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ABSTRACT Search and rescue (SAR) operations can take significant advantage from supporting
autonomous or teleoperated robots and multi-robot systems. These can aid in mapping and situational
assessment, monitoring and surveillance, establishing communication networks, or searching for victims.
This paper provides a review of multi-robot systems supporting SAR operations, with system-level con-
siderations and focusing on the algorithmic perspectives for multi-robot coordination and perception. This
is, to the best of our knowledge, the first survey paper to cover (i) heterogeneous SAR robots in different
environments, (ii) active perception in multi-robot systems, while (iii) giving two complementary points of
view from the multi-agent perception and control perspectives. We also discuss the most significant open
research questions: shared autonomy, sim-to-real transferability of existing methods, awareness of victims’
conditions, coordination and interoperability in heterogeneous multi-robot systems, and active perception.
The different topics in the survey are put in the context of the different challenges and constraints that various
types of robots (ground, aerial, surface, or underwater) encounter in different SAR environments (maritime,
urban, wilderness, or other post-disaster scenarios). The objective of this survey is to serve as an entry point
to the various aspects of multi-robot SAR systems to researchers in both the machine learning and control
fields by giving a global overview of the main approaches being taken in the SAR robotics area.

INDEX TERMS Robotics, search and rescue (SAR), multi-robot systems (MRS), machine learning (ML),
deep learning (DL), active perception, active vision, multi-agent perception, autonomous robots.

I. INTRODUCTION
Autonomous or teleoperated robots have been playing
increasingly important roles in civil applications in recent
years. Across the different civil domains where robots can
support human operators, one of the areas where they can
have more impact is in search and rescue (SAR) opera-
tions. In particular, multi-robot systems have the potential
to significantly improve the efficiency of SAR personnel
with faster response time [1], [2], support in hazardous
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environments [3]–[5], or providing real-time mapping and
monitoring of the area where an incident has occurred [6],
[7], among other possibilities. This paper presents a litera-
ture review of multi-robot systems (MRS) for SAR opera-
tions with a focus on coordination and perception algorithms
and, specifically, how these two perspectives can be bridged
through different active perception approaches. This algo-
rithmic view of MRS for SAR is preceded in the paper
by a system perspective of robotic SAR systems and their
operational environments, some of which are illustrated in
Fig. 1. The important abbreviations utilized throughout the
paper are listed in Table 1.
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TABLE 1. List of important abbreviations used throughout the paper in
alphabetical order.

The literature contains multiple survey papers that review
robotics for SAR operations. Multi-UAV systems for civil
applications (where SAR applications are a subset) are
reviewed in [8] from the point of view of communication.
A classification of technological trends and sensing modali-
ties in UAVs for civil applications is available in [9]. Focusing
on SAR robotics, UAVs for SAR operations are reviewed
in [10], with a classification in terms of (i) sensing, (ii)
system-level definitions, and (iii) operational environments.
A study of MRS for SAR operations in [11] focuses on
task allocation algorithms, communication modalities, and
human-robot interaction for both homogeneous and hetero-
geneous multi-robot systems. While autonomous robots are
being increasingly adopted for SAR missions, current levels
of autonomy and safety of robotic systems only allow for full
autonomy in the search part, but not for rescue, where human
operators need to intervene [12]. In general, the literature on
multi-robot SAR operations with some degree of autonomy
is rather sparse, with most results being based on simulations
or simplified scenarios [13].

The main objective of this survey is to provide a com-
prehensive introduction to multi-robot SAR systems from
two complimentary perspectives: (i) control and coordination
algorithms, and (ii) deep learning models for online percep-
tion. This review thus aims at providing an entry point to
researchers from either of the two fields looking for a global
view at MRS design for SAR operations. To that end, the
paper starts with an overview of the most significant projects
and competitions in the field, together with a system-level
perspective (Fig. 2a. The survey is, in turn, closed with an

FIGURE 1. Conceptual and simulated SAR scenarios (maritime, urban,
wilderness, underground).

introduction to multi-robot active perception, as the key piece
to bridge control and perception design (Fig. 2b). Finally,
we discuss the most important research directions and open
challenges giving insight into key aspects in MRS design for
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FIGURE 2. Summary of the different aspects of multi-robot SAR systems considered in this survey, where we have separated (a) system-level
perspective, and (b) planning and perception algorithmic perspective.

RAS operations, including shared autonomy, human condi-
tion awareness, multi-robot active perception, and challenges
in heterogeneous MRS. This is, to the best of our knowledge,
the first survey to cover simultaneously both coordination and
control algorithms, and machine-learning-based perception,
and the first one to review active perception approaches in
MRS for SAR operations.

The remainder of this paper is organized as follows:
Section II describes some of the most relevant projects in
SAR robotics, with an emphasis on those considering multi-
robot systems. Some of the most important competitions in
SAR robotics are also presented in this section. In Section III,
we present a system view on SAR robotic systems, describing
the different types of robots being utilized, particularities of
SAR environments, and different aspects formulti-robot SAR
including communication and shared autonomy. Section IV
follows with the description of the main algorithms in
multi-agent planning and multi-robot coordination that can
be applied to SAR scenarios. In Section V, we focus on
machine vision andmulti-agent perception from a deep learn-
ing perspective. Then, Section VI goes through the con-
cept of active vision and delves into the integration of both
coordination and planning algorithms with robotic vision
towards active perception algorithms where the latter pro-
vides additional feedback to the control loops of the former.
In Section VII, we discuss open research questions in the field

of autonomous heterogeneous multi-robot systems for SAR
operations, outlining the main directions that current research
is being directed to. Finally, Section VIII concludes this
work.

II. INTERNATIONAL PROJECTS AND COMPETITIONS
Over the past two decades, multiple international projects
have been devoted to SAR robotics, often with the aim of
working towards multi-robot solutions and the development
of multi-modal sensor fusion algorithms. In this section,
our objective is to give a general idea of the main spe-
cific objectives that different projects have had, which in
turns gives an idea of the evolution of the technology and
the current possibilities. We thus review the most relevant
international projects and international competitions in SAR
robotics, which are listed in Table 2. Some of the projects
focus in the development of complex robotic systems that
can be remotely controlled [14]. However, the majority of
the projects consider multi-robot systems [15]–[18], and over
half of the projects consider collaborative heterogeneous
robots. In Table 2, we have described these projects from a
system-level point of view, without considering the degree
of autonomy or the control and perception algorithms. These
latter two aspects are described in Sections III through VI,
where not only these projects but also other relevant works
are put into a more appropriate context.
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An early approach to the design and development of
heterogeneous multi-UAV systems for cooperative activities
was presented within the COMETS project (real-time coor-
dination and control of multiple heterogeneous unmanned
aerial vehicles) [15]. In terms of human-robot collabo-
ration for SAR operations, one of the first EU funded
projects in SAR robotics, PeLoTe [19]–[21], designed mobile
robots for SAR missions and developed a heterogeneous
telematic system for cooperative (human-robot) SAR oper-
ations. Other international projects designing and develop-
ing autonomous multi-robot systems for SAR operations
include the NIFTi EU project (natural human-robot cooper-
ation in dynamic environments) [16], ICARUS (unmanned
SAR) [18], [22], TRADR (long-term human-robot teaming
for disaster response) [17], [23], [24], or SmokeBot (mobile
robots with novel environmental sensors for inspection of dis-
aster sites with low visibility) [25], [26]. Other projects, such
as CENTAURO (robust mobility and dexterous manipulation
in disaster response by fullbody telepresence in a centaur-like
robot), have focused on the development of more advanced
robots that are not fully autonomous but controlled in real-
time [14].

In COMETS, the aim of the project was to design and
implement a distributed control system for cooperative activ-
ities using heterogeneous UAVs. To that end, the project
researchers developed a remote-controlled airship and an
autonomous helicopter and worked towards cooperative per-
ception in real-time [6], [15], [27]. In NIFTi, both UGVs
and UAVs were utilized for autonomous navigation and map-
ping in harsh environments [16]. The focus of the project
was mostly on human-robot interaction and on distributing
information for human operators at different layers. Similarly,
in the TRADR project, the focus was on collaborative efforts
towards disaster response of both humans and robots [17], and
on multi-robot planning [23], [24]. In particular, the results of
TRARD include a framework for the integration of UAVs in
SAR missions, from path planning to a global 3D point cloud
generator [28]. The project continued with the foundation
of the German Rescue Robotics Center at Fraunhofer FKIE,
where broader research is conduced, for example, in maritime
SAR [29]. In ICARUS, project researchers developed an
unmanned maritime capsule acting as a UUV, USVs, a large
UGV, and a group of UAVs for rapid deployment. Also, map-
ping tools, middleware software for tactical communications,
and a multi-domain robot command and control station [18].
While these projects focused on the algorithmic aspects of
SAR operation, and on the design of multi-robot systems,
in Smokebot the focus was on developing sensors and sensor
fusion methods for harsh environments [25], [26]. A more
detailed description of some of these projects, specially those
that started before 2017, is available in [30].

