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1. Introduction

Computational modeling of materials with a substitutional 
diso rder such as multicomponent alloys and mixed metal 
oxides is said to have a configurational problem [1–5]. The 

vast configurational space of these materials makes it prac-
tically impossible to explore directly using first-principles 
calculations such as density functional theory (DFT). A 
quantitative method capable of establishing the relationship 
between the structure and property of materials is therefore 
essential. Cluster Expansion (CE) [1, 5–9] is a method that 
has been used successfully in the past few decades to param-
eterize and express the configurational dependence of physical 
properties. The most widely parameterized physical property 
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Abstract
Materials exhibiting a substitutional disorder such as multicomponent alloys and mixed metal 
oxides/oxyfluorides are of great importance in many scientific and technological sectors. 
Disordered materials constitute an overwhelmingly large configurational space, which makes it 
practically impossible to be explored manually using first-principles calculations such as density 
functional theory due to the high computational costs. Consequently, the use of methods such as 
cluster expansion (CE) is vital in enhancing our understanding of the disordered materials. CE 
dramatically reduces the computational cost by mapping the first-principles calculation results on 
to a Hamiltonian which is much faster to evaluate. In this work, we present our implementation 
of the CE method, which is integrated as a part of the atomic simulation environment (ASE) 
open-source package. The versatile and user-friendly code automates the complex set up and 
construction procedure of CE while giving the users the flexibility to tweak the settings and 
to import their own structures and previous calculation results. Recent advancements such as 
regularization techniques from machine learning are implemented in the developed code. The 
code allows the users to construct CE on any bulk lattice structure, which makes it useful for a 
wide range of applications involving complex materials. We demonstrate the capabilities of our 
implementation by analyzing the two example materials with varying complexities: a binary 
metal alloy and a disordered lithium chromium oxyfluoride.
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is energy computed using first-principles methods, but CE can 
also be used to parameterize other quantities such as band gap 
[10, 11] and density of states [12].

Despite its success and usefulness in predicting physical 
properties of crystalline materials, CE remains as a niche tool 
used in a small subfield within the computational materials 
science, primarily used by specialists. On the other hand, the 
research fields in which CE is becoming relevant is on the rise; 
one such example is the use of disordered materials for battery 
applications [13–17]. The objective of our work is to make 
cluster expansion more accessible for a broad range of compu-
tational scientists who do not necessarily possess expertise in 
cluster expansion. Our approach to achieving such a goal is to 
implement CE as a part of a widely used, open-source atomic 
simulation environment (ASE) package [18]. Henceforth, we 
refer to our implementation as CLEASE, which stands for 
cluster expansion in atomic simulation environment.

Having CE as a part of a widely used package with inter-
faces to a multitude of open-source and commercial atomic-
scale simulation codes accompanies several practical benefits: 
(1) a large existing user base does not need to install or learn a 
new program as the CE module is a part of ASE and inherits its 
syntax and code style, and (2) all of the atomic-scale simula-
tion codes supported by ASE are also automatically supported 
by the implemented module. In addition, CLEASE utilizes 
the database management feature implemented in ASE, which 
provides an efficient way to store, maintain and share both 
DFT and CE results. Therefore, the implementation presented 
in this article appeals to a significant portion of computational 
materials science community as a versatile and easy-to-learn 
package, thereby lowering the barrier to incorporate cluster 
expansion as a part of their research methods to accelerate 
computational materials prediction and design.

The rest of the paper is organized as follows. A brief over-
view of cluster expansion formalism and other important con-
cepts are provided in section 2 in order to aid the readers who 
are not familiar with the cluster expansion method. The imple-
mentation of CLEASE is described in section  3. Section  4 
contains two application examples with different levels of 
complexities, namely a binary metal alloy and a lithium metal 
oxyfluoride. The computational settings and technical details 
for the examples are provided in section 5.

2. Theory

2.1. Cluster expansion formalism

The core concept of the cluster expansion is to express the 
scalar physical quantity of a material, q(σ), to its configura-
tion, σ, where a crystalline system is represented with a fixed 
underlying grid of atomic sites. In such a representation, any 
configuration with the same underlying topology can be com-
pletely specified by the atomic occupation of each atomic site. 
For the case of a crystalline material with N atomic sites, any 
configuration can be specified by an N-dimensional vector 
σ = {s1, s2, . . . , sN}, where si is a site variable that specifies 
which type of atom occupies the atomic site i (also referred 
to as an occupation variable [4, 19, 20] or pseudospin [1, 10, 

21–23]). It is noted that the terms configuration and structure 
are often used interchangeably.

For the case of multinary systems consisting of M different 
atomic species, si takes one of M distinct values. The original 
formulation of Sanchez et al [6] specifies the si to take any 
values from ±m, ±(m − 1), …, ±1 for M  =  2m (for the case 
where there is an odd number of element types, an additional 
value of 0 should be included in the possible values of si, and 
the relation between M and m becomes M  =  2m  −  1). Other 
choices of si are also commonly used such as values ranging 
from 0 to M  −  1 by van de Walle [20] and from 1 to M by 
Mueller and Ceder [24]. Based on the original formalism 
by Sanchez et al, single-site basis functions are determined 
through an orthogonality condition

1
M

m∑
si=−m

Θn(si)Θn′(si) = δnn′ , (1)

where Θn(si) is the nth single-site basis function (e.g. 
Chebyshev polynomials) for ith site and δnn′ is a Kronecker 
delta.

The configuration is decomposed into a sum of clusters as 
shown in figure 1. Each cluster has a set of associated cluster 
functions, which are defined as

Φn(s) =
∏

i

Θni(si), (2)

where n and s are vectors specifying the order of the single-
site basis function and the site variables in the cluster, respec-
tively. ni and si specify the ith element of the respective 
vectors. The use of orthogonal basis functions guarantees that 
the cluster functions defined in (2) are also orthogonal. The 
symmetrically equivalent clusters are classified as the same 
cluster, and the collection of all symmetrically equivalent 
clusters are denoted with an α.

