
33

Applying Visible Strong Equivalence in Answer-Set Program

Transformations

JORI BOMANSON, Aalto University, Finland

TOMI JANHUNEN, Aalto University, Finland and Tampere University, Finland

ILKKA NIEMELÄ, Aalto University, Finland

Strong equivalence is one of the basic notions of equivalence that have been proposed for logic programs

subject to the answer-set semantics. In this article, we propose a new generalization of strong equivalence

(SE) that takes the visibility of atoms into account and we characterize it in terms of appropriately revised SE-

models. Our design resembles (relativized) strong equivalence but is substantially different due to adopting

a strict one-to-one correspondence of models from the notion of visible equivalence. We additionally tailor

the characterization for more convenient use with positive programs and provide formal tools to exploit the

tailored version also in the case of some programs that use negation. We illustrate the use of visible strong

equivalence and the characterizations in showing the correctness of program transformations that make

use of atom visibility. Moreover, we present a translation that enables us to automate the task of verifying

visible strong equivalence for particular fragments of answer-set programs. We experimentally study the

efficiency of verification when the goal is to check whether an extended rule is visibly strongly equivalent to

its normalization, i.e., a subprogram expressing the original rule in terms of normal rules only. In the process,

we verify the outputs of several real implementations of normalization schemes on a considerable number of

input rules.

CCS Concepts: • Theory of computation → Constraint and logic programming; Logic and verification;

• Computing methodologies → Logic programming and answer set programming;

Additional Key Words and Phrases: Stable models, strong equivalence, hidden atoms, auxiliary atoms, pro-

gram transformations, normalization

ACM Reference format:

Jori Bomanson, Tomi Janhunen, and Ilkka Niemelä. 2020. Applying Visible Strong Equivalence in Answer-Set

Program Transformations. ACM Trans. Comput. Logic 21, 4, Article 33 (October 2020), 41 pages.

https://doi.org/10.1145/3412854

An earlier version of this article appeared with the same title in Essays on Logic-Based AI in Honour of Vladimir Lifschitz,

volume 7265 of LNCS, pages 363–379. Springer, 2012. DOI:10.1007/978-3-642-30743-0_24.

This work has been supported in part by the Finnish centre of excellence in Computational Inference Research (COIN)

(Academy of Finland, project #251170). Moreover, Jori Bomanson has been supported by Helsinki Doctoral Network in

Information and Communication Technology (HICT) and Tomi Janhunen partially by the Academy of Finland project

Ethical AI for the Governance of Society (ETAIROS, grant no. 327352).

Authors’ addresses: J. Bomanson and I. Niemelä, Aalto University, Computer Science, School of Science, P. O. Box

15400, FI-00076, Aalto, Finland; emails: jori.bomanson@aalto.fi, ilkka.niemela@aalto.fi; T. Janhunen, Aalto University,

Computer Science, School of Science, P. O. Box 15400, FI-00076, Aalto, Finland, and Tampere University, Information

Technology and Communication Sciences, Kanslerinrinne 1, 33100, Tampere, Finland; emails: tomi.janhunen@aalto.fi,

tomi.janhunen@tuni.fi.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2020 Copyright held by the owner/author(s).

1529-3785/2020/10-ART33

https://doi.org/10.1145/3412854

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

https://doi.org/10.1145/3412854
https://doi.org/10.1007/978-3-642-30743-0_24
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3412854

33:2 J. Bomanson et al.

1 INTRODUCTION

Answer-set programming (ASP) [8] is a declarative problem solving paradigm where the solu-
tions of a problem are determined by computing answer sets [21, 22, 28], originally coined as stable

models by Gelfond and Lifschitz [20], for a logic program representing the problem. Rapid improve-
ment of answer-set solvers has lifted ASP into an efficient way to solve search problems arising
in many applications. The development of answer-set programs and the implementation of re-
lated solving tools often involves program transformations that substitute parts of input programs
with semantically equivalent, but syntactically different representations, obtained for example via
normalization [4] or simplification. Typically the aim is to improve performance [7] or facilitate
further processing [39]. The formal soundness of such transformations is ideally established by
analyzing each substitution in isolation from the rest of the program. This is, however, highly
nontrivial due to the global nature of answer-set semantics, which causes the answer sets of a
program to be more than a function of the answer sets of its parts.

The importance of these practical soundness considerations has motivated a broad line of re-
search founded on strong equivalence by Lifschitz et al. [29] (see, e.g., Reference [13]). The strong
equivalence relation holds for pairs of programs that are completely interchangeable not only in
isolation but also in the context of any larger program. It has been characterized in terms of su-
perintuitionistic logic [17, 29, 38] as well as strong equivalence models [43, 44], which helps to
understand and use the relation. The global nature of answer sets has also been addressed by
compositionality results [10, 26, 30, 36] that relate the answer sets of an entire program with the
answer sets of its parts meeting certain criteria. For example, modular equivalence [36] concerns
so-called program modules and is suitable for justifying module-level transformations. In contrast
with strong equivalence, however, it provides no help in analyzing transformations within mod-
ules on the level of rules, for example.

