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Abstract

®

CrossMark

Materials exhibiting a substitutional disorder such as multicomponent alloys and mixed metal
oxides/oxy uorides are of great importance in many scienti ¢ and technological sectors.
Disordered materials constitute an overwhelmingly large con gurational space, which makes it
practically impossible to be explored manually using rst-principles calculations such as density
functional theory due to the high computational costs. Consequently, the use of methods such as
cluster expansion (CE) is vital in enhancing our understanding of the disordered materials. CE
dramatically reduces the computational cost by mapping the rst-principles calculation results on
to a Hamiltonian which is much faster to evaluate. In this work, we present our implementation
of the CE method, which is integrated as a part of the atomic simulation environment (ASE)
open-source package. The versatile and user-friendly code automates the complex set up and
construction procedure of CE while giving the users the exibility to tweak the settings and

to import their own structures and previous calculation results. Recent advancements such as
regularization techniques from machine learning are implemented in the developed code. The
code allows the users to construct CE on any bulk lattice structure, which makes it useful for a
wide range of applications involving complex materials. We demonstrate the capabilities of our
implementation by analyzing the two example materials with varying complexities: a binary

metal alloy and a disordered lithium chromium oxy uoride.

Keywords: cluster expansion, Monte Carlo, disordered materials, battery material, alloys

(Some gures may appear in colour only in the online journal)

1 Introduction

Computational modeling of materials with a substitutional
disorder such as multicomponent alloys and mixed metal
oxides is said to have a con gurational problem [1 5]. The
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vast con gurational space of these materials makes it prac-
tically impossible to explore directly using rst-principles
calculations such as density functional theory (DFT). A
quantitative method capable of establishing the relationship
between the structure and property of materials is therefore
essential. Cluster Expansion (CE) [1, 5 9] is a method that
has been used successfully in the past few decades to param-
eterize and express the con gurational dependence of physical
properties. The most widely parameterized physical property

© 2019 IOP Publishing Ltd  Printed in the UK
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is energy computed using rst-principles methods, but CE can
also be used to parameterize other quantities such as band gap
[10, 11] and density of states [12].

Despite its success and usefulness in predicting physical
properties of crystalline materials, CE remains as a niche tool
used in a small sub eld within the computational materials
science, primarily used by specialists. On the other hand, the
research elds in which CE is becoming relevant is on the rise;
one such example is the use of disordered materials for battery
applications [13 17]. The objective of our work is to make
cluster expansion more accessible for a broad range of compu-
tational scientists who do not necessarily possess expertise in
cluster expansion. Our approach to achieving such a goal is to
implement CE as a part of a widely used, open-source atomic
simulation environment (ASE) package [18]. Henceforth, we
refer to our implementation as CLEASE, which stands for
cluster expansion in atomic simulation environment.

Having CE as a part of a widely used package with inter-
faces to a multitude of open-source and commercial atomic-
scale simulation codes accompanies several practical bene ts:
(1) a large existing user base does not need to install or learn a
new program as the CE module is a part of ASE and inherits its
syntax and code style, and (2) all of the atomic-scale simula-
tion codes supported by ASE are also automatically supported
by the implemented module. In addition, CLEASE utilizes
the database management feature implemented in ASE, which
provides an ef cient way to store, maintain and share both
DFT and CE results. Therefore, the implementation presented
in this article appeals to a signi cant portion of computational
materials science community as a versatile and easy-to-learn
package, thereby lowering the barrier to incorporate cluster
expansion as a part of their research methods to accelerate
computational materials prediction and design.

The rest of the paper is organized as follows. A brief over-
view of cluster expansion formalism and other important con-
cepts are provided in section 2 in order to aid the readers who
are not familiar with the cluster expansion method. The imple-
mentation of CLEASE is described in section 3. Section 4
contains two application examples with different levels of
complexities, namely a binary metal alloy and a lithium metal
oxy uoride. The computational settings and technical details
for the examples are provided in section 5.