The average value of the cluster functions in cluster α is 
referred to as a correlation function, φα. The physical quanti ty, 
q(σ), normalized with the number of atomic sites N is then 
expressed as

q(σ) =
∑
α

mαJαφα, (3)

where mα is the multiplicity factor indicating the number 
of cluster α per atom and Jα is the effective cluster interac-
tion (ECI) per occurrence, which needs to be determined. It 
is noted that the cluster α includes the cluster of size zero, 
which have mαφα = 1. Alternatively, (3) can be written in a 
more explicitly form,

q(σ) = J0 +
∑
α

mαJαφα, (4)

where J0 is the ECI of an empty cluster while α in this case 
corresponds to the clusters of size one and higher. It is often 
more practical and convenient to express the ECI per atom 
rather than per occurrence [5], in which case mα and Jα are 
combined into one term, J̃α = mαJα and (3) becomes

q(σ) =
∑
α

J̃αφα. (5)

J. Phys.: Condens. Matter 31 (2019) 325901
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CLEASE uses the ECI per atom ( J̃α), but interested users can 
determine the value of Jα based on the values of mα and J̃α.

Theoretically, there is an infinite number of terms in (5) for 
an infinite crystal, and the resulting expression can represent 
any scalar function q(σ) given that appropriate ECI values 
are found. In practice, sufficient accuracy is often reached 
with clusters with small number of atoms (e.g. one-, two- and 
three-body clusters) that are relatively compact in size (e.g. 
5–7 Å  in diameter).

2.2. Cluster selection & determination of ECI values

A crucial element of CE approach is to select relevant clus-
ters from a theoretically infinite number of possible clusters. 
Many multicomponent systems yield thousands of clusters 
even when the expansion is limited to relatively compact size 
and small number of atoms, and they are vastly truncated 
since only a small fraction of them is needed to achieve the 
required accuracy. Determining the optimal set of clusters that 
minimizes the number of clusters without losing its predic-
tive power has been a topic of keen interest in the past decade 
[3, 19, 25–27], and the cluster selection based on genetic 
algorithms [3, 25, 26] was considered to be the most robust 
method.

More recently, the use of compressive sensing [22] was 
proposed to efficiently select the clusters and determine their 
ECIs in one shot. The compressive sensing is based on �1 norm 
(a special case of �p norm where p   =  1), which is defined as

||x||p =

(∑
i

|xi| p

)1/p

, (6)

where x is a vector quantity. It is noted that cluster expansion 
defined in (5) is in the same form as a linear regression model 

in statistics and machine learning. Therefore, one can treat 
CE as a linear regression problem and apply regularization 
techniques based not only on �1 norm but also on any other 
p  values, although �1 and �2 norms are most commonly used.

The use of regularization techniques for CE can be illus-
trated by expressing (5) in a matrix form,

q = Xω. (7)

X is a matrix containing the correlation functions of the 
training data where each element in row i and column α is 
defined as

Xiα = φα(σi). (8)

q is a column vector in which the ith element is the physical 
quantity q of the configuration σi  and ω is a column vector in 
which αth element is J̃α.

The simplest way of determining ω is by using ordinary 
least squares (OLS) method, which minimizes the residual 
sum of squared errors (RSS). RSS is defined as

RSS = ||Xω − q||22, (9)

and the minimization of the RSS has a unique solution ω̂ 
where

ω̂ = arg min
ω

||Xω − q||22

= (XTX)−1XTq.
 

(10)

The OLS has two major drawbacks [22]. The first is the 
requirement on which the number of configurations in the 
training set needs to be larger than the number of clusters 
being considered. The matrix XTX becomes singular in such 
a case, and the limitations imposed by the first requirement 
become more severe for systems consisting of many element 
types since even strict expansion conditions (i.e. small number 
of atoms per cluster and compact size) can lead to a large 

Figure 1. A simplified illustration of the decomposition of a body-centered cubic lattice.

J. Phys.: Condens. Matter 31 (2019) 325901



J H Chang et al

4

number of clusters. The second drawback is the susceptibility 
to possible overfitting, which refers to the conditions in which 
the ECI values are over-tuned to accurately represent q(σ) of 
the training set at a cost of losing its predictive power for the 
new configurations that are not included in the training set. 
The overfitting also makes the model prone to noise present in 
the training data because the model attempts to meticulously 
fit the model to the training data including the noise therein.

Regularization is an efficient technique to address the 
aforementioned drawbacks of OLS by adding a regulariza-
tion term to (10). The most common regularization scheme 
are �1 and �2 regularization, which respectively uses �1 and �2 
norm as a regularization term. For �1 regularization, the solu-
tion becomes

ω̂ = arg min
ω

||Xω − q||22 + λ||ω||1, (11)

where λ is a regularization parameter that controls the weight 
given to the regularization term. The main benefit of �1 regu-
larization is its promotion of sparsity. In context of CE, the 
sparsity means a selection of a fewer number of clusters, or 
many clusters with their ECI values set to zero. It is noted that 
there is no unique analytical solution for (11), and it needs to 
be solved iteratively. Unlike �1 regularization, �2 regulariza-
tion has a unique analytical solution which is expressed as

ω̂ = arg min
ω

||Xω − q||22 + ||ω||22

= (XTX + λI)−1XTq.
 (12)

However, �2 regularization does not promote sparsity, and 
the resulting solution is likely to contain more clusters than 
necessary. It is noted that Bayesian compressive sensing [21] 
scheme is introduced for cluster expansion, which effectively 
eliminates the parameter λ in �1 and �2 regularization schemes 
while promoting sparsity.