Strong equivalence is oblivious to encapsulation, which is a drawback that has defied a solu-
tion that precisely models standard answer-set solver behavior until this article, despite extensive
existing research. The drawback is substantial, because encapsulation is ubiquitous in practical
ASP. Indeed, answer-set solving tools provide means to partition the signature of a program by
labeling atoms visible or hidden, for example via the purpose-built #show directive of the modern
grounder gringo [18] or via similar constructs of the more historical grounder lparse.1 Atoms
left hidden take part in computation as usual but evade inclusion in the finally presented answer
sets. Thereby encapsulation enables developers to express implementation details using hidden
auxiliary atoms without burdening the view of solver users. Unfortunately, exercise of this ability
immediately diminishes the usefulness of strong equivalence along with all other equivalence no-
tions that do not distinguish visible and hidden atoms. From the perspective that hidden atoms are
indeed implementation details, strong equivalence requires that not only are the answer sets of
two programs identical in any context but also that the programs are implemented much the same.
This becomes an issue in intuitively valid transformation scenarios where a part of a program is
transformed, hidden atoms are changed, and user visible answer sets are preserved. Despite the
lack of user visible differences, such cases contradict the strong equivalence of the old and new
versions of the transformed parts. For instance, simplification of rules a ← c and c ← b into a ← b
breaks strong equivalence, despite an intention to hide c . There are two independent reasons for
this. First, if the rules are in a context such as the fact c , then the answer sets change from {{a, c}}
to {{c}}, where even the visible parts differ. Although the context c is intuitively irrelevant due to
its interference with a hidden atom, it provides a counterexample to strong equivalence. Second,

1http://www.tcs.hut.fi/Software/smodels/lparse.ps.

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

http://www.tcs.hut.fi/Software/smodels/lparse.ps

Applying Visible Strong Equivalence in Answer-Set Program Transformations 33:3

if the original rules form a program with the fact b, then the simplification changes its answer
sets from {{a,b, c}} to {{a,b}}. Although the visible parts of the answer sets stay intact, strong
equivalence is again contradicted by the change.

The above considerations motivate the inspection of equivalence notions via two questions:
(1) which context programs are relevant for establishing the equivalence and (2) in what sense
are the programs compared once a context is given? Standard notions of equivalence do not com-
prehensively address encapsulation in answering these questions. To begin with, the basic notion
of equivalence, also known as weak equivalence, simply classifies programs with the same sets of
answer sets as equivalent. It (1) involves no context and (2) indiscriminately compares everything.
Some existing approaches do focus on question (2) by tailoring program equivalence for use cases
where a part of the signature is hidden. Indeed, the notion of visible equivalence [23] emphasizes
the user’s perspective, i.e., the answer sets printed out by the solver. Although (1) it involves no
context, (2) it promisingly insists on a one-to-one correspondence between answer sets having
identical projections on the visible signature. As a further benefit, verification of visible equiva-
lence has an implementation for cases where hidden program parts behave deterministically and
thus keep computational complexity in check2 [25]. However, there are derivatives of strong equiv-
alence that promisingly approach question (1) by accounting for context and auxiliary predicates
[45, 46]. Namely, relativized variants of strong equivalence constrain context programs in terms
of subsidiary signatures. However, this is reflected only in terms of (1) allowed context programs
but not (2) considerations of visibility in a given context (cf. Examples 2.11 and 2.13 in Section 2).
The general framework of correspondence frames [16, 40] does address both considerations (1) and
(2) as it captures equivalence relations parameterized by arbitrary classes of context programs and
arbitrary comparison relations. Whereas the scope of the framework is vast, the related studies
are limited to specific types of comparison relations that compare answer sets projected to spec-
ified signatures. The respective notion of equivalence is called relativized strong equivalence with

projection. The comparisons resemble visible equivalence checks [23] but do not stipulate a one-
to-one correspondence between answer sets. Instead, the projective comparisons collapse multiple
versions of visibly identical answer sets into one. Although such projective semantics may be desir-
able in some circumstances, it represents a mismatch between typical answer-set solver behavior,
which is to enumerate all answer sets, including copies. Moreover, projection renders the equiva-
lence notion unsuitable for applications where answer set counts bear significance. This notably
includes probabilistic applications where auxiliary atoms are used to express frequencies of events
[1, 3] and where multiple copies of answer sets are essential for the determination of probabilities.

In this article, we solve the shortcomings discussed above and pinpoint a notion that generalizes
both visible and strong equivalence. Similarly to relativized strong equivalence with projection,
it considers encapsulation both (1) in selecting relevant context programs and (2) in comparing
programs in a given context. However, it is designed moreover to insist on a one-to-one corre-
spondence between answer sets and to be a congruence relation for program union. The resulting
notion is coined as visible strong equivalence. The combination of its properties makes it partic-
ularly applicable to the correctness analysis of program transformations that introduce auxiliary
atoms. Moreover, it is distinctive its applicability whenever the preservation of answer set counts
is desirable. Besides being a tool for formal correctness analysis, a further important application
for visible strong equivalence is automatic verification. As regards our purposes, the foremost veri-
fication task is to check that the rule-level normalization tools devised in References [4–6] produce
correct output. The contributions of this article can be summarized as follows:

2If all atoms are hidden, then visible equivalence reduces to model counting—a #P-hard problem.

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

33:4 J. Bomanson et al.

• Visible strong equivalence: The visible strong equivalence relation is defined.
• Model-based characterization: Visible strong equivalence is shown to admit a sound and

complete model-based characterization in terms of so-called VSE-models. That is, it is shown
that the visibility-aware semantics of programs is captured by their VSE-models so that the
visible strong equivalence of the programs can be determined by comparing their VSE-
models. The characterization result is an aid that can help in proving or disproving visible
strong equivalence.

• Positive programs: For positive programs, an easier, alternative model-based characteriza-
tion is established using a simpler class of models, namely hidden minimal models. When-
ever applicable, this further aids in assessing visible strong equivalence and simultaneously
relativized strong equivalence with projection, because the two relations coincide on posi-
tive programs when the latter is parameterized appropriately for a given pair of programs
at hand.

• Nearly positive programs: The benefits and simplicity of reasoning based on hidden minimal
models is extended beyond positive programs by developing a proof strategy that applies to
some “nearly” positive programs. As a downside, the strategy is only sound, not complete.
It is applicable to programs in which all negative atoms intuitively serve the role of input
literals. Prominent examples of such programs include singleton programs of frequently
used rule types without repeated atoms, but not choice rules (see rules (1) and (3)–(5) in
Section 2.1). As with positive programs, the results apply to relativized strong equivalence
with projection as well.

