particles. One geometry is shown on the 
right-hand side of Fig. 4. These geometries have the same volume fill 
factor and contact surface area factor as the smaller geometries. 

4. Results 

Estimations of localized complex permeabilities and resistivities are 
carried out in the following two subsections. Every estimation is based 
on the minimization of (6), and every time an estimation is carried out, 
both the complex permeability μ r and the resistivity ρ get numerical 

values. 
In Section 4.1, we investigate how the estimated parameters depend 

on the thicknesses of the electrical insulation layers between the SMC 
material particles. We find that the estimated values of resistivity are 

Fig. 4. Geometry (left) consists of 27 particles. There are approximately 30 000 
nodes in 230 000 elements. Geometry (right) consists of 125 particles. There are 
approximately 140 000 nodes in 1 100 000 elements. 

Table 1 
Geometry template I.  

N 33 = 27  
d 0.45/3  

wF  [0,0.4] 
wC  [0.1,0]  

Table 2 
Geometry template II.  

N 53 = 125  
d 0.45/5  

wF  [0,0.4] 
wC  [0.1,0]  

e
(

μ
r
, ρ
)

=
∑

f∈F

⎡

⎣

(w
(

f , μ
r
, ρ
)

− wmeas

(

f
)

wmeas(f )

)2

+

⎛

⎜
⎜
⎝

⃒
⃒
⃒
⃒μ r,eff

(

f ,
μ

r
, ρ
)⃒
⃒
⃒
⃒ −

⃒
⃒
⃒
⃒μ r,eff,meas

(

f
)⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒μ r,eff,meas

(

f
)⃒
⃒
⃒
⃒

⎞

⎟
⎟
⎠

2 ⎤

⎥
⎥
⎥
⎦
, (6)   
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reasonably independent of the insulation thicknesses but the perme
abilities yield a clear dependence. To decide what is a realistic range of 
insulation thicknesses, and thus permeabilities, we compare computa
tional effective dynamical permeabilities to the measured curve 2b. 

In Section 4.2, we investigate how the estimated parameters depend 
on the scaling of the geometry imitations. We find that the estimated 
values of complex permeability are independent of the scaling but the 
resistivities yield a clear dependence. We draw a realistic value of the 
scaling from the microscope image 1a, and this sets a constraint to the 
estimated resistivity. 

4.1. Estimations with respect to insulation thicknesses 

Consistently to the microscope image, shown in Fig. 1, we scaled the 
generated geometries such that the edges of the 33 = 27-particle ge
ometry inclusions were scaled to l = 3⋅85 μm = 255 μm. Similarly, the 
edges of the 53 = 125-particle geometry inclusions were scaled to l = 5⋅ 
85 μm = 425 μm. The scaling 85μm was found by computing the Feret 
diameters and the areas of the particles of a relatively large microscope 
image, from which Fig. 1a was extracted. The volume of the particles 
was estimated by A3/2, where A represents the area of one particle. The 
scaling of 85μm was found by taking the expected value from a distri
bution that characterizes the estimated volumes of the particles with 
respect to the Feret diameters. Hence, 85μm represents a ’mean diam
eter’ of the actual material particles. 

For both two sets of 200 geometries, 10 different insulation layer 

thicknesses were defined. Deviations in the insulation thicknesses were 
not considered. Instead, we assumed that each insulation is of the same 
thickness t (that varies from model to model). The insulation thicknesses 
were controlled by modifying the Jacobians of the degenerate prisms, 
described in Section 3.1. For each geometry and insulation thickness, the 
estimation problem, defined by the minimization of the error function 
(6), was solved. 

In Fig. 5, the absolute values of the estimated relative permeabilities 
are visualized. The insulation thicknesses in the plots have been char
acterized such that for the 33 = 27-particle geometries, instead of 
expressing just the absolute insulation thickness t, we use a relative 
quantity 3t/l, where l is the scaling of the geometry inclusion. Similarly, 
for the 53 = 125-particle geometries, the insulation thicknesses have 
been characterized by the relative quantity 5t/l. This way the insulation 
thicknesses are comparable independently of how many particles there 
are in the inclusion and how the geometries are scaled. 

In Fig. 5, there are red dots, called ’Estimated, N = 27’ and ’Esti
mated, N = 125’, indicating the estimated magnitudes of the relative 
permeability of the material particles. As expected, the absolute values 
of the relative permeabilities are consistent with the earlier static results 
[15]. The thicker the insulations are, the higher the estimated magni
tudes of the permeabilities are. Deviations due to the randomization of 
the geometries increase as the insulations get thicker. Increasing the 
number of particles in the inclusion decreases the deviations. The rest of 

Fig. 6. Forward computations of effective absolute permeabilities. The simu
lations are based on the material parameters depicted in Figs 5, 11 and 12 and 
the corresponding geometries. (a) Computed effective absolute permeabilities 
for both sets of 200 geometries and ten insulation thicknesses. (b) This visu
alization includes only such curves from the plot ((a)) that obey the condi
tion e2 < 0.8. 