Regardless of the fitting technique used, the predictive 
power of the expansion needs to be assessed to determine its 
accuracy and reliability. Cross-validation (CV) is a technique 
used for assessing the prediction accuracy of the model. A 
leave-one-out (LOO) scheme is most commonly used in CE 
community, and the LOOCV score is defined as

LOOCV =


 1

Nconfig

Nconfig∑
i=1

(q̂i − qi)
2




1/2

, (13)

where Nconfig is the number of configurations in the training 
set, q̂i is the physical quantity of a structure i predicted by 
CE using Nconfig − 1 structures without a structure i and qi is 
the calculated physical quantity of structure i. While OLS has 
only one (likely overfitted) solution, �1 and �2 regularization 
schemes have a solution for each λ value. The solution—a 
selection of clusters and their ECI values—that yields the 
lowest LOOCV score is chosen. Although LOO is the most 
common cross validation scheme in cluster expansion com-
munity, k-fold CV is one of the most common schemes used 
in machine learning community. In a k-fold CV scheme, the 
pool of configurations are randomly partitioned into k parts of 
equal size. The structures in k  −  1 parts are used as training 

data while the remaining one part is used as a validation set, 
and the cross validation is repeated k times.

2.3. Thermodynamics in lattice models

The true benefit of CE is in its ability to predict the expanded 
scalar quantity q(σ) based on trained data. An accurate pre-
diction can be made if the CV score of the expanded q(σ) 
is sufficiently low, and the prediction speed is very fast on 
modern computer architecture since it only involves execu-
tions of only a small number of simple numerical calculations 
specified in (5). Such a speed boost allows one to conduct 
types of analyses that require substantial statistical sampling.

In contrast to zero temperature studies where the system 
occupies the state with lowest energy, an ensemble of con-
figurations with the lowest free energy are occupied at finite 
temperature. The free energy G is given by [28]

G = − ln Z
β

, (14)

where β = 1/kBT  and Z is the partition function. kB is the 
Boltzmann constant and T is temperature in Kelvin. It is noted 
that the DFT energies are obtained for fully relaxed structures 
without any external forces or pressure. Thus, the resulting 
thermodynamic quantities are effectively obtained in the NPT 
ensemble (fixed number of particles, fixed pressure and fixed 
temperature). However, the energy predicted by CE is only 
valid for the volume leading to the minimum energy of a par-
ticular atomic arrangement, and the volume fluctuations are 
neglected. The free energy can be calculated by utilizing the 
exact differential

d(βG) = −∂ ln Z
∂β

dβ

= Udβ
 (15)

where U is the average internal energy. The free energy can 
be obtained by a thermodynamic integration from a reference 
temperature βref where G is known, which can be written as 
[29]

βG = (βG)ref +

∫ β

βref

dβ′U(β′). (16)

Important information of the materials under study such as the 
stability of ordered/disordered phases can be determined by 
comparing the free energy of the material at a given composi-
tion with respect to the free energies in the pure phases of its 
constituents.

3. Implementation

CLEASE utilizes the existing classes and methods of ASE to 
perform necessary manipulations and analyses for carrying 
out CE. Among many adopted features, the most noteworthy 
are the use of

 •  an Atoms object to represent an atomic configuration 
(σ),

J. Phys.: Condens. Matter 31 (2019) 325901
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 •  a built-in database to efficiently store, maintain and share 
settings, atomic configurations of the training set, values 
of the correlation functions (φα(σ)) and DFT energies,

 •  Python programming language and modular design to 
remove the strict input file/format requirements and to 
enable easy implementation of new features, and

 •  a Calculator class to determine the physical quantity 
q(σ) of a new configuration based on its correlation func-
tions and their ECI values.

It is noted that the evaluation of correlation functions of a 
new configuration and the determination of physical quanti ty, 
q(σ), based on ECI values can be a slow process using Python 
programming language. It is especially true for carrying out 
Monte Carlo simulations after the CE model training is com-
plete. CLEASE includes an optional external module written 
in C++ programming language that can be installed to accel-
erate the critical and repetitive calculations, but the usage of 
the code remains unchanged even when the external module 
is installed (i.e. CLEASE automatically determines if the 
C++ add-on is installed, and uses the C++ version if it is 
present).

The inheritance of the existing features of ASE allows 
CLEASE to be fully integrated to ASE where the users can 
incorporate CE as a part of their research without losing the 
continuity with the rest of their workflow. The existing users 
of ASE do not have to install or learn a new CE program nor 
select a particular DFT package that a CE code supports. In 
addition to the benefits of integrating CE as a part of ASE, 
highlights of the features that makes CLEASE versatile and 
user-friendly include:

 •  a multicomponent cluster expansion that goes beyond 
binary systems,

 •  a support for several types of single-site basis functions 
(e.g. basis functions by Sanchez et al [6], Van de Walle 
[20] and Zhang and Sluiter [5]) for a comparison and 
compatibility with other CE codes,

 •  many methods for selecting clusters and determining ECI 
values such as OLS, �1 and �2 regularization schemes, 
Bayesian compressive sensing and genetic algorithm, and

 •  both leave-one-out and k-fold cross validation schemes.

A simple flowchart illustrating the procedure for constructing 
CE using CLEASE is shown in figure 2. The CLEASE work-
flow can be divided in to three main components: definition of 
CE settings, generation of training structures and evaluation of 
CE convergence. CLEASE takes an object-oriented approach 
where each component has its own class. The modular design 
approach not only enables easy implementation of new fea-
tures but also makes the code flexible to use and intuitive to 
follow the CE construction and evaluation procedure shown in 
figure 2. A more detailed description of main components of 
the procedure is provided below.