• Application: To illustrate the benefits of visible strong equivalence, use of the characteriza-
tion results is demonstrated by proving example encodings of choice and cardinality rules
correct. The encodings constitute normalizations by virtue of consisting of only normal
rules. These correctness results are noteworthy contributions in themselves, in addition to
serving as valuable examples.

• Implementation: Automated verification of visible strong equivalence is implemented via
translations and standard ASP solvers in analogy to Ref. [25]. The implementation forbids
the use of hidden non-determinism due to underlying computational complexity. Despite
this limitation, the class of remaining programs is meaningful in practice, as evidenced by
the feasibility of the experiments highlighted next.

• Experiments: The scalability of the implementation is explored computationally on normal-
izations of choice and cardinality rules. As a significant by-product of the experiments, a
number of nontrivial normalization implementations are proven correct for the explored
parameter range, and the respective formal correctness results regarding normalization are
double checked.

• Normalization Verification Performance: The experiments reveal that the automated com-
parison of cardinality rule normalizations against one another requires substantially less
computation time than comparison against the original cardinality rule. This result reduces
the computational effort required to test new normalization schemes, as their outputs can
be compared against already verified normalizations as opposed to plain cardinality rules
that lack internal structure.

The rest of this article is organized as follows. Basic concepts of logic programs and definitions
of equivalence relations are recalled in Section 2, including an account of visibility-based vari-
ants from the literature. The proposed notion of visible strong equivalence is then worked out in
Section 3 in close connection to relativized strong equivalence. Simplified proof strategies for pos-
itive and nearly positive programs are given in Section 4. Application of visible strong equivalence

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

Applying Visible Strong Equivalence in Answer-Set Program Transformations 33:5

to program transformations is exemplified in Section 5. Automated verification of visible strong
equivalence by way of a translation is devised in Section 6. The translation is put to use in scala-
bility experiments in Section 7. Contrast with other notions of equivalence is further discussed in
Section 8. The article is concluded in Section 9.

2 BACKGROUND

This section has a number of objectives. First, in Section 2.1, we recall several kinds of rules used
to form logic programs in ASP. The resulting standard classes of programs are also defined. The
stable model semantics is then recalled in Section 2.2, after which the basic notions of equiva-
lence, viz. weak and strong equivalence, are reviewed in Section 2.3. Finally, we prepare for a
new visibility-based generalization of strong equivalence by surveying previous approaches in
Section 2.4.

2.1 Frequently Used Classes of Logic Programs

In the sequel, we will study propositional logic programs, i.e., finite sets rules of the forms (1)–
(5), where a, ai ’s, bj ’s, and ck ’s are propositional atoms (or atoms for short) and ∼ denotes default

negation,

a ← b1, . . . , bn , ∼c1, . . . , ∼cm . (1)

{a1, . . . ,ah } ← b1, . . . , bn , ∼c1, . . . , ∼cm . (2)

a ← l ≤ {b1, . . . , bn , ∼c1, . . . , ∼cm }. (3)

a ← w ≤ {b1 = wb1
, . . . ,bn = wbn

,∼c1 = wc1 , . . . ,∼cm = wcm
}. (4)

a1 | · · · | ah ← b1, . . . , bn , ∼c1, . . . , ∼cm . (5)

The intuition behind a normal rule of the form (1) is that the head atom a can be derived when-
ever the body conditions of the rule are satisfied, i.e., when the positive body atoms b1, . . . ,bn are
derivable by the other rules in the program but none of the negative body atoms c1, . . . , cm are.
An abbreviation a ← B,∼C of (1), where B = {b1, . . . ,bn } and C = {c1, . . . , cm } will also be used.
The other rule types (2)–(5) extend the idea of a normal rule as follows. The head {a1, . . . ,ah } of a
choice rule (2) denotes a choice to be made when the body of the rule is satisfied: Any of ai ’s can
be derived or none. A cardinality rule (3) is similar to a normal rule, but its body becomes already
satisfied whenever the number of satisfied body conditions is at least l . More generally, the body
of a weight rule (4) is satisfied if the sum of weights (denoted bywbj

’s andwck
’s above) of satisfied

body conditions is at leastw . Finally, the head a1 | · · · | ah of a disjunctive rule (5) must be satisfied,
i.e., at least one of the head atoms is (minimally) derived if the body is satisfied. We use analogous
set-based short hands for the extended rule types like a ← w ≤ {B =WB ,∼C =WC } for a weight
rule (4) and A← B,∼C for a disjunctive rule (5).

Typical (syntactic) classes of logic programs are as follows. Normal logic programs (NLPs) solely
consist of normal rules of the form (1). The fragment internally supported by the historical smod-
els solver, also known as smodels programs, is based on the forms (1)–(4). This fragment is also
directly understood by the state-of-the-art solver clasp [19]. The class of weight constraint pro-

grams (WCPs) allows more liberal use of cardinality and weight constraints, but WCPs are easy to
translate into standard smodels programs using auxiliary atoms [41]. The class of disjunctive logic

programs (DLPs) allows disjunctive rules (5), which includes normal rules (1) as their special case
(h = 1). In the sequel, the specific class of considered logic programs is generally not crucial, and
thus we use the term logic program (or program for short) to refer to any finite set of rules—even
allowing for hybrid programs that mix the rule types above. This is also the spirit of the ASP-core-

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

33:6 J. Bomanson et al.

2 language standard [9]. Finally, we say that a rule is positive if m = 0 and it is of the forms (1) or
(3)–(5). A program P is called a positive program if its rules are all positive.