In terms of international competition and tournaments,
two relevant precedents in autonomous SAR operations are
the European Robotics League (ERL) Emergency Tour-
nament, and the RoboCup Rescue League. In [31], the
authors describe the details of what was the world’s first

multi-domain (air, land and sea) multi-robot SAR com-
petition. A total of 16 international teams competed with
tasks including (i) environment reconnaissance and mapping
(merging ground and aerial data), (ii) search for missing
workers outside and inside an old building, and (iii) pipe
inspection with localization of leaks (on land and underwa-
ter). The RoboCup Rescue League, on the other side, was
proposed in 1999 [32]. One of the ground robots utilized in
the 2020 edition is described in [33], a full-scale rescue robot
with a robot arm equipped with a gripper.

Another set of major events featuring search and rescue
robotics are the DARPA challenges. Humanoid robots [34]
and human-robot coordination strategies [35] for SAR oper-
ations were presented in the 2013-2015 DARPA Robotics
Challenge. TheDARPASubterranean (SubT) Challenge, run-
ning in 2018-2021, has shifted the focus towards underground
MRS for SAR operations, with ground robots and UAVs
collaborating in the tasks [36]. This challenge has demon-
strated the versatility and significant increase of flexibil-
ity of heterogenous MRS [37], with robust UAV flight in
inherent constrained environments [38], and ground robots
able of navigating complex environments and long-term
autonomy [39]. In 2020, due to the Covid-19 pandemic,
the challenge moved to a fully virtual edition with realistic
simulation-based environments [40].

III. MULTI-ROBOT SAR: SYSTEM-LEVEL PERSPECTIVE
Robotic SAR systems can differ in multiple ways: their
intended operational environment (e.g., urban, maritime,
or wilderness), the amount and type of robots involved
(USVs, UAVs, UGVs, UUVs), their level of autonomy, and
the ways in which humans control the robotic systems, among
other factors. This section aims at introducing the main
components to consider when designing an MRS for SAR
operations, from communication networks to the detection
of victims, and considering also specific requirements of
different operational environments

A. SYSTEM REQUIREMENTS AND EQUIPMENT USED
Here we describe the different types of SAR robots in the
literature and the most common onboard sensor suites.

1) GROUND ROBOTS
Two complimentary examples of ground robots for SAR
operations are introduced in [41], where both large and small
robots are described. Ground robots for SAR missions can
be characterized among those with dexterous manipulation
capabilities and robust mobility on uneven terrain, such as the
robot developed within the CENTAURO project [14], smaller
robots with the ability of moving through tight spaces [41],
or serpentine-like robots able of tethered operation across
complex environments [42]. The recent DARPA SubT chal-
lenge has seen the design and deployment of flexible and
robust ground units able of long-term autonomy and carry
aerial units. For instance, the CTU-CRAS team, achieving
the best non-DARPA-funded performance in the tunnel track,
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FIGURE 3. Types of autonomous robots utilized in different SAR scenarios and their main advantages.

utilized a Husky A200 (wheeled robot), two Absolem plat-
form (tracked robot with four flippers), and six-legged Phan-
tomX Mark II platforms (crawling hexapod robots) [36].

2) AERIAL ROBOTS
In terms of aerial robots, UAVs can be quadrotors, fixed-wing
aircrafts, or of other types (e.g., blimps). A representative
example of a quadrotor is available in [28], where the authors
introduce a platform for instantaneous UAV-based 3D map-
ping during SAR missions. The platform offers a complete
sensor suite. The main sensors are a 16-channel laser scanner,
an infrared camera for thermal measurements, an RGB cam-
era, and inertial/positional sensors for GNSS and altitude esti-
mation. The UAV, a DJI S1000+ octocopter, is connected to a
ground station on-board a fire fighter command vehicle with
a custom radio link capable of over 300Mbps downlink speed
at distances up to 300m. The system is able to produce point
clouds colored both by reflectance (from the laser measure-
ments) and temperature (from the infrared camera). This suite
of sensors is one of the most complete for UAVs, except for
the lack of ultrasonic sensors. In general, however, cameras
are the predominant sensors owing to their flexibility, size
and weight. Examples of autonomous quadrotors, fixed-wing
and rotatory-wing vehicles equipped with GNSS sensors and
RGB cameras for search of people in emergency scenarios
are available in [43]–[45]. A description of different types
of aerial SAR robots utilized within the ICARIUS project is
available in [46], and a survey on UAVs for SAR operations
by Grogan et al. shows the predominance of RGB cameras as
the main or only sensor in use, without considering inertial
and GNSS units [10]. Most of these and other works, how-
ever, assume the aerial robots move in large spaces and are not
excessively constrained by environmental conditions (e.g.,
smoke, wind, or low-light). The DARPA SubT challenge
provides again examples of robots being designed for more
challenging environments. In [39], the authors present Duck-
iefloat, a collision-tolerant blimp for long-term autonomy in
underground environments. The CTU-CRAS team utilized
quadrotors based on the F450 kit by DJI, with a Bluefox RGB
camera and ambient illumination from an LED stripe [36].

3) SURFACE AND UNDERWATER ROBOTS
Maritime SAR operations often involve both surface and
underwater robots, with support UAVs. Descriptions of differ-
ent surface robots offering an overview of existing solutions
are available in [47] and [48]. Some particularities of mar-
itime SAR robots include the use of seafloor pressure sensors,
seismometers, and hydrophone for the detection of tsunamis
and earthquakes, or sensors for measuring meteorological
variables and water conditions (e.g., temperature, salinity,
depth, pH balance and concentrations of different chemicals).
Other examples include sensors for various liquids and sub-
stances for robots utilized in oil spills or contaminated waters
(e.g., laser fluorosensors).

4) INTEROPERABILITY
A significant challenge in SAR robotics, owing to the spe-
cialization of robots in specific tasks, is interoperability.
The ICARUS and DARIUS projects have both worked
towards the integration of different unmanned vehicles or
robots for SAR operations [30], [49]. Interoperability is par-
ticularly important in heterogeneous multi-robot systems,
where data from different sources needs to be aggregated
in real-time for efficient operation and fast actuation. Fur-
thermore, because robots in SAR operations are mostly
supervised or partly teleoperated, the design of a ground
station is an essential piece in a complete SAR robotics
system. This is even more critical when involving the con-
trol of multi-robot systems. The design of a generic ground
station able to accommodate a wide variety of unmanned
vehicles has been one of the focuses of the DARIUS
project [50]. The approach to interoperability taken within
the ICARIUS project is described in detail in [51]. The
project outcomes included a library for multi-robot cooper-
ation in SAR missions that assumes that the Robot Oper-
ating System (ROS) is the middleware utilized across all
robots involved in the mission. ROS is the de facto standard
in robotics industry and research [52]. In [51], the authors
also characterize typical robot roles, levels of autonomy for
different types of robots, levels of interoperability, and robot
capabilities.
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B. OPERATIONAL ENVIRONMENT
In this subsection, we characterize the main SAR environ-
ments (urban, maritime and wilderness) and discuss how the
different challenges in each of these types of scenarios have
been addressed in the literature. The main considerations are
summarized in Table 3.

1) MARITIME SAR
Search and rescue operations at sea were characterized by
Zhao et al. in [61]. The paper emphasizes that maritime acci-
dents tend to happen suddenly. Some of the most significant
factors are injury condition, possession of location devices
and rescue equipment, and environmental factors such as geo-
graphic position, wave height, water temperature, wind speed
and visibility. A considerable amount of accidents happen
near the shoreline with favorable weather conditions, such
as beaches during the summer. Robotic SAR systems can be
ready to act fast. For instance, Xian et al. designed a life-ring
drone delivery system for aiding people near the shore [66].

The main types of autonomous robots utilized in maritime
SAR operations are USVs and UUVs [22], together with sup-
port UAVs [67]. Sea SAR operations are one of the scenarios
where heterogeneous multi-robot systems have been already
widely adopted [67]. A representative work on the area,
showing a heterogeneous and cooperative multi-robot system
for SAR operations after ship accidents, was presented by
Mendoça et al. [60]. The authors proposed the utilization of
both a USV and UAV to find shipwreck survivors at sea,
where the USV would carry the UAV until it arrives near the
shipwreck location.

The combination of USVs and UUVs has also been widely
studied, with or without UAVs. Some of the most prominent
examples in this direction come from the euRathlon compe-
tition and include solutions from the ICARUS project [48].
The surface robot was first utilized to perform an autonomous
assessment, mapping and survey of the area, identifying
points of interest. Then, the underwater vehicle was deployed
to detect pipe leaks and find victims underwater.

2) URBAN SAR
Urban SAR scenarios include, among others, natural disas-
ters (e.g., earthquakes), large fires, or accidents involving
hazardous materials. USAR robots increase the safety of res-
cue personnel by reducing their exposure to potential hazards
in the site and providing an initial assessment of the situation.
For instance, in [28], the authors describe a heterogeneous
multi-UAV system focused at providing an initial assessment
of the environment through mapping, object detection and
annotation, and scene classifier.