3.1. Definition of cluster expansion settings

The most fundamental component is to define which under-
lying crystal structure to use. ASE offers two functions to 

generate a crystal structure: bulk and crystal. The bulk 
function provides a simple way of generating common types 
of crystal structures by specifying the name of the crystal 
structure and its lattice constant value(s). The crystal struc-
tures supported by the bulk function are simple cubic, face-
centered cubic, body-centered cubic, hexagonal close packed, 
diamond, zinc blende, rocksalt, cesium chloride, fluorite and 
wurtzite structures. For more complicated crystal structures, 
a crystal function is used to generate a crystal structure 
by providing its space group, lattice parameters and scaled 
coordinates of the unique atomic sites. The definitions of the 
cluster expansion settings are specified using CEBulk and 
CECrystal classes, which respectively calls bulk and 
crystal functions to generate an Atoms object with the 
user-specified crystal structure.

The maximum size of the supercell (of the primitive cell) 
on which the DFT calculations are performed is also defined 
along with the definition of the underlying crystal structure. 
The maximum supercell size is specified using a super-
cell_factor parameter, which is an integer corresponding 
to the product of the absolute values of expansion coefficients 
(integer weights of a general linear combinations of the unit 
cell vectors). In other words, if a unit cell has three vectors �a , 
�b  and �c , the configurations in the training set on which the 

Figure 2. A flowchart of constructing and evaluating CE using 
CLEASE.

J. Phys.: Condens. Matter 31 (2019) 325901
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DFT calculations are performed have cell vectors �a′, �b′ and �c′, 
which are defined as

�a′ = i1�a + j1�b + k1�c
�b′ = i2�a + j2�b + k2�c
�c′ = i3�a + j3�b + k3�c

 

(17)

with integer coefficients ix, j x and kx, where x ∈ {1, 2, 3}. The 
supercell_factor is then defined as

supercell_factor �
3∏

x=1

3∏
y=1

3∏
z=1

|ix| |jy| |kz| , (18)

and all of the cells used in the training set should have coef-
ficients satisfying the condition in (18). Only unique cell 
shapes are included in the pool by omitting the cells that can 
be mapped on to the existing cells in the pool by rotation and 
reflection. The use of supercells with varying sizes and shapes 
enables the exploration of a larger configurational space 
without adding extra computational burden compared to using 
one fixed supercell size and shape. A set of training structures 
for CE are later generated iteratively from the pool of possible 
structures that are realizable using these supercells. To reduce 
the required computational resources, the structures using 
smaller supercells are generated (and calculated) first, fol-
lowed by the larger supercells. The users also have a flexibility 
to select the supercell size using an optional size parameter, 
which is a 3 × 3 matrix (or a nested list in Python) specifying 
the values of the integer coefficients in (17).

Theoretically, an infinite number of clusters can be gen-
erated for a given system. The number of clusters is limited 
to a finite size in practice, and CLEASE takes an approach 
to generate all possible clusters that are under the truncation 
threshold (i.e. a maximum number of atoms in clusters and 
maximum diameter) specified by the user. A whole or subset 
of the generated clusters is selected during the convergence 
evaluation process. By default, up to four-body clusters (i.e. 
empty, one-, two-, three- and four-body clusters) with their 
diameters up to 5 ̊A  are generated. The users have an option to 
define their own threshold settings both at the beginning of the 
CE procedure and at a later stage of the CE iteration cycles. 
CLEASE also offers view_clusters method in CEBulk 
and CECrystal classes to visualize the generated clusters in 
order to assist the user to develop an intuition on the generated 
clusters.

Within the CE formalism, there does not exist a unique set 
of definitions for single-site basis functions; the single-site 
basis functions are considered valid if they form a complete 
set. Consequently, several definitions are used in practice. The 
two most widely used definitions are the original definitions 
by Sanchez et al [6] and the one later developed by van de 
Walle [20], which is used in the Alloy Theoretic Automated 
Toolkit (ATAT) [20, 30]. The two definitions are equally valid, 
and both are implemented in CLEASE.

CLEASE offers an option to ignore a set of symmetrically 
inequivalent atomic sites if they are always occupied by one 

element type for all possible configurations. The contributions 
of these atoms are not explicitly included in the cluster expan-
sion and are automatically included in the constant term (J0) 
in (4). For example, lithium metal oxides (LiMO2) with first-
row transition metals (M  =  {Sc, Ti, V, Cr, Mn, Fe, Co, Ni, 
Cu}) have a rocksalt lattice structure [16, 31] with an excep-
tion of LiMnO2, which is orthorhombic [32]. The rocksalt lat-
tice structure consists of two face-centered cubic sublattices. 
For the case of the cation-disordered rocksalt lattice LiMO2, 
one sublattice is occupied by lithium and other metal atoms 
while the other is occupied by oxygen atoms. The complexity 
of the CE model of such systems can be reduced to a cation 
sublattice consisting only of two element types (the oxygen 
sublattice is ignored). As such, an optional Boolean argument 
is present in CLEASE to enable/disable the reduction of the 
complexity of the model by ignoring the such atoms if they 
exist in the system. The reduction of the model complexity 
leads to a reduction in computational cost as it requires a 
smaller number of interaction terms to calculate.

A range of compositions (or concentration) of the system to 
be studied is specified using a Concentration class. First, 
the constituting elements of the system are categorized into 
the basis which they belong. For example, LiVO2 in a rocksalt 
lattice structure is expressed using two lists: [‘Li’, ‘V’] and 
[‘O’]. It is noted that CE needs to keep track of the location of 
vacancies when they are present in the system. The location of 
vacancies are tracked by treating a vacancy as a regular atom 
with its atomic symbol set to ‘X’ or atomic number set to zero. 
The LiVO2 with Li vacancies is then expressed using [‘Li’, 
‘V’, ‘X’] and [‘O’].