2.2 Stable Model Semantics

To define the formal semantics of programs, we write At(P) for the signature3 of a program P ,
which is a set of atoms including all atoms occurring in P . An interpretation I ⊆ At(P) of P deter-
mines which atoms a ∈ At(P) are true (a ∈ I) and which atoms are false (a ∈ At(P) \ I). Atoms are
also called positive literals. Any negative literal ∼c , where c is an atom, is treated classically, i.e., ∼c
is satisfied in I , denoted I |= ∼c , iff I � |= c . The satisfaction relation |= extends to other arguments
as follows. For a body B ∪ ∼C of a normal/choice/disjunctive rule, let I |= B ∪ ∼C iff I |= b for each
b ∈ B and I |= ∼c for each c ∈ C . Quite similarly, the body l ≤ {B,∼C} of a cardinality rule is satis-
fied in I iff l ≤ |B ∩ I | + |C \ I |. This can be generalized for the body w ≤ {B =WB ,∼C =WC } of a
weight rule—satisfied in I iff the weight sum WSI (B =WB ,∼C =WC) =

∑
b ∈B∩I wb +

∑
c ∈C\I wc is

at leastw . A rule r is satisfied in I , denoted I |= r , iff the satisfaction of its body implies the satisfac-
tion of its head. As special cases, the head {A} of a choice rule is always satisfied in I , and the head
A of a disjunctive rule is satisfied in I iffA ∩ I � ∅. An interpretation I ⊆ At(P) is a (classical) model

of a program P , denoted I |= P , iff I |= r for each rule r ∈ P . A model M |= P is a ⊆-minimal model

of a program P iff there is no other model M ′ |= P such that M ′ ⊂ M . The set of minimal models
of P is denoted by MM (P). If P is positive and it has no disjunctive rules (5), then |MM (P) | = 1.

Definition 2.1 (Reduct). Given a program P and an interpretation I ⊆ At(P), the reduct of P with
respect to I , denoted by PM , contains

(1) a rule a ← B for each normal rule a ← B,∼C in P such that I |= ∼C , and for each choice
rule {A} ← B,∼C in P such that a ∈ A ∩ I and I |= ∼C;

(2) a rule a ← l ′ ≤ {B} for each cardinality rule a ← l ≤ {B,∼C} in P , where l ′ = max(0, l −
|C \ I |);

(3) a rule a ← w ′ ≤ {B =WB } for each weight rule

a ← w ≤ {B =WB ,∼C =WC }
in P , where w ′ = max(0,w −WSI (∼C =WC)); and

(4) a rule A← B for each disjunctive rule A← B,∼C in P such that I |= ∼C .

Lemma 2.2. For a program P and I ⊆ At(P), I |= P if and only if I |= P I .

Proof. Suppose that P contains a choice rule r = {A} ← B, ∼C . The rule is satisfied in any
interpretation I ⊆ At(P) by definition. The head of every rule in the reduct {r }I is in I so that
I |= {r }I . Therefore, choice rules do not affect the iff-relationship.

Let us then consider a weight rule a ← w ≤ {B =WB ,∼C =WC } in P and any interpretation I ⊆
At(P). The reduct P I contains the rule a ← w ′ ≤ {B =WB } withw ′ = max(0,w −WSI (∼C =WC))
unconditionally. Then, the following statements are equivalent:

• I � |= a ← w ≤ {B =WB ,∼C =WC }
• w ≤ WSI (B =WB ,∼C =WC) and a � I
• w ′ ≤ WSI (B =WB) and a � I , as all the weights and weight limits are non-negative
• I � |= a ← w ′ ≤ {B =WB }.

3Some related works assume a global universe U of atoms that serves as At(P) when necessary.

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

Applying Visible Strong Equivalence in Answer-Set Program Transformations 33:7

Normal rules (1) and cardinality rules (3) are covered as special cases of weight rules. The treat-
ment of proper disjunctive rules (5) is analogous to that of normal rules except that the condition
a � I is replaced by A ∩ I = ∅. �

It is worth noting that PM is a positive program for any interpretation M ⊆ At(P) so that
MM (PM) � ∅. The following generalizes the respective definitions of stable models from Refs.
[20, 22, 41].

Definition 2.3 (Stable Model). An interpretation M ⊆ At(P) of a logic program P is a stable model

of P if and only if M ∈ MM (PM).

Example 2.4. Consider a logic program P consisting of the following rules:
a | b . {c} ← b .

The program has three stable models: M1 = {a}, M2 = {b}, and M3 = {b, c}. To verify the last one,
note that PM3 is {a | b . c ← b . } having minimal models {a} and {b, c}. �

The number of stable models of P , also known as the answer sets of P , can vary in general and
we let SM(P) stand for the set of stable models associated with P .

2.3 Basic Notions of Equivalence

The formal semantics provided by stable models gives rise to a straightforward notion of equiva-
lence. Given two logic programs P andQ , they are defined to be weakly equivalent, denoted P ≡ Q ,
if and only if SM(P) = SM(Q), i.e., the stable models of P and Q are exactly the same subsets of
At(P) and At(Q), respectively. The syntactic class of programs is not crucial for the definition so
that even inter-class comparisons using ≡ make sense. The definition of strong equivalence [29],
however, assumes a context program R, which makes its definition specific to a particular class of
programs. So, given logic programs P and Q from the class of interest, they are strongly equiva-

lent, denoted P ≡s Q , if and only if P ∪ R ≡ Q ∪ R for any logic program R from the same class. By
setting R = ∅, it is easy to see that P ≡s Q implies P ≡ Q . The converse does not hold in general as
illustrated by the following example.