2. Theory

2.1 Cluster expansion formalism

The core concept of the cluster expansion is to express the
scalar physical quantity of a material, @ , to its con gura-
tion, , where a crystalline system is represented with a xed
underlying grid of atomic sites. In such a representation, any
con guration with the same underlying topology can be com-
pletely speci ed by the atomic occupation of each atomic site.
For the case of a crystalline material with N atomic sites, any
con guration can be speci ed by an N-dimensional vector

$1,S2, SN , Where s is a site variable that speci es
which type of atom occupies the atomic site i (also referred
to as an occupation variable [4, 19, 20] or pseudospin [1, 10,

21 23]). It is noted that the terms con guration and structure
are often used interchangeably.

For the case of multinary systems consisting of M different
atomic species, sj takes one of M distinct values. The original
formulation of Sanchez et al [6] speci es the s; to take any
valuesfrom m, m 1, , 1forM 2m (for the case
where there is an odd number of element types, an additional
value of 0 should be included in the possible values of s;, and
the relation between M and m becomes M 2m  1). Other
choices of s; are also commonly used such as values ranging
from0to M 1 by van de Walle [20] and from 1 to M by
Mueller and Ceder [24]. Based on the original formalism
by Sanchez et al, single-site basis functions are determined
through an orthogonality condition
m

v nSi n S nn 1

M, )
where  si is the nth single-site basis function (e.g.
Chebyshev polynomials) for ith site and ,, is a Kronecker
delta.

The con guration is decomposed into a sum of clusters as
shown in gure 1. Each cluster has a set of associated cluster
functions, which are de ned as

nS n; Si s
| @)
where nand s are vectors specifying the order of the single-
site basis function and the site variables in the cluster, respec-
tively. n; and s; specify the ith element of the respective
vectors. The use of orthogonal basis functions guarantees that
the cluster functions de ned in (2) are also orthogonal. The
symmetrically equivalent clusters are classi ed as the same
cluster, and the collection of all symmetrically equivalent
clusters are denoted with an
The average value of the cluster functions in cluster s
referred to as a correlation function, . The physical quantity,
q , normalized with the number of atomic sites N is then
expressed as

q m J , 3)
where m is the multiplicity factor indicating the number
of cluster per atom and J is the effective cluster interac-

tion (ECI) per occurrence, which needs to be determined. It
is noted that the cluster includes the cluster of size zero,
which have m 1. Alternatively, (3) can be written in a
more explicitly form,

q Jo mJ ) (4)

where Jp is the ECI of an empty cluster while in this case
corresponds to the clusters of size one and higher. It is often
more practical and convenient to express the ECI per atom
rather than per occurrence [5], in which case m and J are
combined into one term, J m J and (3) becomes

‘ o )
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Figure 1. A simpli ed illustration of the decomposition of a body-centered cubic lattice.

CLEASE uses the ECI per atom (J ), but interested users can
determine the value of J based on the valuesof m and J .

Theoretically, there is an in nite number of terms in (5) for
an in nite crystal, and the resulting expression can represent
any scalar function q given that appropriate ECI values
are found. In practice, suf cient accuracy is often reached
with clusters with small number of atoms (e.g. one-, two- and
three-body clusters) that are relatively compact in size (e.g.
5 7 A in diameter).

2.2. Cluster selection & determination of ECI values

A crucial element of CE approach is to select relevant clus-
ters from a theoretically in nite number of possible clusters.
Many multicomponent systems yield thousands of clusters
even when the expansion is limited to relatively compact size
and small number of atoms, and they are vastly truncated
since only a small fraction of them is needed to achieve the
required accuracy. Determining the optimal set of clusters that
minimizes the number of clusters without losing its predic-
tive power has been a topic of keen interest in the past decade
[3, 19, 25 27], and the cluster selection based on genetic
algorithms [3, 25, 26] was considered to be the most robust
method.

More recently, the use of compressive sensing [22] was
proposed to ef ciently select the clusters and determine their
EClIs in one shot. The compressive sensing is based on 1 norm
(a special case of , normwherep 1), which is de ned as

lp
Xi ” , (6)
i
where x is a vector quantity. It is noted that cluster expansion
de ned in (5) is in the same form as a linear regression model

in statistics and machine learning. Therefore, one can treat
CE as a linear regression problem and apply regularization
techniques based not only on ; norm but also on any other
p values, although ;and , norms are most commonly used.