The range of each element (including vacancies) can be 
specified in one of the two convenient methods built in to the 
Concentration class. The simplest method is to specify 
the concentration range of each constituting element by calling 
set_conc_ranges method in Concentration class. 
For the cases where concentrations of two or more elements 
depend on one another, one can specify concentration range 
using set_conc_formula_unit method where the rela-
tionships between the concentrations of two or more elements 
can be expressed in a list of strings. For the example of LiVO2 
with Li vacancies, a list of strings that specifies relationship 
between the number of Li atoms and the number of vacan-
cies, [‘Li〈x〉V〈1〉X〈1-x〉’, ‘O〈2〉’], is passed as an argument 
to the set_conc_formula_unit method. Another argu-
ment specifying the range of the concentration variable, e.g.  
{‘x’: (0, 1)}, is also passed to the set_conc_formula_
unit method in order to specify the concentration range of Li 
and Li vacancies. The concentration ranges specified by either 
set_conc_ranges or set_conc_formula_unit 
methods are internally interpreted in the Concentration 
class as a list of linear equations that specify (1) the relation-
ships of the concentrations of constituting elements and (2) 
their upper/lower bounds. The advanced users can alterna-
tively specify the coefficients of the linear equations used in 
the Concentration class if a greater flexibility is needed 
in specifying the concentration ranges.
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3.2. Generation of training structures

CLEASE uses NewStructures class to generate training 
structures, which provides three different methods perform 
the task. The first and most trivial method is to generate a set 
of random structures. This method serves to generate an initial 
pool consisting of a small number of structures. The random 
generation method is used in the first iteration cycle of CE 
construction as shown in figure 2. An initial cluster expansion 
is capable of making a first set of predictions albeit with a low 
accuracy. It is noted that all of the generated training struc-
tures, along with their correlation function values, are stored 
in a database file.

Once the initial CE is constructed, the user is given three 
different choices for introducing an additional set of training 
structures. The first and most straightforward option is to keep 
generating random structures. Although trivial, generating 
random structures is claimed to be the best strategy when 
compressive sensing is used to select clusters [22]. The second 
method is to generate ground-state and other low-energy 
structures based on current cluster expansion (i.e. based on 
the pool of structures already calculated) [33], which have the 
enthalpies of formation either on or near the convex hull [34]. 
The inclusion of ground-state and near-ground-state struc-
tures serves an important purpose of increasing the accuracy 
in predicting the correct ground states. A global minimization 
technique can be used to generate (near) ground-state configu-
rations, and CLEASE uses a simulated annealing technique. 
Simulated annealing takes an initial atomic configuration and 
cures it at a sequence of decreasing temperatures in order 
to let the structure evolve towards the ground-state arrange-
ment. In CLEASE, the user can generate ground-state struc-
ture by invoking generate_gs_structure method in 
NewStructures class while specifying the initial and final 
temperatures (intermediate temperatures are interpolated in a 
logarithmic scheme), number of temperatures and the number 
of site swaps per temperature.

The last method of generating the training set is referred 
to as a ‘probe structure’ method [23, 35]. The probe structure 
method introduces a new structure that minimizes the mean 
variance of the predicted physical quantity q(σ). The mean 
variance of the predicted quantity q is written as [35]

Var[q̂i] =
1

Nconfig

Nconfig∑
i=1

[Xi(XTX)−1XT
i ]e

2

= {tr[(XTX)−1Σ] + µ(XTX)−1µT}e2

= Λ · e2,

 

(19)

where e2 is the variance of the error in the training set, Σ is the 
covariance matrix of the correlation functions of the training 
set and µ is a vector of the mean correlation functions of the 
structures in the training set. The probe structure is the one 
that reduce the value of Λ the most when introduced to the 
training set, which is found using the simulated annealing 
procedure. Similar to generating ground-state structures, the 
probe structures are generated by invoking generate_
probe_structure method in NewStructures class.

The newly generated structures are compared with the 
existing structures in the training set in order to avoid intro-
ducing duplicate structures. We adopted the structure compar-
ison algorithm developed by Lonie and Zurek [36] to identify 
equivalent structures. It is desirable to have the new structure 
compared against the existing structures in the training set 
as efficiently as possible. As a first step, the structures that 
have different chemical composition than the newly generated 
structure are filtered, and the new structure is compared only 
with the remaining structures. Once the candidate transfor-
mations for mapping the new structure onto one structure in 
the database are identified using the algorithm suggested by 
Lonie and Zurek, we note that exactly the same transforma-
tions can be used for the remaining structures in the database. 
Therefore, the structure comparison algorithm implemented 
in ASE is optimized for the case where one structure is to be 
compared against many.

In addition to the aforementioned methods of generating 
the training structures, CLEASE also offers a built-in function 
to import structures to the database. The import function also 
has an option to specify the calculated q value, which allows 
users to easily import the previously calculated results.

3.3. Evaluation of cluster expansion convergence

An evaluation process to determine the convergence of CE 
includes a selection of clusters, a determination of their ECI 
values and an assessment of the LOO or k-fold CV score using 
the selected clusters and their ECI values. An entire evaluation 
process is performed using an Evaluate class.

The simplest way to determine the ECI values of the gener-
ated clusters is by using OLS to minimize RESS. It is highly 
likely that the ECI values found using OLS are overfitted. 
Therefore, Bayesian compressive sensing and �1 and �2 regu-
larization methods are implemented, and it is highly recom-
mended to use a regularization methods to select clusters and 
evaluate their ECI values.

A default option in the Evaluate class is to include all 
of the clusters generated using the cluster truncation condi-
tions specified in CEBulk or CECrystal class, and either 
the entire or a subset of these clusters are selected for fitting 
depending on the method used. The Evaluate class pro-
vides additional options in which the users can select a subset 
of the generated clusters to perform any of OLS, Baysian 
compressive sensing and �1 and �2 regularization. The first 
option is by manually specifying which clusters to include, 
while the second option is to provide a stricter truncation 
conditions than the ones set in the CEBulk or CECrystal 
class. The first option allows the Evaluate class to be used 
in conjunction with other cluster selection methods such as 
genetic algorithm. For example, a user can optionally use 
genetic algorithm (included in CLEASE as a separate GAFit 
class) to pre-screen a large cluster pool and subsequently pass 
a subset of clusters to the Evaluate class. The feature to 
freely select a subset of a large pool of clusters along with the 
use of OLS, Bayesian compressive sensing and �1 and �2 regu-
larization methods allows the users to easily experiment with 
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various settings to understand how the system behaves and 
to optimize the ECI values for achieving the lowest LOOCV 
score.