Example 2.5. Consider logic programs P = {a | b . } and Q = {a ← ∼b . b ← ∼a. }. The sets of
stable models are SM(P) = {{a}, {b}} = SM(Q) so that P ≡ Q holds. The programs are not strongly
equivalent as witnessed by the context R = {a ← b . b ← a. }: SM(P ∪ R) = {{a,b}} and SM(Q ∪
R) = ∅. �

In contrast to weak equivalence, strong equivalence allows for substitutions of mutually equiv-
alent programs in arbitrary contexts. Hence ≡s is a congruence relation for ∪, i.e., P ≡s Q implies
P ∪ R ≡s Q ∪ R for any context program R from the class under consideration. It is possible to
characterize strong equivalence without explicitly referring to context programs [43, 44]. A strong
equivalence model (SE-model for short) of a program P is a pair 〈X ,Y 〉 of interpretations where
X ⊆ Y ⊆ At(P), Y |= P , and X |= PY . The set of SE-models of P is denoted by SE (P). It follows for
any programs P and Q that P ≡s Q if and only if SE (P) = SE (Q) [43].

Example 2.6. The difference between P and Q from Example 2.5 is captured by an SE-model
〈∅, {a,b}〉 of Q that is not an SE-model of P . To verify this, we note that {a,b} |= Q , Q {a,b } = ∅, so
that ∅ |= Q {a,b } but ∅ �|= a | b for the rule a | b in P {a,b } . �

The characterization in terms of SE-models makes the notion of strong equivalence independent
of the class of programs under consideration—enabling the substitution of P by Q , or vice versa,
as long as the respective unions P ∪ R and Q ∪ R are well defined in the context R. In case P �s Q
holds, the space of witnessing contexts R, for which SM(P ∪ R) � SM(Q ∪ R) holds, appears to be

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

33:8 J. Bomanson et al.

much larger than that of countermodels certifying SE (P) � SE (Q). However, there are results [29,
46], indicating that contexts consisting of unary rules only are sufficient. In our case, such rules are
obtained as special cases of (1)–(5) when n = 1 and m = 0. Actually, any countermodel 〈X ,Y 〉 for
strong equivalence can be mapped to a context program R (X ,Y) that contains every atom x ∈ X as
a fact and for each pair of atoms y1,y2 ∈ Y \ X with y1 � y2, a unary rule y1 ← y2. In Example 2.6,
we obtain the context R (∅, {a,b}) = {a ← b . b ← a. } that was used in Example 2.5 to establish
difference.

2.4 Visibility-based Variants

A typical answer-set program involves auxiliary atoms that formalize some secondary concepts
for the problem being solved. They are not directly needed to inspect a solution to the problem
and hence it is customary to hide them from the user whereas the rest of atoms remain visible.
To formalize this idea, we follow the approach of Reference [23] and write Atv (P) and Ath (P) for
the visible and hidden signatures of P , respectively, so that At(P) = Atv (P) ∪ Ath (P) and Atv (P) ∩
Ath (P) = ∅. The idea is that given M ∈ SM(P) only M ∩ Atv (P) is visible to the user and relevant
when comparing P with other programs. Given an interpretation I ⊆ At(P) and a set of atoms
A ⊆ At(P), we write I |A for the projection I ∩A of the interpretation I over A and, in particular,
Iv and Ih for the respective projections I |Atv (P) and I |Ath (P) . We extend these notations for sets

of interpretations S ⊆ 2
At(P) by S |A= {I |A | I ∈ S }, Sv = {Iv | I ∈ S }, and analogously for Sh. Thus,

e.g., SM(P)v = {Mv | M ∈ SM(P)}.
The basic relations ≡ and ≡s introduced in Section 2.3 count on all atoms being visible, i.e.,

Atv (P) = At(P) and Ath (P) = ∅ hold for programs subject to comparison. The notion of visible

equivalence [23], denoted by≡v, generalizes≡ to comparisons where the visibility of atoms matters.
Projections are compared as follows.

Definition 2.7. Given logic programs P and Q such that Atv (P) = Atv (Q), the sets of interpre-

tations S1 ⊆ 2
At(P) and S2 ⊆ 2

At(Q) are visibly equal, denoted by S1 =v S2, if and only if there is a
bijection f : S1 → S2 such that for every I ∈ S1, Iv = f (I)v.

Definition 2.8 (Visible Equivalence [23]). Logic programs P and Q are visibly equivalent, denoted
by P ≡v Q , iff Atv (P) = Atv (Q) and SM(P) =v SM(Q).

It is straightforward to show that both =v and ≡v are equivalence relations in their respective
domains. The strict (bijective) correspondence of stable models underlying ≡v stems from the goal
of formalizing the user’s perspective in the presence of hidden atoms: It is possible that a partic-
ular projection of stable models is printed out by the solver multiple times, because the mutual
differences concern only hidden atoms. From a more theoretical perspective, such a tight relation-
ship caters to the interests of users of various different reasoning modes of ASP such as brave and
cautions reasoning as well as counting of stable models.

Example 2.9. If SM(P) = {{a}, {b}} and SM(Q) = {∅, {b}}, then P ≡v Q holds if Atv (P) = {b} =
Atv (Q), i.e., a is hidden. It is easy to see that b is only a brave but not a cautious consequence
with respect to both P and Q . That is, in both cases, b is in some but not all stable models. How-
ever, if a is made visible, a bijective mapping between stable models in the sense of =v becomes
impossible. �

Definition 2.8 treats the visible projections of SM(P) and SM(Q) as multisets, i.e., the number
of copies of each projection with respect to Atv (P) and Atv (Q) matters. Indeed, the condition
SM(P) =v SM(Q) differs from SM(P)v = SM(Q)v, which would lead us to the projective notions of
equivalence addressed in Reference [16]. It is also worth pointing out that the definition of ≡v is

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

Applying Visible Strong Equivalence in Answer-Set Program Transformations 33:9

independent of the syntax of programs, which enables natural comparison of programs belonging
to different syntactic classes.