The use of regularization techniques for CE can be illus-
trated by expressing (5) in a matrix form,

q X ()
X is a matrix containing the correlation functions of the
training data where each element in row i and column s
de ned as

Xi i 8)

g is a column vector in which the ith element is the physical

quantity g of the con guration jand isacolumn vectorin
which thelementis J .

The simplest way of determining is by using ordinary

least squares (OLS) method, which minimizes the residual
sum of squared errors (RSS). RSS is de ned as

RSS q 3

and the minimization of the RSS has a unique solution
where

X ©)

2

argmin X q 5
X™X XTq. (10)
The OLS has two major drawbacks [22]. The rst is the

requirement on which the number of con gurations in the
training set needs to be larger than the number of clusters
being considered. The matrix XX becomes singular in such
a case, and the limitations imposed by the rst requirement
become more severe for systems consisting of many element
types since even strict expansion conditions (i.e. small number
of atoms per cluster and compact size) can lead to a large
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number of clusters. The second drawback is the susceptibility
to possible over tting, which refers to the conditions in which
the ECI values are over-tuned to accurately representq  of
the training set at a cost of losing its predictive power for the
new con gurations that are not included in the training set.
The over tting also makes the model prone to noise present in
the training data because the model attempts to meticulously
t the model to the training data including the noise therein.

Regularization is an ef cient technique to address the
aforementioned drawbacks of OLS by adding a regulariza-
tion term to (10). The most common regularization scheme
are jand ; regularization, which respectively uses ;and »
norm as a regularization term. For 4 regularization, the solu-
tion becomes

2

argmin X q 5 1

(11)
where is a regularization parameter that controls the weight
given to the regularization term. The main bene t of ; regu-
larization is its promotion of sparsity. In context of CE, the
sparsity means a selection of a fewer number of clusters, or
many clusters with their ECI values set to zero. It is noted that
there is no unique analytical solution for (11), and it needs to
be solved iteratively. Unlike ; regularization, , regulariza-
tion has a unique analytical solution which is expressed as

argmin X g3 2
(12)
XX 1 XTq.

However, , regularization does not promote sparsity, and
the resulting solution is likely to contain more clusters than
necessary. It is noted that Bayesian compressive sensing [21]
scheme is introduced for cluster expansion, which effectively
eliminates the parameter in jand ; regularization schemes
while promoting sparsity.

Regardless of the tting technique used, the predictive
power of the expansion needs to be assessed to determine its
accuracy and reliability. Cross-validation (CV) is a technique
used for assessing the prediction accuracy of the model. A
leave-one-out (LOO) scheme is most commonly used in CE
community, and the LOOCV score is de ned as

12

Qi qi2 )

Neon g

LOOCV (13)

Neon 91

where Neon g is the number of con gurations in the training
set, g; is the physical quantity of a structure i predicted by
CE using Ncon ¢ 1 structures without a structure i and g is
the calculated physical quantity of structure i. While OLS has
only one (likely over tted) solution, ;and ; regularization
schemes have a solution for each  value. The solution a
selection of clusters and their ECI values that yields the
lowest LOOCV score is chosen. Although LOO is the most
common cross validation scheme in cluster expansion com-
munity, k-fold CV is one of the most common schemes used
in machine learning community. In a k-fold CV scheme, the
pool of con gurations are randomly partitioned into k parts of
equal size. The structures in k 1 parts are used as training

data while the remaining one part is used as a validation set,
and the cross validation is repeated k times.