Novel types of robotic systems have also been developed
to better adapt to the challenges of USAR environments.
To be able to utilize UAVs near fires, Myeong et al. presented
FAROS, a fireproof drone for USAR operations [68]. Other
robots have taken inspiration from video scopes and fiber
scopes utilized to obtain imagery from confined spaces [69],

[70]. In [42], researchers participating in the ImPACT-TRC
challenge presented a thin serpentine robot platform, a long
and flexible continuum robot with a length of up to 10m and
a diameter of just 50mm, able to localize itself with visual
SLAM and access collapsed buildings.

3) WILDERNESS SAR
In wilderness SAR (WiSAR) operations, the literature often
includes SAR in mountains [62], underground mines and
caves [64], [65], [71], and forests and other rural or remote
environments [43], [72], [73]. The need for heterogeneous
MRS in WiSAR environments has been made evident during
the DARPA SubT challenge [36], [37].

One of the most common SAR operations in mountain
environments occurs in a post-avalanche scenario. In areas
with a risk of avalanches, mountaineers often carry avalanche
transmitters (AT). UAVs prepared for harsh conditions
(strong winds, high altitude and low temperatures) have been
utilized for searching ATs [62]. In [63], an autonomousmulti-
UAV system for localizing avalanche victims was developed.

Forest environments also present significant challenges
from the perception point of view, due to the density of the
environments and lack of structure for path planning [74].
WiSAR operations might involve tracking a moving target
(a lost person), and thus the search area increases through
time [72].

Another specific scenario that has attracted research atten-
tion is SAR for mining applications [64]. Two specific chal-
lenges in SAR operations in underground environments are
the limitations of wireless communication and the existence
of potentially toxic gases. Ranjan et al. have presented an
overview of wireless robotic communication networks for
underground mines [71]. The DARPA SubT challenge has
provided an opportunity for developing novel multi-robot
communication techniques and including the utilization of
breadcrumb nodes [75].

C. TRIAGE
In a scene of an accident or a natural disaster, an essential step
once victims are found is to follow a triage protocol. Triage is
the process through which victims are pre-assessed. In [76],
the authors explored from the perspective of medical special-
ists how robots could interact with victims and perform an
autonomous triage. In [77], the focus was on analyzing the
potential benefits and challenges in robotics technology to
assess those vital signs in an autonomous manner.

D. SHARED AUTONOMY AND HUMAN-SWARM
INTERACTION
In multi-robot systems and robots involving complex manip-
ulation (e.g., humanoids) with a high number of degrees of
freedom, such as humanoids, the concept of shared autonomy
gains importance. Shared autonomy refers to the autonomous
control of the majority of degrees of freedom in a sys-
tem, while designing a control interface for human opera-
tors to control a reduced number of parameters defining the
global behavior of the system [78]. For instance, in [79] the
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TABLE 3. Challenges and Opportunities for Autonomous Robots in different types of environments: Urban SAR [28], [42], [53]–[58], Maritime SAR [12],
[22], [59]–[61], and Wilderness SAR [62]–[65].

authors describe the design principles followed in theDARPA
Robotics Challenge to give the operators of a humanoid robot
enough situational awareness while simplifying the actual
control of the robot via predefined task sequences.

Another research direction in the control of MRS is
human-swarm interaction. Within the EU Guardians project,
researchers explored the possibilities of human-swarm inter-
action for firefighting, and defined the main design ideas
in [80].

In the DARPA SubT challenge, the rules allow only
one human to communicate with the multi-robot team.
A hybrid autonomous/semi-autonomous model has been pro-
posed in [36], with UAVs being fully autonomous and the
larger UGVs could be directly operated in adverse conditions,
but are semi-autonomous otherwise.

E. COMMUNICATION
Communication plays an vital role in anMRS due to the need
of coordination and information sharing necessary to carry
out collaborative tasks. In multi-agent systems, a mobile ad-
hoc network (MANET) is often formed for wireless commu-
nication and routing messages between the robots. Owing to
the changing characteristics in terms or wireless transmission
in different physical mediums, different communication tech-
nologies are utilized for various types of robots. An overview
of the main MRS communication technologies is available

in [81], while a review on MANET-based communication for
SAR operations is available in [82].

CollaborativeMRS need to be able to communicate to keep
coordinated, but also need to be aware of each other’s position
in order to make the most out of the shared data [83], [84].
Situated communication refers to wireless communication
technologies that enable simultaneous data transfer while
locating the data source [85]. Ubiquitous wireless technolo-
gies such as WiFi and Bluetooth have been exploited to
enable localization [86]–[92]. These approaches have been
traditionally based on the received signal strength indica-
tor (RSSI) and the utilization of either Bluetooth beacons
in known locations [89]–[91], or radio maps that define the
strength of the signal of different access points over a pre-
defined and surveyed area [86], [88]. More recently, other
approaches rely on angle-of-arrival [87], now built-in in Blue-
tooth 5.1 devices [93]. Ultra-wideband (UWB) technology
has emerged as a more accurate and less prone to interference
alternative to Wi-Fi and Bluetooth [94]. With most exist-
ing research relying on fixed UWB transceivers in known
locations [95], recent works also show promising results in
mobile positioning systems or collaborative localization [96].
A recent trend has also been to apply deep learning in posi-
tioning estimation [97].

From the point of view of multi-robot coordination,
maintaining connectivity between the different agents
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participating in a SAR mission is critical. Connectivity main-
tenance in wireless sensor networks has been a topic of
study for the past two decades [98]. In recent years, it has
gained more attention in the fields ofMRSwith decentralized
approaches [99]. Connectivity maintenance algorithms can
be designed coupled with distributed control in multi-robot
systems [100], or collision avoidance [101]. Xiao et al. have
recently presented a cooperativemulti-agent search algorithm
with connectivity maintenance [102]. Similar works aiming
at cooperative search, surveillance or tracking with multi-
robot systems focus on optimizing the data paths [103] or
fallible robots [104], [105]. Another recent work in area
coverage with connectivity maintenance is available in [106].
A comparison of local and global methods for connectivity
maintenance of multi-robot networks from Khateri et al. is
available in [107].

In environments with limited connectivity, building and
maintaining communication maps with information about the
coverage and reliability of communication in different areas
brings evident benefits. To this end, Amigomi et al. have
presented a method for updating communication maps in an
online manner under connectivity constraints [108]. A sur-
vey on multi-robot exploration of communication-restricted
environments is available in [109].

F. LOCALIZATION AND DEPLOYMENT IN GNSS-DENIED
ENVIRONMENTS
Localization is one of the main challenges in the deployment
of mobile robots. Localization approaches can be divided
among those providing global localization, and others focus-
ing on relative localization (odometry) with respect to the
initial position during deployment. The former case is most
notably represented by GNSS sensors. However, SAR oper-
ations can also occur in GNSS-denied environments (e.g.,
underground, indoor fires) or environments where GNSS sen-
sors do not provide enough accuracy (e.g., dense urban envi-
ronments or forests). Global localization with other onboard
sensors can be achieved with image matching [110], or lidar
data matching [111].

Among the different approaches to onboard odometry,
visual methods have gained significant traction due to their
low price, passive nature and flexibility [112]. This is the
case, for instance, of visual-inertial odometry with either
monocular cameras [113], or multiple sensors [114]. How-
ever, these sensors present limitations in challenging envi-
ronments with low-light or low-visibility conditions. In dense
urban environments, lidar-based odometry is the only viable
solution for long-term autonomy if high-accuracy localiza-
tion is required [115].

Simultaneous Localization and Mapping (SLAM)
approaches utilize odometry algorithms to build local
maps [116], [117], while utilizing those maps later on for
more stable and global localization, where now the global
term refers to the scope of the mission since deployment,
or since the process of building the map started. The different
teams participating in the DARPA SubT challenge have

employed various SLAM approaches with both lidar-based
and vision-based approaches. Some of the specific algorithms
have been ORB-SLAM in [39], or Hector SLAM [36].

IV. MULTI-ROBOT COORDINATION
In this section, we describe the main algorithms required for
multi-robot coordination and planning in collaborative appli-
cations. These are key enablers of MRS capabilities in terms
of exploration and navigation over large areas. We discuss
this mainly from the point of view of cooperative multi-robot
systems, while focusing on their applicability towards SAR
missions. The main problems discussed in this section are the
following:
- Multi-robot task allocation: distribution of tasks and objec-
tives among the robots (e.g., areas to be searched, or positions
to be occupied to ensure connectivity among the robots and
with the base station)
- Path planning and area coverage: global path planning
covers area coverage (generation of paths to entirely analyze a
given area) and area partition (dividing the area between mul-
tiple robots). Local planning and deals mainly with obstacle
and collision avoidance, incorporating robot dynamics.
- Area exploration: coverage and mapping algorithms (or
discover/ search for specific objects) in potentially unknown
environments.
- Centralized multi-robot planning: decision-making on the
actions of multiple robots by either gathering and processing
data in a single node, from which decisions are distributed
to others, or by achieving consensus through communication
(often requiring agents to be aware of all others, and stable
communication).
- Distributed multi-robot planning: algorithms enabling
agents to make independent decisions individually or in sub-
sets based only on their own data or data shared by their
neighbors. These do not necessarily need agents to be aware
of the existence or state of all other agents in the system.