There are also existing generalizations of strong equivalence [29], which take the visibility of
atoms into account. For instance, the idea behind a relativized version of strong equivalence [45]
is to constrain potential contexts R using a fixed set of atoms A such that At(R) ⊆ A. The concept
can be further refined [46] by introducing distinct sets of atoms H and B to constrain head and
body atoms appearing in the rules of context programs, respectively. In the case that H and B
coincide, the more general notion reduces to relativized strong equivalence whose definition is
recalled next.

Definition 2.10 (Relativized Strong Equivalence [45]). Logic programs P andQ are strongly equiv-
alent relative to A, denoted by P ≡A

s Q , if and only if SM(P ∪ R) = SM(Q ∪ R) for all contexts R
with At(R) ⊆ A.

Definitions 2.8 and 2.10 yield different relations even in the interesting special case where
Atv (P) = A = Atv (Q). In this setting, the context program R may interact with P and Q through
visible atoms only, and in this sense R respects the hidden atoms of P and Q . However, visible
equivalence allows those hidden atoms to differ, whereas relativized strong equivalence does not,
as can be seen in the example below.

Example 2.11. Consider a program P consisting of a single choice rule {a} ← ∼b and let Q be
its tentative translation to normal rules a ← ∼a,∼b and a ← ∼a, where a is an auxiliary atom
to be hidden, i.e., let Atv (P) = {a,b} = Atv (Q) and a ∈ Ath (Q). For the context R = ∅, we obtain

SM(P ∪ R) = {∅, {a}} and SM(Q ∪ R) = {{a}, {a}} so that P � {a,b }s Q . For comparison, we have P ∪
R ≡v Q ∪ R. Thus ≡{a,b }s does not capture our visibility-focused view about the translation Q , by
which Q should be equivalent to P in any context that respects the definition of a, such as R. �

This example suggests potential relaxations of Definition 2.10, allowing stable models to differ
over atoms in Ath (P) and Ath (Q). Designing such a variant shall be the topic of Section 3. Before
that, we recall the definition of A-SE-models below. These models are interesting, because ≡A

s can
be characterized in terms of them: P ≡A

s Q holds iff SEA (P) = SEA (Q) holds for the sets of A-SE-
models associated with P and Q , respectively.

Definition 2.12 (Relativized SE-Models [45]).

(1) A pair 〈X ,Y 〉 of interpretations is anA-SE-interpretation of P if and only if Y ⊆ At(P) and
either X = Y or X ⊆ Y |A.

(2) An A-SE-interpretation 〈X ,Y 〉 of P is an A-SE-model of P if and only if (i) Y |= P , (ii) there
is no Y ′ ⊂ Y such that Y ′ |A= Y |A and Y ′ |= PY , and (iii) if X ⊂ Y , then there is X ′ ⊆ Y
such that X ′ |A= X and X ′ |= PY .

The idea is that Y is a ⊆-minimal model of PY when the interpretation of the atoms in A, i.e.,
Y |A, is kept fixed in the sense of parallel circumscription [27, 32]. The third condition ensures that
any non-total X ⊂ Y interpretation can be extended to a model X ′ of PY such that X ′ |A= X . Note
that Y |= P implies Y |= PY by the fact that taking the reduct PY partially evaluates the negative
body literals of P with respect to Y . Thus, for the interpretationsX and Y of anA-SE-model 〈X ,Y 〉,
being a model of PY is an essential property, since Y has this property and X can be extended to
have the same property by assigning values to atoms residing outside A.

Example 2.13. Recall the program P = {{a} ← ∼b . } from Example 2.11 and its potential normal-
izationQ = {a ← ∼a,∼b . a ← ∼a. } subject toA = {a,b}. Due to the choice rule of P , any subsetY
of At(P) = {a,b} is a model of P . The reduct PY = ∅ except whenY = {a}, which implies PY = {a. }.

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

33:10 J. Bomanson et al.

Thus theA-SE-models of P contain 〈{a}, {a}〉 and allA-SE-interpretations of the form 〈X ,Y 〉where
X ⊆ Y and Y � {a}.

The classical models Y ⊆ At(Q) = {a,a,b} of Q that satisfy the conditions (i) and (ii) of Defi-
nition 2.12 in item (2) are Y1 = {a}, Y2 = {a}, Y3 = {a,b}, and Y4 = {a,b}. Note that the minimal-
ity of models {a,a} and {a,a,b} is defeated by Y2 and Y4, respectively. For Y1, we obtain QY1 =

{a. } and an {a,b}-SE-model 〈∅, {a}〉. Similarly, QY2 = {a. } giving rise to 〈{a}, {a}〉. The reduct
QY3 = {a. } results in 〈X3,Y3〉 with X3 ⊆ {b} and, finally, QY4 = ∅ in 〈X4,Y4〉 where X4 ⊆ {a,b}.
The {a,b}-SE-models 〈∅, {a}〉, 〈∅, {a,b}〉, and 〈{b}, {a,b}〉 of Q make the difference with respect to
the {a,b}-SE-models of P . Again, the difference is due to the hidden atom a involved in Q and its
interpretations. �

Eiter et al. [16] present a general framework to capture a variety of program equivalences. Ac-
cording to their definitions, a correspondence frame F is a triple 〈U ,C, ρ〉, where U is a set of
atoms known as the universe of F , C is a class of context programs based on U , and ρ is a re-
lation used to compare stable models. Given two programs P and Q based on the signature U
of F , they are deemed F -corresponding, if for all context programs R ∈ C, the relation ρ holds
between SM(P ∪ R) and SM(Q ∪ R). Furthermore, Eiter et al. [16] write PA for the class of pro-
grams based on a set of atoms A ⊆ U . Since the concepts of visible Atv (·) and hidden Ath (·) sig-
natures are not used therein, the programs R ∈ PA can be understood to have no hidden atoms
in the context of this article so that Ath (R) = ∅. By these definitions, the weak and strong equiv-
alence of two programs P ,Q ∈ PU are captured by 〈U , {∅},=〉-correspondence and 〈U ,PU ,=〉-
correspondence, respectively. Moreover, the case of relativized strong equivalence is obtained as
〈U ,PA,=〉-correspondence for anyA ⊆ U . Using the framework, the study [16] introduces a rela-
tion called relativized strong equivalence with projection, which addresses differences arising from
auxiliary atoms. Besides the setA ⊆ U used to limit the class of context programs PA, the relation
introduces an additional set B of atoms to project stable models before comparison. In terms of
correspondence frames, the relation is captured by 〈U ,PA,=B〉-correspondence where =B stands
for the equality of B-projections of stable models. To generalize Definition 2.10 to reflect the cor-
respondence frame, we formulate the resulting weakening of relativized strong equivalence as
follows.