To further assist the evaluation process, the Evaluate 
class contains two built-in methods that automatically deter-
mine the LOOCV when a regularization method is used. The 
first method, plot_fit, determines and stores the selected 
clusters and their ECI values for a value of regularization 
parameter (λ) specified by the user. It also plots the fit of all 
data points in the training set to their calculated values and 
presents the LOO/k-fold CV score of the specified λ value. 
Since the most cumbersome task in determining the conv-
ergence of CE is finding the optimal λ value that yields the 
lowest CV score, another method, plot_CV, is also imple-
mented. It takes a range and number of λ values to evaluate as 
inputs and returns the best λ value in the specified range along 
with its LOO/k-fold CV score. The plot_CV method also 
plots LOO/k-fold CV score as a function of λ and provides an 
option to store the results in a log file such that the users can 
add more λ values to the list at a later stage without having to 
re-evaluate the same λ values in the process.

3.4. Metropolis Monte Carlo and simulated annealing

The user can perform statistical sampling of the system on 
a larger simulation cell once the cluster expansion is con-
structed. The final selection of cluster and their ECI values 
can be stored and passed to other classes to conduct statistical 
analyses. A separate Calculator class for cluster expansion 
is implemented in ASE. The Clease calculator class takes a 
list of clusters and their ECI values as inputs, and the users can 
select what type of trial moves are allowed. The sampling in 
the canonical ensemble allows the swapping two atoms with 
different constraint conditions (i.e. swap any two atoms, swap 
any two atoms in the same basis, swap two nearest neighbors, 
swap two nearest neighbors in the same basis) while the semi-
grand canonical ensemble allows changing the type of occu-
pying element at a random site.

The evaluation of the physical quantity q(σ) is performed 
using (5), which is a fast because the Clease calculator 
keeps track of the changes in the Atoms object to update the 
correlation functions. When the physical quantity being mod-
eled is energy, a trial move of the standard Metropolis algo-
rithm has an acceptance probability [37]

Pacc = min
{

1, exp
(
−(Enew − Eold)

kBT

)}
, (20)

where Enew and Eold are the energy of the new and old config-
uration, respectively. As the Clease calculator keeps track 
of the change in the Atoms object after each move, updating 
the correlation functions is restricted to the contributions of 
one and two atoms for the semi-grand canonical ensemble and 
canonical ensemble, respectively.

4. Examples

Here, we present two example systems to illustrate the capa-
bilities of the CLEASE code. The first example illustrates the 
investigation of a Au–Cu binary alloy. The second example 
shows the cluster expansion on a more complex Li2CrO2F 
system consisting of four types of elements and vacancy. All 
of the interactions of cluster expansions are computed from 
DFT calculations of energies, and the computational settings 
used for generating the results shown in this section are speci-
fied in section 5.

4.1. Au–Cu alloy

The binary Au–Cu alloy system is studied at temperatures 
ranging from 100 K to 800 K over the entire composition range. 
The resulting values obtained for both �1 and �2 regularization 
are shown in figure 3. The ECI value of the empty cluster is 
found to be  −3.49 eV/atom for both cases, and the ECI value 
of the one-body cluster is 0.27 eV/atom and 0.13 eV/atom for 
�1 and �2 regularization, respectively. The ECI values of empty 
and one-body clusters are not included in figure 3 for better 

Figure 3. ECIs obtained via (a) �1 regularization and (b) �2 
regularization.
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visibility. The LOOCV score for the �1- and �2-regularized fit 
were 4.49 meV/atom and 4.67 meV/atom, respectively. The �1 
regularization scheme yields a slightly lower CV score despite 
having a smaller number of clusters (�1-regularized fit has 20 
clusters while the �2-regularized fit has 34 clusters).

A qualitative information on the thermodynamic behavior 
of the system can be extracted by inspecting the ECI values 
for simple binary system. Based on the fact that the ener-
getically favorable configurations have DFT energies that 
are more negative than less favorable ones and that the two 
site variables are  +1 or  −1, one can infer that a positive ECI 
value of the pair interaction term means that a pair consisting 
of two different elements is energetically preferred at a low 
temperature. It can be seen in figure 3 that the ECIs of the 
nearest-neighbor and second nearest-neighbor pairs are posi-
tive and positive, respectively. The signs indicate that the 
Au–Cu system energetically favors the strong mixing of the 
constituting elements such that the alternating patterns found 

in L10- and L12-type ordered structures are likely to emerge, 
which is in a good agreement with experimental and compu-
tational observations [33, 38–45].

It is experimentally determined that Au–Cu alloys have 
three ordered phases at low temperatures [43–45]: AuCu3, 
AuCu and Au3Cu. Furthermore, the transition temperatures 
for AuCu3, AuCu and Au3Cu are reported to be 663 K, 683 K 
and  ∼490 K, respectively, and they are often used as reference 
values for assessing the computational models [33, 38, 39]. 
The formation energy, free energy of formation and configu-
rational entropy are obtained through Metropolis Monte Carlo 
simulations and are shown in figure 4. As the CE is trained 
with fully relaxed structures (zero pressure), the formation 
energy is determined using

∆U = U − xUAu − (1 − x)UCu, (21)

where U is the internal energy of the configuration, x is the 
gold concentration, UAu is the internal energy of pure gold and 
UCu is the internal energy of pure copper. Similarly, the free 
energy of formation is obtained by subtracting the weighted 
average of the free energy for the pure phases. The configura-
tional entropy is given by the difference between the internal 
energy and the free energy, divided by the temperature at 
which the Monte Carlo is sampled. The three ordered phases 
(AuCu3, AuCu and Au3Cu) are found on the convex hull of 
the free energy of formation in figure 4(b). Furthermore, the 
entropy of the ordered phases form local minima as shown in 
figure 4(c). For comparison, the entropy of an ideal mixture, 
Sideal, defined as [46, 47]