2.3. Thermodynamics in lattice models

The true bene t of CE is in its ability to predict the expanded
scalar quantity g  based on trained data. An accurate pre-
diction can be made if the CV score of the expanded g
is suf ciently low, and the prediction speed is very fast on
modern computer architecture since it only involves execu-
tions of only a small number of simple numerical calculations
speci ed in (5). Such a speed boost allows one to conduct
types of analyses that require substantial statistical sampling.
In contrast to zero temperature studies where the system
occupies the state with lowest energy, an ensemble of con-
gurations with the lowest free energy are occupied at nite
temperature. The free energy G is given by [28]

z
G ]

(14)
where 1 kgT and Z is the partition function. kg is the
Boltzmann constant and T is temperature in Kelvin. It is noted
that the DFT energies are obtained for fully relaxed structures
without any external forces or pressure. Thus, the resulting
thermodynamic quantities are effectively obtained in the NPT
ensemble ( xed number of particles, xed pressure and xed
temperature). However, the energy predicted by CE is only
valid for the volume leading to the minimum energy of a par-
ticular atomic arrangement, and the volume uctuations are
neglected. The free energy can be calculated by utilizing the
exact differential
_ %y

(15)

ud

where U is the average internal energy. The free energy can
be obtained by a thermodynamic integration from a reference
temperature ¢t Where G is known, which can be written as
[29]

G G ref d U

ref

(16)

Important information of the materials under study such as the
stability of ordered/disordered phases can be determined by
comparing the free energy of the material at a given composi-
tion with respect to the free energies in the pure phases of its
constituents.

3. Implementation

CLEASE utilizes the existing classes and methods of ASE to
perform necessary manipulations and analyses for carrying
out CE. Among many adopted features, the most noteworthy
are the use of

an Atoms object to represent an atomic con guration

()
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a built-in database to ef ciently store, maintain and share
settings, atomic con gurations of the training set, values
of the correlation functions ( ) and DFT energies,
Python programming language and modular design to
remove the strict input le/format requirements and to
enable easy implementation of new features, and

a Calculator class to determine the physical quantity
q ofanewcon guration based on its correlation func-
tions and their ECI values.

It is noted that the evaluation of correlation functions of a
new con guration and the determination of physical quantity,
q ,basedon ECI values can be aslow process using Python
programming language. It is especially true for carrying out
Monte Carlo simulations after the CE model training is com-
plete. CLEASE includes an optional external module written
inC  programming language that can be installed to accel-
erate the critical and repetitive calculations, but the usage of
the code remains unchanged even when the external module
is installed (i.e. CLEASE automatically determines if the
C add-on is installed, and uses the C version if it is
present).

The inheritance of the existing features of ASE allows
CLEASE to be fully integrated to ASE where the users can
incorporate CE as a part of their research without losing the
continuity with the rest of their work ow. The existing users
of ASE do not have to install or learn a new CE program nor
select a particular DFT package that a CE code supports. In
addition to the bene ts of integrating CE as a part of ASE,
highlights of the features that makes CLEASE versatile and
user-friendly include:

a multicomponent cluster expansion that goes beyond
binary systems,

a support for several types of single-site basis functions
(e.g. basis functions by Sanchez et al [6], Van de Walle
[20] and Zhang and Sluiter [5]) for a comparison and
compatibility with other CE codes,

many methods for selecting clusters and determining ECI
values such as OLS, ; and ; regularization schemes,
Bayesian compressive sensing and genetic algorithm, and
both leave-one-out and k-fold cross validation schemes.

A simple owchart illustrating the procedure for constructing
CE using CLEASE is shown in gure 2. The CLEASE work-

ow can be divided in to three main components: de nition of
CE settings, generation of training structures and evaluation of
CE convergence. CLEASE takes an object-oriented approach
where each component has its own class. The modular design
approach not only enables easy implementation of new fea-
tures but also makes the code exible to use and intuitive to
follow the CE construction and evaluation procedure shown in

gure 2. A more detailed description of main components of
the procedure is provided below.

3.1 De nition of cluster expansion settings

The most fundamental component is to de ne which under-
lying crystal structure to use. ASE offers two functions to

Figure 2. A owchart of constructing and evaluating CE using
CLEASE.

generate a crystal structure: bullk and crystal. The bulk
function provides a simple way of generating common types
of crystal structures by specifying the name of the crystal
structure and its lattice constant value(s). The crystal struc-
tures supported by the bulk function are simple cubic, face-
centered cubic, body-centered cubic, hexagonal close packed,
diamond, zinc blende, rocksalt, cesium chloride, uorite and
wurtzite structures. For more complicated crystal structures,
a crystal function is used to generate a crystal structure
by providing its space group, lattice parameters and scaled
coordinates of the unique atomic sites. The de nitions of the
cluster expansion settings are speci ed using CEBulk and
CECrystal classes, which respectively calls bulk and
crystal functions to generate an Atoms object with the
user-speci ed crystal structure.