Definition 2.14 (Relativized Strong Equivalence with Projection [16]). Logic programs P andQ are

strongly equivalent relative to A up to projection with respect to B, denoted by P ≡A,B
s Q , if and

only if SM(P ∪ R) |B= SM(Q ∪ R) |B for all context programs R with At(R) ⊆ A.

Example 2.15. Recalling programs P and Q from Example 2.11, their differences essentially dis-
appear, e.g., if we pick A = {a,b} = B. Then, we obtain SM(P ∪ R) |B= {∅, {a}} = SM(Q ∪ R) |B for
the context R = ∅ as intuitively desired. �

It is obvious that the set B in Definition 2.14 serves the purpose of a visible signature for pro-
grams under consideration. However, the signature A determines the contexts of interest and the
interface for interaction. Intriguingly, the A-SE-models introduced in Definition 2.12 are insuffi-
cient to characterize the projective variant, and more complex structures such as certificates are
needed [16]. More formally, each interpretation Y ⊆ At(P) such that 〈Y ,Y 〉 ∈ SEA (P) induces an
〈A,B〉-certificate 〈X,Y ∩ (A ∪ B)〉 of P where X consists of all interpretations X ⊂ Y such that
〈X ,Y 〉 ∈ SEA (P). By construction Y ∩A is excluded from the first component of a certificate, and
thus the setX becomes empty if PY cannot be satisfied by any smaller interpretation thanY . There
can also be several interpretations Y inducing the same projection over A ∪ B as the second com-
ponent, and thus Eiter et al. [16] distinguish a minimal 〈A,B〉-certificate 〈X,Y ∩ (A ∪ B)〉 of P as

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

Applying Visible Strong Equivalence in Answer-Set Program Transformations 33:11

a certificate of P for which there is no other certificate 〈X′,Y ∩ (A ∪ B)〉 of P such that X′ ⊂ X.
Whenever A = B holds, we call 〈A,B〉-certificates A-certificates for short.

Theorem 2.16. [16] Logic programs P and Q are strongly equivalent relative to A up to projection

with respect to B, if and only if the minimal 〈A,B〉-certificates of P and Q coincide.

Example 2.17. As pointed out in Example 2.13, the differentiating {a,b}-SE-models of Q are
〈∅, {a}〉, 〈∅, {a,b}〉, and 〈{b}, {a,b}〉. However, if we project the {a,b}-SE-models of Q onto {a,b},
only the following four {a,b}-certificates remain:

〈∅, ∅〉, 〈∅, {a}〉, 〈{∅}, {b}〉, and 〈{∅, {a}, {b}}, {a,b}〉.
The certificates are trivially minimal, since their second components are unique. Given that

SE (P) = SE{a,b } (P), it is also easy to inspect that the minimal {a,b}-certificates of P are the same.
Therefore, we may conclude by Theorem 2.16 that P andQ are strongly equivalent relative to {a,b}
up to projection with respect to {a,b}. �

The fact that non-minimal certificates do not affect program equivalence in the sense of ≡A,B
s is

illustrated by the following example (communicated by S. Woltran).

Example 2.18. Consider two logic programs P and Q without stable models:

P : a ← ∼a, ∼b . b ← ∼a, ∼b . Q : a ← ∼a, ∼b . b ← ∼a, ∼b .
a ← b . b ← a. a ← b . b ← a, ∼c .

a ← c . b ← c .
a ← d . b ← d .

c | d ← a, b .

The only classical model of P is Y = {a,b}, and since PY contains only the rules a ← b and b ← a,
there are two SE-models 〈∅,Y 〉 and 〈Y ,Y 〉. Thus, P has a unique {a,b}-certificate 〈{∅}, {a,b}〉. As
regards the program Q , we consider projections with respect to {a,b}, which amounts to hiding
c and d . The models Y1 = {a,b, c} and Y2 = {a,b,d } induce {a,b}-certificates 〈{∅, {a}}, {a,b}〉 and
〈{∅}, {a,b}〉, respectively. Only the latter certificate is minimal. Since P and Q have identical min-
imal {a,b}-certificates, we know by Theorem 2.16 that SM(P ∪ R) |{a,b }= SM(Q ∪ R) |{a,b } for any
context program R with At(R) ⊆ {a,b}. �

The relativized strong equivalence with projection established in Example 2.17 indicates that
the programs involved, i.e., P and its normalizationQ , have the same meaning in a number of con-

texts. However, since the set A is fixed to A = {a,b} in the relation ≡A,B
s , the restriction At(R) ⊆ A

limits the scope of the established correspondence between P andQ to context programs R having
no further atoms. Therefore, to establish a respective correspondence having relevance to a larger
class of context programs, the parameters A and B need to be picked appropriately, not only to
avoid the hidden signatures of P and Q , but also to cover the signatures of any potential context
programs of interest. Aiming to simplify such questions related to signatures in the sequel, we will
employ an alternative approach relying on program interfaces while defining a variant of strong
equivalence that is readily applicable in a broad class of contexts. The idea is to equip programs
with signatures together with visibility information so that rather than embedding such informa-
tion in the equivalence relation. Consequently, the choice of an appropriate relation is streamlined.
Afterward, in Section 3.5, we will return to discuss signatures while contrasting correspondence
frames with the equivalence relation to be devised in the following.