Sideal = kB ln
N!

nAu!nCu!
≈ −kB

[nCu

N
ln

nCu

N
+

nAu

N
ln

nAu

N

]
,

 (22)
where N, nAu and nCu are the number of atomic sites, the 
number of sites occupied by Au and Cu atoms, respectively. 
The entropy of an ideal mixture is included as a gray line in 
figure 4(c). The entropy curve resembles that of an ideal mix-
ture at the high-temperature limit at 800 K. The curve starts 
to deviate from that of the ideal mixture as the temperature 
is lowered mainly because the entropy drops sharply at con-
centrations at which the ordered phases (e.g. L10 and L12) are 
energetically preferred. As the temperature increases, the free 
energy becomes a smooth convex curve with a minimum at 
around 50% composition, and the system is in a random phase 
with no short-range order.

An accurate estimate of the order/disorder transition 
temper ature can be found by tracking the evolution of an order 
parameter. The average fraction of sites having a different ele-
ment than the same site in the ground state, fdiff , is tracked as 
the system evolves. fdiff  is normalized by the expected frac-
tion of different sites in a random phase, fdiff,rnd, and an order 
parameter, η, is defined as

η = 1 − fdiff/fdiff,rnd. (23)

The order parameter is is used for detecting the phase trans-
ition as shown in figure  5. The computationally predicted 
order/disorder transition temperature of AuCu3, AuCu and 
Au3Cu are around 600 K, 665 K and 385 K, respectively, 

Figure 4. Thermodynamic quantities for the Au–Cu computed 
for temperatures ranging from 100 K to 800 K over the entire 
composition range. (a) Formation energy. (b) Free energy of 
formation. (c) Configurational entropy.

J. Phys.: Condens. Matter 31 (2019) 325901



J H Chang et al

10

which are in a good agreement with the experimental refer-
ence values [43–45].

One of the most common way to describe the character-
istics of a binary alloy is by constructing a phase diagram. 
A phase diagram can be generated computationally using a 
semi-grand canonical MC where a grand potential is obtained 
via thermodynamic integration in (16) at fixed chemical 
potentials. The integration starts from the low temperature 
limit for the ordered phases and from the high temperature 
limit for disordered phases where the free energy per atom is 
given by kBT ln 2. The phase boundary between two phases is 
identified by locating the intersection point between the grand 
potential in the two co-existing phases. The phase diagram 
generated via semi-grand canonical MC is shown in figure 6. 
The phase diagram closely resembles the phase diagrams con-
structed from the experimental measurements [43–45] and is 
also in a qualitatively agreement with the phase diagrams con-
structed from computational results [33, 38, 48].

4.2. Lithium chromium oxyfluoride

One of the recent focus areas of lithium-ion battery research is 
the development of high-capacity cathode materials. Lithium 
metal oxyfluorides (Li2MO2F, M ={V, Cr, Mn, Ti, Ni, …}) 
is a family of materials that is at the forefront of the current 
research. The challenges for studying Li2MO2F is in the vast 
size of the configurational space, which exhibit not only the 
cation disorder commonly found in lithium metal oxides [14, 
16] but also anion disorder which is also present due to the 
mixed O/F composition [49, 50]. The fact that the underlying 
crystal structure of Li2MO2F can vary at different lithiation 
levels [51] adds the complexity to investigate their properties. 
It is, however, known that the most predominant crystal struc-
ture is of disordered rocksalt type [52], particularly at high-
lithiation levels. We therefore show an example CE study of 
Li2CrO2F in a rocksalt lattice configuration.

The Monte Carlo annealing study reveals that Li2CrO2F 
(i.e. fully lithiated compound) takes a layered structure at 
room temperature (293 K) as shown in figure 7(a). The layer 
structure shows a …–Li–F–Li–O–Cr–O–… pattern, which is 
similar to a …–Li–O–M–O–… layered pattern observed in 
lithium metal oxides [16, 53, 54]. The layered structure is 
lost upon delithiation, which leads to disordered structures 
as shown in figure 7(b). The emergence of disordered struc-
tures agrees well with the previous experimental observations 
[50, 52], and it is important to model the disordered atomic 
arrangement as it has a direct link to the Li transport mech-
anism (e.g. a presence of zero-transition-metal pathways  
[16, 31, 55]).

Thermodynamics quantities of LixCrO2F can be extracted 
with the same procedure described for the Au–Cu system. One 
of the most crucial thermodynamic parameters for character-
izing cathode materials for Li-ion batteries is the free energy 
as it is directly linked to the operating voltage of the cell. The 
operating voltage of LixCrO2F is defined as

voltage = −µcathode
Li − µanode

Li

e

= −
dGLixCr2F

dx − µanode
Li

e
,

 (24)

where µLi  is the chemical potential in eV per Li atom, e is an 
electron charge and GLixCr2F is the free energy of LixCrO2F in 
eV per formula unit. Li metal is used as an anode and thus, 
µanode

Li  is constant.
The free energy of LixCrO2F and its voltage profile at 293 K 

are shown in figure 8. The free energy in figure 8(a) has three 
parts: free energy values computed from MC simulations, a 
smooth curve fitted to the computed values (using Redlich–
Kister polynomials [56]) and a convex hull of the fitted curve. 
The curve fit is used for generating the voltage plot because the 
derivative of the free energy used for calculating the voltage 

Figure 5. Order parameter as a function of temperature (1 in an 
ordered phase and 0 in a random phase).

Figure 6. Phase diagram of AuxCu1−x where 0 � x � 0.5. Circles 
are computed phase boundary points and lines are spline fits of the 
computed boundary points.