A. MULTI-ROBOT TASK ALLOCATION
Search and rescue operations with multi-robot systems
involve aspects including collaborative mapping and situ-
ational assessment [118], distributed and cooperative area
coverage [119], or cooperative search [120]. These or
other cooperative tasks involve the distribution of tasks and
objectives within theMRS. In a significant part of the existing
multi-robot SAR literature, this is predefined or done in a
centralized manner [6], [16], [18], [28]. Here, we discuss
instead distributed multi-robot task allocation algorithms that
can be applied to SAR operations. Distributed algorithms
have the general advantage of being more robust in adverse
environments against the loss of individual agents or when
the communication with the base station is unstable.

A comparative study on task allocation algorithms for
multi-robot exploration was carried out by Faigl et al.
in [121], considering five distinct strategies: greedy assign-
ment, iterative assignment, Hungarian assignment, multiple
traveling salesman assignment, and MinPos. However, most
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of these approaches are often centralized from the decision-
making point of view, even if they are implemented in a
distributed manner. Others, such as MinPos, shift between
the two modalities depending on the availability of commu-
nication. Successive works have been presenting more decen-
tralized methods. Decentralized task allocation algorithms
for autonomous robots are very often based on market-based
approaches and auction mechanisms to achieve consensus
among the agents [122]–[125]. Both of this approaches
have been extensively studied for the past two decades
within the multi-robot and multi-agent systems communi-
ties [126], [127]. Bio-inspired algorithms have also been
widely studied within the multi-robot and swarm robotics
domains. For instance, in [128], Kurdi et al. present a task
allocation algorithm for multi-UAV SAR systems inspired by
locust insects. Active perception techniques have also been
incorporated in multi-robot planning algorithms in existing
works [129], [130].

An early work in multi-robot task allocation for SAR
missions was presented by Hussein et al. [122], with a
market-based approach formulated as a multiple traveling
salesman problem. The authors applied their algorithm to
real robots with simulated victim locations that the robots
had to divide among themselves and visit. The solution was
optimal (from the point of view of distance traveled by the
robots) and path planning for each of the robots was also
taken into account. The authors, however, did not study the
potential for scalability with the number of robots or victim
locations, or consider the computational complexity of the
algorithm. In that sense, and with the aim of optimizing the
computational cost owing to the non-polynomial complexity
nature of optimal task allocation mechanisms, Zhao et al.
presented a heuristic approach [123]. The authors introduced
a significance measure for each of the tasks, and utilized
both victim locations and terrain information as optimization
parameters within their proposed methodology. The algo-
rithm was tested under a simulation environment with a
variable number of rescue robots and number of survivor
locations to test the scalability and optimality under different
conditions.

An auction-based approach aimed at optimizing a
cooperative rescue plan within multi-robot SAR systems
was proposed by Tang et al. [124]. In this work, the
emphasis was also put on the design of a lightweight
algorithm more appropriate for ad-hoc deployment in SAR
scenarios.

A different approach where a human supervisor was
considered appears in [131]. Liu et al. presented in this
work a methodology for task allocation in heterogeneous
multi-robot systems supporting USAR missions. By rely-
ing on a supervised system, the authors show better adapt-
ability to situations with robot failures. The algorithm was
tested under a simulation environment where multiple semi-
autonomous robots were controlled by a single human
operator.

B. AREA COVERAGE AND PATH PLANNING
An essential part of autonomous SAR operations is path
planning and area coverage. To this end, multiple algorithms
have been presented for different types of robots or scenarios.

Planning in SAR scenarios can pose additional chal-
lenges to well-established planning strategies for autonomous
robots. In particular, the locations of victims trapped under
debris or inside cave-like structures might be relatively easy
to determine but significantly complex to access, thus requir-
ing specific planning strategies. In [120], Suarez et al. present
a survey of animal foraging strategies applied to rescue
robotics. The main methods that are discussed are directed
search (search space division with memory- and sensory-
based search) and persistent search (with either predefined
time limits or constraint-optimization for deciding how long
to persist on the search). With specialized robots being
used for different scenarios (e.g., tracked robots or crawling
robots), the ability of these robots to traverse different envi-
ronments might not be known a priori. To address this issue,
ML-based techniques that rely on online learning have been
utilized to create cost maps of the environment in terms of the
ease of movement. In [132], the authors introduce a method
for a fully autonomous hexapod walking robot tested on a
laboratory track with uneven terrain.

Path planning algorithms can be part of area coverage
algorithms or implemented separately for robots to cover their
assigned areas individually. In any case, when area coverage
algorithms consider path planning, it is often from a global
point of view, leaving the local planning to the individual
agents. A detailed description of path planning algorithms
including approaches of linear programming, control theory,
multi-objective optimization models, probabilistic models,
and meta-heuristic models for different types of UAVs is
available in [133].While some of these algorithms are generic
and only take into account the origin and objective position,
together with obstacle positions, others also consider the
dynamics of the vehicles and constraints that these naturally
impose in local curvatures, such as Dubin curves [133].

Area coverage and path planning algorithms take into
account mainly the shape of the objective area to be surveyed.
Nonetheless, a number of other variables are also considered
in more complex algorithms, such as energy consumption,
range of communication and bandwidth, environmental con-
ditions, or the probability of failure. This data is not neces-
sarily available a priori, and therefore it is also in the interest
of the robots to collect data affecting the planning outcome
while operating. The problem of maximizing the utility of
data collection is called the informative path planning (IPP)
problem [134]. IPP approaches have been shown to outper-
form more traditional planning algorithms such as greedy
algorithms and genetic algorithms [135].

The specific dynamics and capabilities of the robots being
used can also be utilized to optimize the performance of the
area coverage, for example when comparing the maneuver-
ability of quadrotors and fixed-wing UAVs. Cabreira et al.
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FIGURE 4. Illustration of different basic area decomposition and
coverage algorithms: (i) decomposition through voronoi regions, (ii) exact
cell decomposition, (iii) polygonal decomposition (triangular in this case),
and (iv) disjoint area coverage. The resulting decompositions or coverage
paths are marked with black lines, while the original areas are shown in
gray colors.

have presented algorithms for coverage path planning with
UAVs [136].

Area coverage algorithms can be broadly classified in
terms of the assumptions they make on the geometry of
the area to be covered. The most basic approaches con-
sider only convex and joint areas [119], for which paths
can be efficiently generated based on area decomposition
algorithms [137], [138]. Some of the most common area
decomposition and coverage algorithms are shown in Fig. 4.
Recent works have considered more complex environ-

ments. For instance, in [139], Xie et al. presented a path plan-
ning algorithm for UAVs covering disjoint convex regions.
The authors’ method considered an integration of both cov-
erage path planning and the traveling salesman problem.
In order to account for scalability and real-time execu-
tion, two approaches were presented: a near-optimal solution
based on dynamic programming, and a heuristic approach
able to efficiently generate high-quality paths, both tested
under simulation environments. Also aiming at disjoint but
convex areas, Vazquez et al. proposed a similar method that
separates the optimization of the order in which the differ-
ent areas were visited and the path generation for each of
them [140]. Both of this cases, however, provide solutions
for individual UAVs.

Furthermore, the optimization problems uponwhichmulti-
robot area coverage algorithms build are known to belong
to the NP-hard class of non-deterministic polynomial time
algorithms [141]. Therefore, part of the existing research has
focused towards probabilistic approaches. This naturally fits
to SAR operations since, after an initial assessment of the

environment, SAR personnel can get an a priori idea of the
most probable locations for victims [142]. The idea of using
probability distributions in the multi-objective search opti-
mization problem has also been extended towards actively
updating these distributions as new sensor data becomes
available [143].

C. PLANNING FOR DIFFERENT ROBOTS: UAVs, UGVs,
UUVs AND USVs
Mobile robots operating on different mediums necessarily
have different constraints and a variable number of degrees
of freedom. For local path planning, a key aspect to consider
when designing control systems is the holonomic nature of
the robot. In a holonomic robot, the number of controllable
degrees of freedom is equal to the number of degrees of
freedom defining the robot’s state. In practice, most robots
are non-holonomic, with some having significant limita-
tions to their local motion such as fixed-wing UAVs [144],
or USVs [145]. However, quadrotor UAVs, which have
gained considerable momentum owing to their flexibility and
relatively simple control, can be considered holonomic [146].
Ground robots equipped with omniwheel mechanisms and
able of omnidirectional motion can be also considered holo-
nomic if they operate on favorable surfaces [147].

Multiple works have been devoted to reviewing the
different path planning strategies for unmanned vehicles in
different mediums: aerial robots [133], surface robots [148],
underwater robots [149], [150], and ground robots for
urban [55], or wilderness [151] environments. From these
works, we have summarized the main constraints to be con-
sidered in path planning algorithms in Fig. 5.
The main limitations in robot navigation, and therefore

path planning, in different mediums can be roughly character-
ized by: (i) dynamic environments and movement limitations
in ground robots; (ii) energy efficiency, situational aware-
ness, and weather conditions in aerial robots; (iii) under-
actuation and environmental effects in surface robots, with
currents, winds and water depth constraints; and (iv) localiza-
tion and communication in underwater robots. Furthermore,
these constraints increase significantly in SAR operations,
with earthquakes aggravating the movement limitations of
UGVs, or fires and smoke preventing normal operation of
UAVs. Some emergency scenarios, such as flooded coastal
areas, combine multiple of the above mediums making the
deployment of autonomous robots even more challenging.
For instance, in [152], the authors describe path planning
techniques for rescue vessels in flooded urban environments,
where many of the limitations of urban navigation are added
to the already limited navigation of surface robots in shallow
waters.