Fig. 5. Estimated absolute values of the localized permeability with respect to 
relative insulation thicknesses. (a) Estimations based on the 27-particle geom
etries. (b) Estimations based on the 125-particle geometries. The relative 
insulation thicknesses 3t/l and 5t/l have been explained in Section 4.1. 
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the estimated parameters, namely the angle of the permeability and the 
electrical resistivity, play a lesser role in the considerations of this sec
tion. Hence, these results are presented in Appendix A. However, we 
note that the estimated resistivities, depicted in Fig. 12, are reasonably 
independent of the thicknesses of the electrical insulation layers. 

In order to assess if some insulation thicknesses should be preferred 
over the others, we consider forward simulations. Both sets of 200 ge
ometries with 10 insulation thicknesses and the corresponding esti
mated material parameters were used to compute the dynamical 
permeabilities, depicted in Fig. 6a. We see that some curves agree with 
the measurements better than the others. Let us filter the curves, 
depicted in Fig. 6a using an error function 

e2 =

(
∑

f=1,…,20kHz

⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒
μ

r,eff,meas

(

f

)⃒
⃒
⃒
⃒
⃒
−

⃒
⃒
⃒
⃒
⃒
μ

r,eff

(

f

)⃒
⃒
⃒
⃒
⃒
|
2

)1
2

. (7) 

Fig. 6b contains only such curves that admit an agreement with the 
measured curve under the condition e2 < 0.8. In Fig. 5, the ’accepted’ 
parameters that have been denoted by the black crosses over the red dots 
correspond to the same filtering by e2 < 0.8 as in Fig. 6b. We see that a 
good agreement, defined by the criterion e2 < 0.8 between the measured 

and computed dynamical effective permeabilities, correlates with low 
insulation thicknesses and low localized relative permeabilities in the 
model. This is due to skin effect becoming more and more dominant if 
the permeability of the particles is increased, thus making the frequency- 
dependent effective permeability curve more steep. If the models with 
e2 < 0.8 are considered to be ’acceptable’, we would say that the relative 
permeabilities of the material particles should be of the order 250–500. 
Similarly, the relative insulation thicknesses should be less than 0.08%. 
This corresponds to an absolute thickness of no more than 68nn. To 
demonstrate that the models with insulation thicknesses lower than 
0.08% admit a good agreement with the loss measurements, Fig. 7 de
picts the measured and the computed losses. Fig. 7 also contains the 
computed eddy current- and hysteresis losses according to (4) and (5). 
The eddy current- and hysteresis loss curves contain both the results 
with the geometries of 27 particles, as well as the results with the ge
ometries of 125 particles, with insulation thicknesses less or equal to 
0.08%. 

In Fig. 8, we see a visualization of an eddy current field. The field has 
been acquired using a 27-particle geometry in a 10-kHz simulation. 

4.2. Estimations with respect to scalings of the geometries 

Let us now change the perspective slightly. Let us choose a suitable 
relative insulation thickness and solve estimation problems with various 
scalings of the geometries. We use again the two sets of 200 geometries, 

Fig. 9. Estimated resistivities with respect to the scaling of the material par
ticles. (a) Estimations based on the 27-particle geometries. (b) Estimations 
based on the 125-particle geometries. Fig. 8. A visualization of an eddy current field. A geometry with 27 particles is 

used. The edges of the cell are scaled to 3⋅85 μm = 255 μm. The insulations of 
the geometry are 0.02% thick, which corresponds to 17 nm absolute thickness. 
The relative permeability of the particles is approximately 300 with an angle of 
− 0.01. The resistivity of the particles is approximately 1.3⋅10− 7 Ωm. The field 
is a mid-cycle still capture of a 10-kHz eddy current field. 

Fig. 7. Computed energy loss densities. The simulations are based on the ma
terial parameters depicted in Figs 5, 11 and 12 and the corresponding geome
tries. The plot contains all curves obtained using the geometries with relative 
insulation thicknesses less or equal to 0.08%. 
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much like the geometries depicted in Fig. 4. We now fix the relative 
insulation thickness to 0.05%. We choose 10 scalings lp, ranging from 
30 μm to 120 μm, so that the edges of the 33 = 27-particle geometry 
inclusions are scaled to l = 3⋅lp and the edges of the 53 = 125-particle 
geometries are scaled to l = 5⋅lp. 

Estimations based on minimization of the error function (6) were 
carried out for both sets of 200 geometries, each with 10 different 
scalings. The estimated values of the localized resistivity of the particles 
are depicted in Fig. 9. In the visualizations, the resistivities have been 
plotted against the scaling lp of one particle, and thus the results for the 
geometries with 27 particles are comparable with the results for the 
geometries with 125 particles. We see that the resistivity 10− 7 Ωm cor
responds to the scaling of the order of 80μm. From the microscope 
image, depicted in Fig. 1a, we conclude that the reported values of the 
conductivity, of the order of 107 S/m, are realistic. 