The maximum size of the supercell (of the primitive cell)
on which the DFT calculations are performed is also de ned
along with the de nition of the underlying crystal structure.
The maximum supercell size is speci ed using a super-
cell_fTactor parameter, which is an integer corresponding
to the product of the absolute values of expansion coef cients
(integer weights of a general linear combinations of the unit
cell vectors). In other words, if a unit cell has three vectors a,
b and c, the con gurations in the training set on which the
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DFT calculations are performed have cell vectorsa , b andc,
which are de ned as

a ila jlb le
b ira jzb koC
C i3a j3b k3C (17)
with integer coef cients iy, jx and ky, where x 1,2,3 .The
supercell_factor isthen de ned as
3 3 3
_ ix Jy Kz, (18)
X 1y 1z 1

and all of the cells used in the training set should have coef-

cients satisfying the condition in (18). Only unique cell
shapes are included in the pool by omitting the cells that can
be mapped on to the existing cells in the pool by rotation and
re ection. The use of supercells with varying sizes and shapes
enables the exploration of a larger con gurational space
without adding extra computational burden compared to using
one xed supercell size and shape. A set of training structures
for CE are later generated iteratively from the pool of possible
structures that are realizable using these supercells. To reduce
the required computational resources, the structures using
smaller supercells are generated (and calculated) rst, fol-
lowed by the larger supercells. The users also have a exibility
to select the supercell size using an optional size parameter,
whichisa3 3 matrix (or a nested list in Python) specifying
the values of the integer coef cients in (17).

Theoretically, an in nite number of clusters can be gen-
erated for a given system. The number of clusters is limited
to a nite size in practice, and CLEASE takes an approach
to generate all possible clusters that are under the truncation
threshold (i.e. a maximum number of atoms in clusters and
maximum diameter) speci ed by the user. A whole or subset
of the generated clusters is selected during the convergence
evaluation process. By default, up to four-body clusters (i.e.
empty, one-, two-, three- and four-body clusters) with their
diameters up to 5 A are generated. The users have an option to
de ne their own threshold settings both at the beginning of the
CE procedure and at a later stage of the CE iteration cycles.
CLEASE also offers view_clusters method in CEBulk
and CECrystal classes to visualize the generated clusters in
order to assist the user to develop an intuition on the generated
clusters.

Within the CE formalism, there does not exist a unique set
of de nitions for single-site basis functions; the single-site
basis functions are considered valid if they form a complete
set. Consequently, several de nitions are used in practice. The
two most widely used de nitions are the original de nitions
by Sanchez et al [6] and the one later developed by van de
Walle [20], which is used in the Alloy Theoretic Automated
Toolkit (ATAT) [20, 30]. The two de nitions are equally valid,
and both are implemented in CLEASE.

CLEASE offers an option to ignore a set of symmetrically
inequivalent atomic sites if they are always occupied by one

element type for all possible con gurations. The contributions
of these atoms are not explicitly included in the cluster expan-
sion and are automatically included in the constant term (Jo)
in (4). For example, lithium metal oxides (LiMO;) with rst-
row transition metals (M Sc, Ti, V, Cr, Mn, Fe, Co, Ni,
Cu ) have a rocksalt lattice structure [16, 31] with an excep-
tion of LiMnO,, which is orthorhombic [32]. The rocksalt lat-
tice structure consists of two face-centered cubic sublattices.
For the case of the cation-disordered rocksalt lattice LiMO»,
one sublattice is occupied by lithium and other metal atoms
while the other is occupied by oxygen atoms. The complexity
of the CE model of such systems can be reduced to a cation
sublattice consisting only of two element types (the oxygen
sublattice is ignored). As such, an optional Boolean argument
is present in CLEASE to enable/disable the reduction of the
complexity of the model by ignoring the such atoms if they
exist in the system. The reduction of the model complexity
leads to a reduction in computational cost as it requires a
smaller number of interaction terms to calculate.