A key parameter to take into account in autonomous
robots, and particularly in UAVs, is energy consumption.
Di Franco et al. presented an algorithm for energy-aware
path planning with UAVs [153]. A more recent work con-
sidering energy-aware path planning for area coverage intro-
duces a novel algorithm for path planning that minimizes
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turns [154]. Energy efficiency is a topic that has also been
considered in USVs. In [155], the authors introduced an
energy-efficient 3D (two-dimensional positioning and one-
dimension for orientation) path planning algorithm that
would take into account both environmental effects (marine
currents, limited water depth) and the heading or orientation
of the vehicle (in the start and end positions).

Owing to the flexibility of quadrotor UAVs, they have been
utilized with different roles in more complex robotic systems.
For instance, in [13] the authors describe a heterogeneous
multi-UAV system for earthquake SAR where some of the
UAVs are in charge of providing reliable network connection,
as a sort of air communication station, while smaller UAVs
flying close to the ground are in charge of the actual search
tasks.

D. MULTI-ROBOT PATH PLANNING
Research in the field of multi-robot path planning has
been ongoing for over two decades. An early approach to
multi-robot cooperation was presented in [156] in 1995,
where the authors introduced an incremental plan-merging
approach that defined a global plan shared among the robots.
In [137], an early generalization of previous algorithms
towards nonconvex and nonsimply connected areas was pre-
sented, enabling deployment in more realistic scenarios.
The advances since then have been significant in multiple
directions. With the idea or providing fault-tolerant systems,
in [119] the authors introduced a reconfiguration process that
would account in real-time for malfunctioning or missing
agents, and adjust the paths of remaining agents accord-
ingly. Considering the need of inter-robot communication
for aggregating and merging data, a cooperative approach to
multi-robot exploration that considers the range limitations
of the communication system between robots was introduced
in [157]. Non-polygonal area partitioning methods have also
been proposed. In [158], a circle partitioning method that the
authors claim to be applicable to real-world SAR operations
was presented. Covering the topics of connectivity main-
tenance and IPP, a multi-robot IPP approach to managing
continuous connectivity constraints appears in [159].

Existing approaches often differentiate between area cov-
erage and area exploration. In area coverage algorithms, algo-
rithms focus on optimally planning paths for traversing a
known area, or dividing a known area among multiple agents
to optimize the time it takes to analyze it. Area exploration
algorithms focus instead on the coverage and mapping of
potentially unknown environments. The two terms, however,
are often used interchangeably in the literature. An overview
and comparison of multi-robot area exploration algorithms is
available in [160].

In [161], Choi et al. present a solution for multi-UAV
systems, which is in turn focused at disaster relief scenarios.
In particular, the authors developed this solution in order
to improve the utilization of UAVs when fighting multiple
wildfires simultaneously. Also considering multi-UAV path
planning, but including non-convex disjoint areas, Wolf et al.

proposed a method were the operator could input a desired
overlap in the search areas [162]. This can be of particular
interest in heterogeneous multi-robot systems where different
robots have different sensors, and the search personnel wants
multiple robots to travel over some of the areas. Finally,
another recent work in cooperative path planning that focuses
on mountain environments and can be of specific interest in
WiSAR operations was presented by Li et al. [163].

A subset of multi-robot path planning algorithms are for-
mation control algorithms. Formation control or pattern for-
mation algorithms are those that define spatial configurations
in multi-robot systems [164]. Most formation control algo-
rithms for multi-agent systems can be roughly classified in
three categories from the point of view of the variables that
are measured and actively controlled by each of the agents:
position-based control, displacement-based control, and dis-
tance or bearing-based control [164]. Formation control algo-
rithms requiring global positioning are often implemented
in a centralized manner, or through collaborative decision
making. Displacement and distance or bearing-based con-
trol, on the other hand, enable more distributed imple-
mentations with only local interactions among the different
agents [165]–[167]. In SAR operations, formation control
algorithms are an integral part of multi-robot ad-hoc networks
or MANETs [168], [169], multi-robot emergency surveil-
lance and situational awareness networks [170], or even a
source of communication in human-swarm interaction [171].

E. MULTI-OBJECTIVE MULTI-AGENT OPTIMIZATION
From a theoretical point of view, a multi-agent collaborative
search problem can be formulated and solved as a multi-
agent and multi-objective optimization problem in a certain
space [172], [173].

In post-disaster scenarios and emergency situations in gen-
eral, an initial assessment of the environment often provides
rescue personnel an idea of the potential spatial distribution
of victims [13]. In those cases, different a priori probabilities
can be assigned to different areas, providing a ranking of
locations for the multi-objective optimization problem. The
literature involving multi-agent multi-objective optimization
for SAR operations is, however, sparse. In [174], Hayat et al.
proposed a genetic algorithm for multi-UAV search in a
bounded area. One of the key novelties of this work is that the
authors consider simultaneously connectivity maintenance
among the UAV network and optimization of area coverage.
Moreover, the algorithm could be adjusted to give more prior-
ity to either coverage or connectivity, depending on the mis-
sion requirements. A multi-objective evolutionary algorithm
aimed at general emergency response planning was proposed
by Narzisi et al. in [175].

F. PLANNING IN HETEROGENEOUS MULTI-ROBOT
SYSTEMS
Most existing approaches for multi-robot exploration or area
coverage either assume that all agents share similar opera-
tional capabilities, or that the characteristics of the different
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FIGURE 5. Main path planning constraints that autonomous robots in different domains need to account for. Some of these aspects are common
across the different types of robots, such as energy efficiency and inherent constraints from the robots’ dynamics, but become more
predominant in UAVs and USVs, for instance.

agents are known a priori. Emergency deployments in post-
disaster scenarios for SAR of victims, however, requires
flexible and adaptive systems. Therefore, algorithms able to
adapt to heterogeneous robots that potentially operate on
different mediums and with different constraints (e.g., UAVs
and UGV collaborating in USAR scenarios) need to be uti-
lized. In this direction, Mueke et al. presented a system-
level approach for distributed control of heterogeneous sys-
tems with applications to SAR scenarios [176]. In general,
we see a lack of further research in this area, as most existing
projects and systems involving heterogeneous robots prede-
fine the way in which they are meant to cooperate. From
a more general perspective, an extensive review on control
strategies for collaborative area coverage in heterogeneous
multi-robot systems was recently presented by Abbasi [177].
Also from a general perspective, a survey on cooperative
heterogeneous multi-robot systems by Rizk et al. is available
in [178].

V. SINGLE AND MULTI-AGENT PERCEPTION
In SAR missions, it is essential to be able to quickly detect
humans, hazards, and provide real-time situational aware-
ness to the robots. In [181], the authors provide a broad
overview of the progress of computer vision covering all
sorts of emergencies. Current state-of-the-art computer vision
models are based on Deep Learning (DL), which often
leads to heavy and slow methods that cannot operate on
real-time on portable devices. However, recent research has
also focused towards the development of lighter and faster
models able to operate in real-time with limited hardware
resources.

This section thus focuses on DL for real-time percep-
tion with lightweight models. We review single and multi-
agent machine perception methods on SAR-like missions and
environments, where DL is the key enabler for the actual
identification of victims and assessment of the situation. As
cameras are the most common sensors in SAR robotics,
we first concentrate on image-based perception, i.e., semantic
segmentation and object detection. In semantic segmenta-
tion, everything that the agent perceives is labeled, and in
object detection, only the objects of interest are labeled. The
difference is illustrated in Fig. 6. We also discuss multi-
modal sensor fusion that allows to combine information from
cameras and other sensors.

A. SEMANTIC SEGMENTATION
Semantic segmentation is a process, where each pixel in an
image is linked to a class label, such as sky, road, or forest.
These pixels then form larger areas of adjacent pixels that are
labeled with the same class label and recognized as objects.
A survey on semantic segmentation using deep learning tech-
niques available in [182] provides an extensive view of the
methods provided to tackle this problem. In autonomous
agents in general, the use of semantic segmentation has
been studied fairly well in autonomous road vehicles.
Siam et al. [183] have done an in-depth comparison of such
semantic segmentation methods for autonomous driving and
proposed a real-time segmentation benchmarking framework.

In marine environment, the study of semantic segmenta-
tion has been less common. In [184], three commonly used
state-of-the-art deep learning semantic segmentationmethods
(U-Net [185], PSP-Net [186] and DeepLabv2 [187]) are
benchmarked on a maritime environment. The leaderboard
for one of the largest publicly available datasets, Modd2
[188], also contains a listing of semantic segmentation
method capable to perform in marine environment [186],
[187], [189]–[194].