J. Phys.: Condens. Matter 31 (2019) 325901



J H Chang et al

11

values are susceptible to small noise that are present in the 
MC simulation results. Furthermore, a range in which the free 
energy curve is above the convex hull represents the region 
where a phase transition occurs: the cathode forms a mixture 
of two phases at which the fitted curve and the convex hull 
intersect. The voltage profile in figure 8(b) is generating using 
(24) where the values on the convex hull are used for GLixCr2F. 
The voltage profile in figure 8(b) is in a good agreement with 
those observed experimentally [50, 52].

5. Methods

5.1. Density functional theory calculations

All of the calculations are performed with the Vienna Ab 
initio Simulation Package (VASP) [57–60] using the pro-
jector augmented-wave (PAW) method [61]. The generalized 

gradient approximation as parametrized by Perdew, Burke and 
Ernzerhof [62] is used as the exchange-correlation functional. 
It is important to have a consistent and accurate dataset (i.e. 
DFT calculations with high energy cutoff and k-point mesh 
density) in order to minimize the numerical noise introduced 
to the CE training. The plane-wave cutoff of 500 eV is used, 
and both the cell and atomic positions are fully relaxed such 
that all the forces are smaller than 0.02 eV Å

−1
. A rotation-

ally invariant Hubbard U correction [63, 64] is applied to the 
d orbital of Cr with the U value of 3.7 eV. The calculations 
are performed with supercells containing up to 18 and 54 
atoms for Au–Cu alloy and Li2CrO2F systems, respectively. 
Integrations over the Brillouin zone were carried out using 
the Monkhorst–Pack scheme [65] with a grid with a maximal 
interval of 0.04 Å

−1
.

5.2. Cluster expansion model

The CE model for Au–Cu alloy and LixCrO2F are trained 
using 34 and 390 DFT calculations, respectively. CE model is 
trained for the entire composition range of Au–Cu alloy (from 
pure Au to pure Cu) and LixCrO2F on a rocksalt lattice with 
x ranges from 0 to 2. Up to four-body clusters with the max-
imum diameter of 6.0 Å  are generated for Au–Cu alloy. Up to 
four-body clusters are generated for LixCrO2F with the max-
imum diameter of 7.0 for two- and three-body clusters and 
4.5 Å  for four-body clusters. �1 and �2 regularization schemes 

Figure 7. A snapshot of LixCrO2F during the Monte Carlo run at 
293 K where x is (a) 2.0, (b) 1.5. The Li atoms are shown in green, 
the Cr atoms are shown in blue, the oxygen atoms are shown in red 
and the F atoms are shown in white.

Figure 8. Free energy of formation for LixCrO2F and its voltage 
with respect to Li metal at 293 K.
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with the regularization parameter ranging from 10−7 to 102 are 
assessed at various maximum radii to find the optimal setting 
that leads to the lowest LOOCV score. For the Au–Cu alloy, 
�1 regularization with the maximum diameter of 6.0 Å , 5.0 Å  
and 5.0 Å  for 2-, 3- and 4-body clusters, respectively, yields 
the lowest LOOCV score of 4.49 meV/atom. The minimum 
LOOCV score achieved using �2 regularization scheme is 
4.67 meV/atom when the maximum diameter is set to 6.0 Å ,  
6.0 Å  and 5.0 Å  for 2-, 3- and 4-body clusters, respectively. 
Similarly, �1 regularization performed better than �2 regu-
larization on LixCrO2F with the lowest LOOCV score of  
21.38 meV/atom (maximum diameter set to 7.0 Å , 7.0 Å  and 
4.5 Å  for 2-, 3- and 4-body clusters, respectively). It is noted 
that although the LOOCV of LixCrO2F seems larger com-
pared to that of Au–Cu, it should be taken into account that the 
cohesive energy of metallic alloys are in general much smaller 
than those of oxyfluorides.

5.3. Metropolis Monte Carlo simulations

For Au–Cu alloy, Metropolis Monte Carlo simulations are 
carried out using a 10 × 10 × 10 supercell consisting of 
1000 atoms for determining thermodynamic quantities. The 
system is equilibrated with 100 sweeps, and an average 
energy is collected through an additional 2000 sweeps at each 
temper ature for determining the thermodynamic quantities. 
A 30 × 30 × 30 supercell consisting of 27 000 atoms is used 
to determine the transition temperatures and to construct a 
phase diagram. The transition temperatures are determined 
by equilibrating the systems with 100 sweeps, followed by 
sampling the order parameter via an additional 1000 sweeps. 
A phase diagram is generated by performing a semi-grand 
canonical MC, where the system is equilibrated using  
100 sweeps, followed an additional 1000 sweeps to obtain 
an average semi-grand canonical energy at each temperature 
at a fixed chemical potential. A 9 × 9 × 9 cell consisting of  
1458 atoms is used for LixCrO2F. The temperature is gradu-
ally lowered from 10 000 K, and the structures are equilibrated 
at each temperature via 100 sweeps to ensure that the system 
is equilibrated before sampling. The average energy is then 
sampled via 1000 sweeps at each temperature.

6. Conclusions

We present the implementation of CLEASE, which fully 
integrates the cluster expansion method to ASE package. 
The aim of the developed code is to make cluster expansion 
more accessible to non-specialists and to incorporate modern 
machine learning techniques to cluster expansion method 
in one comprehensive and versatile package. The use of the 
popular Python programming language and implementing the 
code as a part of widely used ASE package lowers the bar-
rier for the newcomers to the field to easily learn and use CE 
as a part of their research methods. By automatically gener-
ating clusters and calculating the correlation functions of both 
semi-automatically generated and user-supplied structures, it 
minimizes both the possible introduction of user errors and 

complicated process of constructing/evaluating the cluster 
expansion. The capability of CLEASE is presented with two 
example usage cases with a different level of system com-
plexity. The examples demonstrate that CE can correctly pre-
dict the material behavior that require statistical sampling on 
a large simulation cell.
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