A range of compositions (or concentration) of the system to
be studied is speci ed using a Concentration class. First,
the constituting elements of the system are categorized into
the basis which they belong. For example, LiVO; in a rocksalt
lattice structure is expressed using two lists: [ Li, V] and
[ O . Itis noted that CE needs to keep track of the location of
vacancies when they are present in the system. The location of
vacancies are tracked by treating a vacancy as a regular atom
with its atomic symbol setto X or atomic number set to zero.
The LiVO, with Li vacancies is then expressed using [ Li ,
V, X]and[ O]

The range of each element (including vacancies) can be
speci ed in one of the two convenient methods built in to the
Concentration class. The simplest method is to specify
the concentration range of each constituting element by calling
set_conc_ranges method in Concentration class.
For the cases where concentrations of two or more elements
depend on one another, one can specify concentration range
using set_conc_formulla_unit method where the rela-
tionships between the concentrations of two or more elements
can be expressed in a list of strings. For the example of LiVO,
with Li vacancies, a list of strings that speci es relationship
between the number of Li atoms and the number of vacan-
cies, [LixV 1 X 1-x , O 2 ], is passed as an argument
to the set_conc_formula_unit method. Another argu-
ment specifying the range of the concentration variable, e.g.

x 1 (0, 1) , is also passed to the set_conc_formula_
unit method in order to specify the concentration range of Li
and Li vacancies. The concentration ranges speci ed by either
set_conc_ranges or set_conc_formula_unit
methods are internally interpreted in the Concentration
class as a list of linear equations that specify (1) the relation-
ships of the concentrations of constituting elements and (2)
their upper/lower bounds. The advanced users can alterna-
tively specify the coef cients of the linear equations used in
the Concentration class if a greater exibility is needed
in specifying the concentration ranges.
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3.2. Generation of training structures

CLEASE uses NewStructures class to generate training
structures, which provides three different methods perform
the task. The rst and most trivial method is to generate a set
of random structures. This method serves to generate an initial
pool consisting of a small number of structures. The random
generation method is used in the rst iteration cycle of CE
construction as shown in gure 2. An initial cluster expansion
is capable of making a rst set of predictions albeit with a low
accuracy. It is noted that all of the generated training struc-
tures, along with their correlation function values, are stored
in a database le.

Once the initial CE is constructed, the user is given three
different choices for introducing an additional set of training
structures. The rst and most straightforward option is to keep
generating random structures. Although trivial, generating
random structures is claimed to be the best strategy when
compressive sensing is used to select clusters [22]. The second
method is to generate ground-state and other low-energy
structures based on current cluster expansion (i.e. based on
the pool of structures already calculated) [33], which have the
enthalpies of formation either on or near the convex hull [34].
The inclusion of ground-state and near-ground-state struc-
tures serves an important purpose of increasing the accuracy
in predicting the correct ground states. A global minimization
technique can be used to generate (near) ground-state con gu-
rations, and CLEASE uses a simulated annealing technique.
Simulated annealing takes an initial atomic con guration and
cures it at a sequence of decreasing temperatures in order
to let the structure evolve towards the ground-state arrange-
ment. In CLEASE, the user can generate ground-state struc-
ture by invoking generate_gs_structure method in
NewStructures class while specifying the initial and nal
temperatures (intermediate temperatures are interpolated in a
logarithmic scheme), number of temperatures and the number
of site swaps per temperature.

The last method of generating the training set is referred
toasa probe structure method [23, 35]. The probe structure
method introduces a new structure that minimizes the mean
variance of the predicted physical quantity g . The mean
variance of the predicted quantity q is written as [35]

Neon g

Var g Xi XTX  IXT e?
Ncon 91
T 1 T 1T 42
tr X'X X' X e (19)
e?,
where e? is the variance of the error in the training set, s the

covariance matrix of the correlation functions of the training
set and is a vector of the mean correlation functions of the
structures in the training set. The probe structure is the one
that reduce the value of  the most when introduced to the
training set, which is found using the simulated annealing
procedure. Similar to generating ground-state structures, the