In our former studies [180], [195], we have focused on
semantic segmentation to separate water surface from every-
thing else that appears in the image, which is similar to
the process that is performed in self-driving cars for road
detection. While excellent results can be obtained when the
algorithm is applied in conditions that resemble the train-
ing images (see Fig 6b), it was observed the performance
decreases notably in different conditions. This highlights the
need of diverse training images and domain adaption tech-
niques that help to adjust to unseen conditions [196].

B. OBJECT DETECTION
Object detection is a technique related to computer vision
and image processing which deals with detecting instances
of semantic objects of a certain class in digital images
and videos. Object detectors can usually be divided into
two categories: two-stage detectors and one-stage detectors.
Two-stage detectors first propose candidate object bound-
ing boxes, and then features are extracted from each candi-
date box for the following classification and bounding-box
regression tasks. The one-stage detectors propose predicted
boxes from input images directly without region proposal
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FIGURE 6. Examples of (a) an image detection algorithm, YOLOv3 [179] with Darknet, which detects a boat with 91% confidence, and (b) a water
segmentation output [180].

step. Two-stage detectors have high localization and object
recognition accuracy, while the one-stage detectors achieve
high inference speed. A survey of deep learning based object
detection [197] has been published recently.

Object detection tasks require high computing power and
memory for real-time applications. Therefore, cloud com-
puting [198] or small-sized object detection methods have
been used for UAV applications [199]–[202]. Cloud com-
puting assists the system with high computing power and
memory. However, communicating with a cloud server brings
unpredictable delay from the network. In [198], authors used
cloud computing for object detection while keeping low-level
object detection and navigation on the UAV.

Another option is to rely on specific object detection mod-
els [199]–[202], designed for limited computational power
and memory. The papers proposed new object detection mod-
els, by using old detection models as their base structure and
scaling the original network by reducing the number of filters
or changing the layers and they achieved comparable detec-
tion accuracy besides the speed on real-time applications on
drones. In [201], authors observed a slight decrease on the
accuracy while the new network was faster comparing to the
old structure. In [203], an adaptive submodularity and deep
learning-based spatial search method for detecting humans
with UAV in a 3D environment was proposed.

C. FAST AND COMPUTATIONALLY LIGHT METHODS
As mentioned before, some solutions can be rather slow
and computationally heavy, but in SAR operations it is vital
that the used algorithms are as real-time as possible while
still working with high level of confidence. The faster the
algorithm can work, the faster the agent can search the area
and that probably could lead to faster rescue of the persons in
distress. Also the high confidence assures that no important
information is missed.

You only look once (YOLO) is the state-of-the-art, real-
time object detection system, and YOLOv3 [179] is stated
to be extremely fast and accurate compared to methods like
R-CNN [204] and Fast R-CNN [205]. An example of the
YOLOv3 output is shown in Fig. 6a.

There is active research on methods that can produce
more compact networks with improved prediction capability.
Common approaches include knowledge distillation [206],
where a compact student network is trained to mimic a larger
network, e.g., by guiding the network to produce similar
activations for similar inputs, and advanced network models,
such as Operational Neural Networks [207], where the linear
operators of CNNs are replaced by various (non-)linear oper-
ations, which allows to produce complex outputs which much
fewer parameters.

D. MULTI-MODAL INFORMATION FUSION
Multi-modal information fusion aims at combining data from
a multiple sources, e.g., images and LiDAR. Information
fusion techniques have been actively researched for decades
and there is a myriad of different ways to approach the
problem. The approaches can be roughly divided into tech-
niques fusing information on raw data/input level, on fea-
ture/intermediate level, or on decision/output level [210].
An overview of the main data fusion approaches in multi-
modal scenarios is illustrated in Fig. 7.

Some of the main challenges include representation, i.e.,
how to represent multi-modal data taking into account com-
plementarity and redundancy of multiple modalities, trans-
lation, i.e., how to map the data from different modalities
to a joint space, alignment, i.e., how to understand the rela-
tions of the elements of data from different modalities, for
example, which parts of the data describe the same object in
an image and in a point-cloud produced by LiDAR, fusion,
i.e., how to combine the information to form a prediction,
and co-learning, i.e., how to transfer knowledge between the
modalities, which may be needed, for example, when one
the modalities is not properly annotated [211]. The main
challenges related to multi-modal data are listed in Table 4.

In research years, also the information fusion techniques
have focused more and more on big data and deep learn-
ing. Typical deep learning data fusion techniques have some
layers specific to each data source and the features can be
then combined before the final layers or processed separately
all the way to the network output, while the representations
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FIGURE 7. Different multi-modal data fusion approaches: (a) parallel data integration with high-level decision making, (b) sequential
processing of modalities when different modalities have difference conficende or quality levels, (c) true fusion with high-level features or
with multivariate features, and (d) true fusion with minimal reduction [208], [209]. In gray, we highlight the stage in which the fusion happens.

are coordinated through a constraint such as a similarity
distance [211], [212].

In SAR operations, the most relevant data fusion appli-
cations concern images and depth information [213], [214].
A recent deep learning based approach uses the initial image-
based object detection results are to extract the corresponding
depth information [214] and, thus, fuses the modalities on
the output level. Another recent work proposed a multi-scale
multi-path fusion network with that follows a two-stream
fusion architecture with cross-modal interactions in multiple
layers for coordinated representations [213]. Simultaneous
localization and mapping (SLAM) aims at constructing or
updating a map of the environment of an agent, while simul-
taneously keeping track of the agent’s position. In SLAM,
RGB-D data is used to build a dense 3D map and the data
fusion technique applied in a single-agent SLAM is typically

extended Kalman Filter (EKF) [215]. Fusing RGB and ther-
mal image data can be needed, for example, in man overboard
situations [216]. Typically, there is much less training data
available for thermal images and, therefore, domain adaption
between RGB and thermal images may help [217].

E. MULTI-AGENT PERCEPTION
To get the full benefit of the multi-robot approach in SAR
operations, there should be also information fusion between
the agents. For example, an object seen from two differ-
ent angles can be recognized with a higher accuracy. The
sensors carried by different robots may be the same, typi-
cally cameras, or different as the presence of multiple agents
makes it possible to distribute some of the sensors’ weight
between the agents, which is important especially in UAV
applications. The goal is that the perception the agents have of
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their environment is based on aggregating information from
multiple sources and the agents share information steadily
between themselves or to a control station.

The challenges and approaches are similar to those dis-
cussed in Section V-D for multi-modal information fusion,
but the situation is further complicated by the fact that the
data to be fused is located in different physical locations and
the sensors are now moving with respect to each other. Some
of the challenges that need to be solved are where to perform
data fusion, how to evaluate whether different agents are
observing the same objects or not, or how to rank observations
from different agents. For many of the challenges, there are
no efficient solutions yet.

There are several works concentrating on target tracking
by multiple agents. These can be divided into four main
categories: 1) Cooperative Tracking (CT), which aims track-
ing moving objects, 2) cooperative multi-robot observation
of multiple moving targets (CMOMMTs), where the goal
is to increase the total time of observation for all targets,
3) cooperative search, acquisition, and tracking (CSAT),
which alternates between the searching and tracking of mov-
ing targets, and 4) multi-robot pursuit evasion (MPE) [218],
[219]. In SAR operations, especially CSAT approaches can
be important after the victims have been initially located,
for example, in marine SAR operations, where the victims
are floating in the water. For initial search of the victims,
a simulated cooperative approach using scanning laser range
finders was proposed in [220], but multi-view image fusion
techniques for SAR operations are not yet operational.

VI. CLOSING THE LOOP:
ACTIVE PERCEPTION IN MULTI-ROBOT SYSTEMS
While we above discussed coverage planning, formation con-
trol, and perception aspects of SAR as separate operations,
it is obvious that all the components need to function seam-
lessly together in order achieve optimal performance. This
means that coverage planning and formation control need
to be adjusted based on the observations and the perception
algorithms need to be optimized to support and take full
advantage of overall adaptive multi-agent systems. This can
be achieved via active perception techniques [221], [222].
While the passive perception techniques simply utilize what-
ever inputs they are given, active perception methods adapt
the behavior of the agent(s) in order to obtain better inputs.

Active perception has been defined as:

An agent is an active perceiver if it knowswhy it
wishes to sense, and then chooses what to perceive,
and determines how, when, and where to achieve
that perception. [223]

In the case of searching a victim, this can mean that the robots
are aware that the main purpose is to save humans (why),
and are able adapt their actions to achieve better sightings
of people in need of help (what) by, for example, zooming
the camera to a potential observation (how) or by moving to
a position that allows a better view (where and when).

In a SAR operation, active perception can help in multi-
ple subtasks in the search for victims, such as path finding
in complex environments [224], obstacle avoidance [225],
or target detection [226]. Once a victim has been detected,
it is also important to keep following him/her. For instance,
in maritime SAR operations, there is a high probability that
the survivors are floating in the sea and drifting due to the
wind or marine currents. In such scenarios, it is essential that
the robots are able to continuously update the position of
survivors so that path planning for the rescue vessel can be
re-optimized and recalculated in real-time in an autonomous
manner. This requires active tracking of the target [227].