However, the estimated resistivity is not unique. If the scaling of the 
geometry is unknown or contains uncertainty, the estimated resistivity 
contains uncertainty as well. Uncertainty due to randomization of the 
geometries is also involved but comparing Figs. 9a and 9b, we conclude 
that increasing the number of particles in the inclusion decreases this 

uncertainty. The absolute values and the angles of the localized 
permeability were also estimated during the estimation procedures. 
These values play a lesser role in the considerations of this section, and 
thus the results are presented in Appendix B. However, we note that the 
estimated permeabilities, visualized in Figs 13 and 14, are independent 
of the scaling of the geometries. 

To demonstrate that the estimated parameters yield realistic results 
in terms of energy losses and effective permeabilities, forward compu
tations were carried out. Fig. 10 shows all forward model simulations for 
both sets of 200 geometries with all 10 scalings using the corresponding 
estimated material parameters. Additionally, 10b shows the computed 
eddy current- and hysteresis losses obtained by (4) and (5). These curves 
contain both the computations with the 27-particle geometries and the 
computations with the 125-particle geometries. 

5. Concluding remarks 

In this study, we used SMC geometry imitations and a time-harmonic 
model to compute losses and effective permeabilities of a specific SMC 
material. The model was used in order to estimate numerical values of 
localized material parameters, specifically a resistivity and a complex 
permeability, of the SMC material particles. 

It was shown that in terms of computed effective dynamical per
meabilities agreeing well with measurements, the magnitude of the 
localized relative permeability is of the order of hundreds. An estimate 
of 250–500 was found. The result is not unique in the sense that altering 
the electrical insulation thicknesses of the geometries and selecting the 
permeability accordingly, computations and measurements are in 
agreement. Localized relative permeabilities, used in the literature, 
range from 100 to several thousands [3,10,11,7,12,13,4–6,14,15]. This 
paper argued that the lower end of this range of permeabilities is more 
realistic in order to understand the behavior of the test sample we used 
in our measurements. It was also found that the estimated localized 
conductivities of the material particles are reasonably independent of 
the thicknesses of the electrical insulations between neighbouring 
particles. 

On the other hand, the conductivities that are used in the literature, 
of the order of 107 S/m, were shown to be realistic [3–8]. This was done 
by characterizing the dependence between the scaling of the geometries 
and the estimated resistivity of the particles and showing that a re
sistivity of 10− 7 Ωm corresponds to such scaling that is consistent with a 
microscope image of the SMC test sample. However, total uniqueness of 
the estimated parameter is not achieved. If there are uncertainties in the 
scaling of the geometry imitations, there will be discrepancies in the 
estimated conductivity, even if computed losses and effective perme
abilities agree with the measurements. Furthermore, the estimated 
permeabilities of the material particles were found to be independent of 
the scaling of the geometry imitations. 
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Fig. 10. Forward simulations based on the estimated material parameters, 
depicted in Figs. 9, 13 and 14. (a) Computed effective absolute permeabilities 
using both sets of 200 geometries and all 10 selected scalings of the particles 
with the corresponding estimated material parameters. (b) Computed energy 
loss densities over one period of excitation using both sets of 200 geometries 
and all 10 selected scalings of the particles with the corresponding estimated 
material parameters. 
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Appendix A 

This appendix supplements Section 4.1. In that section, the estimated values of the magnitude of the localized permeability of the material particles 
were visualized in Fig. 5. In this appendix, the estimated values of the angle of the localized permeability and the estimated values of the resistivity of 
the material particles are presented. The results can be found in Figs. 11 and 12, respectively. The black crosses, denoting ’accepted’ results, have been 
selected according to the criterion e2 < 0.8, described in Section 4.1. They correspond to the ’accepted’ permeabilities, presented in Fig. 5. 

Fig. 12. Estimated resistivities with respect to relative insulation thicknesses. 
(a) Estimations based on the 27-particle geometries. (b) Estimations based on 
the 125-particle geometries. The relative insulation thicknesses 3t/l and 5t/l 
have been explained in Section 4.1. 

Fig. 11. Estimated angles of the localized permeability with respect to relative 
insulation thicknesses. (a) Estimations based on the 27-particle geometries. (b) 
Estimations based on the 125-particle geometries. The relative insulation 
thicknesses 3t/l and 5t/l have been explained in Section 4.1. 
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Appendix B 

This appendix supplements Section 4.2. In that section, the estimated values of the resistivity of the material particles were visualized in Fig. 9. In 
this appendix, the estimated values of the absolute value and the angle of the localized permeability are presented. The results can be found in Figs. 13 
and 14, respectively. The results are independent of the scalings of the geometries. 

Fig. 13. Estimated absolute relative permeabilities with respect to the scaling 
of the material particles. (a) Estimations based on the 27-particle geometries. 
(b) Estimations based on the 125-particle geometries. 

Fig. 14. Estimated angles of the localized permeability with respect to the 
scaling of the material particles. (a) Estimations based on the 27-particle ge
ometries. (b) Estimations based on the 125-particle geometries. 
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