While our main interest lies in active perception for multi-
robot SAR operations, the literature directly focusing on this
specific field is still scarce. Nevertheless, active perception is
a rapidly developing research topic and we believe that it will
be one of the key elements also in the future research onmulti-
robot SAR operations. Therefore, we start by introducing
the main ideas presented in single-agent active perception
and then turn our attention on works that consider active
perception in formation control and multi-robot planning.
The essence of active perception is understanding, adapting
to changes in the environment and taking action for the next
mission step.

A. SINGLE-AGENT ACTIVE PERCEPTION
Besides performing their main task (e.g., object detection),
active perception algorithms use the same input data to pre-
dict the the next action that can help them to improve their
performance. This is a challenge for training data collection,
because typically there is high number of possible actions
in any given situation and it is not always straightforward
to decide which actions would be good or bad. A bench-
mark dataset [228] provides 9000 real indoor input images
along with the information showing what would be seen
next if a specific action is carried out when a specific image
is seen. Another possibility is to create simulated training
environments [229], where actions can be taken in a more
natural manner. With such simulators, it is critical that the
simulator is realistic enough so that employment in the real
world is possible. To facilitate the transition, Sim2Real learn-
ing methods can be used [230]. Finally, it is also possible
to use real equipment and environments [224], [231], but
such training is slow and requires having access to suitable
equipment. Therefore, training setups are typically simplistic.
Furthermore, real-world training makes it more complicated
to compare different approaches.

Currently, the most active research direction in active per-
ception is reinforcement learning [222]. Instead of learning
from labeled input-output pairs, reinforcement learning is
based on rewards and punishment given to the agents based
on their actions. While reinforcement learning is expected to
be the future direction is active perception, its applicability in
SAR operations is reduced by the problems of collecting or
creating sufficient training data and experiences. Therefore,
simpler approaches that use deep neural networks only for
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TABLE 4. Main challenges in multi-modal and multi-source data fusion.

visual data analysis but use traditional approaches, such as
proportional-integral-derivative (PID) controllers [232], for
control may be currently easier to implement. A way to use
active perception in a simulated setting of searching a lost
child indoors using a single UAV is described in [226].

B. PERCEPTION FEEDBACK IN MULTI-ROBOT PLANNING
AND MULTI-ROBOT SEARCH
Other works in cooperative active tracking and cooperative
active localization, have been presented without necessarily
considering spatial coordination of fixed formations among
the collaborative robots. In [233], active perception was
incorporated in a collaborative multi-robot tracking applica-
tion by planning the paths to minimize the uncertainty in the
location of both each individual robot and the target. The
robots were UAVs equipped with lidar sensors. In [234],
the authors extend the previous work towards incorporating
the dynamics of the UAVs in the position estimators with
perform real-world experiments. In this second work, a hier-
archical control approach was utilized to generate the paths
for the different robots.

An extensive description of methods for (i) localization
of a stationary target with one and many robots, (ii) active
localization of clusters of targets, (iii) guaranteed localiza-
tion of multiple targets, and (iv) tracking adversarial targets,
is presented in [235]. The different methods incorporate both
active perception and active localization approaches, and
they are mainly focused at ranging measurements based on
wireless signals. In terms of SAR robotics and the different
systems described in this survey, these type of methods have
the most potential in avalanche events for locating ATs, or in
other scenarios if the victims have known devices emitting
some sort of wireless signal.

In the area of multi-robot search, Acevedo et al. recently
presented a cooperative multi-robot search algorithm based
on a particle filter and active perception [236]. The approach
presented in that paper can be exported to SAR scenarios,
as the authors focus on optimizing the collaborative search
by actively maximizing the information that robots acquire
of the search area. One of the most significant contributions
within the scope of this survey is that the authors work on the
assumption of uncertainty in the data, and therefore propose
the particle filter for active collaborative perception. This
results in a dynamic reallocation of the robots to different
search areas. The system, while mostly distributed, requires

the robots to communicate with each other to maintain a
common copy of the particle filter. The authors claim that
future works will be directed towards further decentralizing
the algorithms by enabling asynchronous communication and
local particle filters at each of the robots.

In between the areas of multi-robot active coverage and
active tracking and localization, Tokekat and Vander et al.
have presented methods for localizing and monitoring radio-
tagged invasive fish with an autonomous USV [237], [238].
Other authors have presented methods for actively acquiring
information about the environment. For instance, a significant
work in this area that has direct application to the initial
assessment and posterior monitoring of the area in SAR
scenarios is [239], where the authors present a decentralized
multi-robot simultaneous localization and mapping (SLAM)
algorithm. The authors identified that optimal path planning
algorithms maximizing active perception had a computa-
tional complexity that would grow exponentially with both
the number of sensors and the planning horizon. To address
this issue, they proposed an approximation algorithm and
a decentralized implementation with only linear complexity
demonstrated with a multi-robot SLAM experiment.

A work on the combination of cooperative tracking
together with formation control algorithms for multi-robot
systems was introduced in [240]. The authors proposed a
perception-driven formation control algorithms that aimed
at maximizing the performance of multi-robot collaborative
perception of a tracked subject through a non-linear model
predictive control (MPC) strategy.

In a similar research direction, Tallamraju et al. described
in a recent work a formation control algorithm for active
multi-UAV tracking based on MPC [241]. One of the main
novelties of this work is that theMPC is built from decoupling
the minimization of the tracking error (distance from the
UAVs to the person) and the minimization of the formation
error (constraints on the relative bearing of the UAVs with
respect to the tracked person). Another key novelty is that the
authors incorporated collision avoidancewithin themain con-
trol loop, avoiding non-convexity in the optimization problem
by calculating first the collision avoidance constraints and
adding them as control inputs to the MPC formulation.

In more practical terms, the results of [241] enable online
calculation of collision-free path planning while tracking a
movable subject and maintaining a certain formation config-
uration around the tracked subject, optimizing the estimation
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of the object’s position during tracking and maintaining it
close to the center of the field of view of each of the robots
deployed for collaborative tracking. Compared to other recent
works, the authors are able to obtain the best accuracy in the
estimation of the tracked person’s position, while only trad-
ing off a negligible increase in error of the self-localization
estimation of each of the tracking robots.

A more general approach to collaborative active sensing
was presented in [242], where the authors proposed a method
for planning multi-robot trajectories. This approach could be
applied to different tasks including active mapping with both
static and dynamic targets, or for mapping environments with
obstacles.

VII. DISCUSSION AND OPEN RESEARCH QUESTIONS
Research efforts have mainly focused on the design of indi-
vidual robots autonomously operating in emergency sce-
narios, such as those presented in the European Robotics
League Emergency Tournament. Most of the existing lit-
erature in multi-robot systems for SAR either relies on an
external control center for route planning and monitoring,
on a static base station and predefined patterns for finding
objectives, or have predefined interactions between differ-
ent robotic units. Therefore, there is a big potential to be
unlocked throughout a wider adoption of distributed multi-
robot systems. Key advances will require embedding more
intelligence in the robots with lightweight deep learning
perception models, the design and development of novel
distributed control techniques, and a closer integration of
perception and control algorithms. Moreover, heterogeneous
multi-robot systems have shown significant benefits when
compared to homogeneous systems. In that area, nonetheless,
further research needs to focus on interoperability and ad-hoc
deployments of multi-robot systems.

Based on the different aspects ofmulti-robot SAR that have
been described in this survey, both at the system level and
from the coordination and perception perspectives, we have
summarized the main research directions where we see the
greatest potential. Further development in these areas is
required to advance towards a wider adoption of multi-robot
SAR systems.

A. SHARED AUTONOMY
With the increasing adoption of multi-robot systems for SAR
operations over individual and complex robots, the number
of degrees of freedom that can be controlled has risen dra-
matically. To enable efficient SAR support from these sys-
tems without the need for a large number of SAR personnel
controlling or supervising the robots, the concept of shared
autonomy needs to be further explored.

The applications of more efficient shared autonomy and
control interfaces are multiple. For instance, groups of UAVs
flying in different formation configurations could provide
real-time imagery and other sensor information from a large
area after merging the data from all the units. In that scenario,
the SAR personnel controlling the multi-UAV system would

only need to specify the formation configuration and control
the whole system as a single UAV would be controlled in a
more traditional setting.

While some of the directions towards designing control
interfaces for scalable homogeneous multi-robot systems are
relatively clear, further research needs to be carried out in
terms of conceptualization and design of interfaces for con-
trolling heterogeneous robots. These include land-air sys-
tems (UGV+UAV), sea-land systems (USV+UAV), and also
surface-underwater systems (USV+UUV), among other pos-
sibilities. In these cases, owing to the variability of their
operational capabilities and significant differences in the
robots dynamics and degrees of freedom, a shared autonomy
strategy is not straightforward.

B. OPERATIONAL ENVIRONMENTS
Some of the main open research questions and opportunities
that we see for each of the scenarios described in this paper
in terms of deployment of multi-robot SAR systems are the
following:
• Urban SAR: we have described the various types of
ground robots being utilized in USAR scenarios and col-
laborative UGV+UAV systems. In this area, we see the
main opportunities and open challenges to be in (i) col-
laborative localization in GNSS denied environments;
(ii) collaborative perception of victims from different
perspectives; (iii) ability to perform remote triage and
establish a communication link between SAR personnel
and victims, or to transport medicines and food; and (iv)
more scalable heterogeneous systems with various sizes
of robots (both UGVs and UAVs) capable to collabora-
tively mapping and monitoring harsh environments or
post-disaster scenarios.

• Marine SAR: throughout this survey, we have seen
that marine SAR operations are one of the scenarios
where heterogeneous multi-robot systems have been
most widely adopted. Nonetheless, there are multiple
challenges remaining in terms of interoperability and
deployability. In particular, few works have explored
the potential in closely designing perception and control
strategies for collaborative multi-robot systems includ-
ing underwater, surface and aerial robots [243]. More-
over, while the degree of autonomy of UAVs and UUVs
has advanced considerably in recent years, USVs can
benefit from the data gathered by these to increase their
autonomy. In terms of deployability, more robust solu-
tions are needed for autonomous take-off and docking of
UAVs or UUVs from surface robots. Finally, owing to
the large areas in which search for victims takes place in
maritime SAR operations, active perception approaches
increasing the efficiency of search tasks have the most
potential in these environments.

• Wilderness SAR: some of the most important chal-
lenges in WiSAR operations are the potentially remote
and unexplored environments posing challenges to both
communication and perception. Therefore, an essential
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step towards more efficient multi-robot operations in
WiSAR scenarios is to increase the level of auton-
omy and the operational time of the robots. Long-term
autonomy and embedded intelligence on the robots for
decision-makingwithout human supervision are some of
the key research directions in this area in terms of multi-
robot systems.

C. SIM-TO-REAL METHODS FOR DEEP LEARNING
Deep-learning-based methods are flexible and can be adapted
to a wide variety of applications and scenarios. Good perfor-
mance, however, comes at the cost of enough training data
and an efficient training process that is carried out offline.
Other deep learningmethods, and particularly deep reinforce-
ment learning (DRL), rely heavily on simulation environ-
ments for converging towards working control policies or
stable inference, with training happening on a trial-and-error
basis. Search and rescue robots are meant to be deployed in
real scenarios where the conditions can be more challenging
than those of more traditional robots. Therefore, an important
aspect to take into account is the transferability of the models
trained in simulation to the reality.

Recent years have seen an increasing research interest in
closing the gap between simulation and reality in DRL [244].
In the field of SAR robotics, a relevant example of the
utilization of both DL and DRL techniques was presented
by Sampedro et al. [245]. The authors developed a fully
autonomous aerial robot for USAR operations in which a
CNN was trained to for target-background segmentation,
while reinforcement learning was utilized for vision-based
control methods. Most of the training happened with a
Gazebo simulation and ROS, and the method was tested
also in real indoor cluttered environments. In general, and
compared with other DL methods, DRL has the advantage
in that it can be used to provide an end-to-end model from
sensing to actuation, therefore integrating the perception
and control aspects within a single model. Other recent
applications of DRL for SAR robotics include the work
of Niroui et al. [246], with an approach to navigation in
complex and unknown USAR cluttered environments that
used DRL for frontier exploration. In this case, the authors
put an emphasis on the efficiency of the simulation-to-reality
transfer. Another recent work by Li et al. [247] showed
the versatility of DRL for autonomous exploration and the
ability of transferring the model from simulation to reality
in unknown environments. We discuss the role of DRL in
active perception in Section VI. Bridging the gap between
simulation and reality is thus another challenge in some of
the current SAR robotic systems.

D. HUMAN CONDITION AWARENESS AND TRIAGE
As we have discussed in multiple occasions throughout this
survey, the current applicability of SAR robotics is mainly
in the search of victims or the assessment and monitoring
of the area by autonomously mapping and analyzing the
accident or disaster scenario. However, only a relatively small
amount of works in multi-robot SAR robotics have been

paying attention to the development ofmethods for increasing
the awareness of the status of the victims in the area or
performing remote triage.

The potential for lifesaving applications in this area is sig-
nificant. The design and development of methods for robots
to be able to better understand the conditions of survivors
after an accident is therefore a research topic with multiple
open questions and challenges. Nonetheless, it is important
to take into account that this most likely requires the robots
to reach to the victims or navigate near them. The control of
the robot and its awareness of its localization and environ-
ment thus need to be very accurate, as otherwise operating
in such safety-critical scenario might be counterproductive.
Therefore, before being able to deploy in a real scenario novel
techniques for human condition awareness and remote triage,
the robustness of navigation and localization methods in such
environments needs to be significantly streamlined.

E. HETEROGENEOUS MULTI-ROBOT SYSTEMS
Across the different types of SAR missions that have been
discussed in this survey, the literature regarding the utilization
of heterogeneous robots has shown the clear benefits of
combining either different types of sensors, different perspec-
tives, or different computational or operational capabilities.
Nonetheless, most of the existing literature assumes that the
identity and nature of the robots and the way in which they
communicate and share data is known a priori. A wider adop-
tion and deployment of heterogeneous multi-robot systems
therefore needs research to advance in the following practical
areas:
• Interoperability: flexible deployment of a variable type
and number of robots for SAR missions requires the
collaborative methods to be designed with wider inter-
operability in mind. Interoperability has been the focus
of both the ICARUS and DARIUS projects [30], [49].
Moreover, extensive research has been carried out
in interoperable communication systems, and current
robotic middlewares, such as ROS2 [248], enable dis-
tributed robotic systems to share data and instructions
with standard data types. Nonetheless, there is still a
lack of interoperability in terms of high-level plan-
ning and coordination for specific missions. In SAR
robotics, these include collaborative search and collabo-
rative mapping and perception.

• Ad-hoc systems: closely related to the concept of inter-
operability in terms of high-level planning, wider adop-
tion of multi-robot SAR systems requires these systems
to be deployed in an ad-hoc manner, where the type or
number of robots does not need to be predefined. This
has been explored, to some extent, in works utilizing
online planning strategies that account for the possibility
of malfunctioning or missing robots [119].

• Situational awareness and awareness of other robots:
the wide variety of robots being utilized in SAR mis-
sions, and the different scenarios in which they can be
applied, calls for the abstraction and definition ofmodels
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defining these scenarios but also the way in which robots
can operate with them. In heterogeneous multi-robot
systems, distributed high-level collaborative planning
requires robots to understand not only how can they
operate in their current environment and what are the
main limitations or constraints, but also those conditions
of different robots operating in the same environment.
For instance, a USV collaborating with other USVs and
UAVs in a maritime SAR mission needs to be aware of
the different perspectives that UAVs can bring into the
scene, but also of their limitations in terms of operational
time or weather conditions.

F. ACTIVE PERCEPTION
We have closed this survey exploring the literature in active
perception for multi-robot systems, where we have seen
a clear lack of research within the SAR robotics domain.
Current approaches for area coverage in SAR missions, for
instance, mostly consider an a priori partition of the area
among the available robots. Dynamic or online area partition-
ing algorithms are only considered either in the presence of
obstacles, or when the number of robots changes [119]. Other
works also consider an a priori estimation of the probability
of locating victims across different areas to optimize the
path planning [142], [143]. These and other works are all
based in either a priori-knowledge of the area, or otherwise
partition the search space in a mostly homogeneous manner.
Therefore, there is an evident need for more efficient multi-
robot search strategies

Active perception can be merged into current multi-
robot SAR systems in multiple directions: actively updating
and estimating the probabilities of victims’ locations, but
also with active SLAM techniques by identifying the most
severely affected areas in post-disaster scenarios. In wilder-
ness and maritime search and rescue where tracking of the
victims might be necessary even after they have been found,
active perception has the potential to significantly decrease
the probability of missing a target.

In general, we also see the potential of active percep-
tion within the concepts of human-robot and human-swarm
cooperation, and in terms of increasing the awareness that
robots have of victims’ conditions. Regarding human-robot
and human-swarm cooperation, active perception can bring
important advantages in the understanding the actions of SAR
personnel and being able to provide more relevant support
during the missions.

VIII. CONCLUSION
Among the different civil applications where multi-robot sys-
tems can be deployed, search and rescue (SAR) operations are
one of the fields where the impact can be most significant.
In this survey, we have reviewed the status of SAR robotics
with a special focus on multi-robot SAR systems.While SAR
robots have been a topic of increasing research attention for
over two decades, the design and deployment of multi-robot
systems for real-world SAR missions has only been effective

more recently. Multiple challenges remain at the system-level
(interoperability, design of more robust robots, and deploy-
ment of heterogeneous multi-robot systems, among others),
as well as from the algorithmic point of view of multi-agent
control and multi-agent perception. This is the first survey,
to the best of our knowledge, to analyze these two different
points of view complementing the system-level view that
other surveys have given. Moreover, this work differentiates
from others in its discussion of both heterogeneous systems
and active perception techniques that can be applied to multi-
robot SAR systems. Finally, we have listed the main open
research questions in these directions.
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