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

33:12 J. Bomanson et al.

Fig. 1. Orthogonal generalizations of weak equivalence (≡).

3 VISIBLE STRONG EQUIVALENCE

The goal of this section is to make visible equivalence context-specific by incorporating context
programs in analogy to strong equivalence. Our strategy is illustrated in Figure 1 where weak
equivalence ≡ is generalized in two orthogonal ways as strong equivalence ≡s and as visible equiv-
alence ≡v. The essential question is whether these ways to generalize ≡ can actually meet—hence
arriving at a new relation, visible strong equivalence ≡vs, in the upper right corner. It turns out
in the sequel that such a generalization is indeed feasible and relaxes some limitations of exist-
ing generalizations of strong equivalence. In particular, we strive for a stronger characterization
theorem using visibility-based SE-models, to establish wider applicability for the resulting variant
of strong equivalence. Some subsidiary results are first derived with respect to classical equiva-
lence and ordinary visible equivalence in Sections 3.1 and 3.2, respectively. The two halves of the
characterization theorem, i.e., soundness and completeness with respect to SE-models, are then
established in Sections 3.3 and 3.4. Finally, Section 3.5 demonstrates how the VSE relation can be
represented as a correspondence frame.

Let us use the projective variant ≡A,B
s of relativized strong equivalence from Definition 2.14 as a

starting point for our analysis. When comparing two programs P andQ in a context R, it is natural
to choose the signature B for projections based on visible atoms. Using the notations introduced
in the context of visible equivalence, we obtain B = Atv (P) ∪ Atv (R) = Atv (Q) ∪ Atv (R) where
Atv (P) = Atv (Q) in analogy to visible equivalence. Due to the presumed interaction of P and Q
with the contextR, it is reasonable to expect that Atv (P) ∩ Atv (R) = Atv (Q) ∩ Atv (R) is non-empty,
although this is not absolutely necessary. Contexts R that do not interact with P and Q are unin-
teresting and should not affect their equivalence. As regards the relativized strong equivalence,
the context program P is constrained by the signature A, i.e., At(R) ⊆ A. This leaves completely
open how R might interact with P andQ as far as the hidden parts of the programs are concerned.
Since visible equivalence makes the visibility of atoms explicit, a part of our solution is to restrict
context programs on the basis of hidden atoms. For instance, if the context program R should not
interfere with the hidden part of P , then Ath (P) ∩A = ∅ should hold. However, rather than deriv-
ing complex constraints for the signature A, we formulate a more generic notion by saying that
logic programs P and R mutually respect the hidden atoms of each other iff At(P) ∩ Ath (R) = ∅ and
Ath (P) ∩ At(R) = ∅. Note that this condition is completely symmetric for P and R and can be sim-
ilarly stated for Q and R in particular. For instance, given the normalization Q from Example 2.13,
no context R such that a ∈ At(R) respects the hidden atoms of Q . The following definition rules
out such contexts when comparing programs in general.

Definition 3.1 (Visible Strong Equivalence). Programs P and Q are visibly strongly equivalent,
denoted by P ≡vs Q , if and only if Atv (P) = Atv (Q) and SM(P ∪ R) =v SM(Q ∪ R) for any context
R that mutually respects the hidden atoms of P and Q .

It should be emphasized that Definition 3.1 does not require that P andQ mutually respect their
hidden atoms. Thus Ath (P) and Ath (Q) may overlap and the respective definitions of (shared)
hidden atoms in P and Q need not coincide. For instance, Q could be a rewrite of P obtained by

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

Applying Visible Strong Equivalence in Answer-Set Program Transformations 33:13

simply permuting the names of hidden atoms but regardless of this, we may argue that P and Q
are equivalent, since their difference is hidden so that stable models are not effectively altered.
Moreover, the context R may utilize its own hidden atoms if appropriate, since P and Q cannot
refer to them.

Proposition 3.2 (Congruence for ∪). If P ≡vs Q and R is a (context) program that mutually

respects the hidden atoms of P and Q , then P ∪ R ≡vs Q ∪ R.

Given M |= P , we say that M is Ath (P)-minimal if and only if there is no N |= P such that Nv =

Mv and Nh ⊂ Mh. Due to the importance of the Ath (P)-minimal models of P , we call them hidden

minimal models of P and denote the respective set of models by MMh (P). Moreover, we assume
that computing the reduct PY for anyY ⊆ At(Y) does not interfere with the visibility of atoms, i.e.,
Atv (PY) = Atv (P) and Ath (PY) = Ath (P). The visibility-based SE-models (VSE-models for short)
are defined as follows.

Definition 3.3. A VSE-model of a logic program P is a pair 〈X ,Y 〉 of interpretations where X ⊆
Y ⊆ At(P), X ∈ MMh (PY), and Y ∈ MMh (PY).

The set of VSE-models of P is denoted by VSE(P). The intuition of a VSE-model 〈X ,Y 〉 is that
the second component Y represents a context for P against which the rules of P are reduced (to
form PY) and Y |= P . Within Y , visible atoms are interpreted classically whereas hidden ones are
false by default. The first component X is a model capturing a potential closure of PY also defined
to be hidden minimal.

Example 3.4. Consider the logic program P = {a | b . } from preceding examples and
Q = {a ← c . b ← d . c | d . } subject to Atv (P) = {a,b} = Atv (Q). The program P has five
SE/VSE-models: 〈{a}, {a}〉, 〈{b}, {b}〉, 〈{a}, {a,b}〉, 〈{b}, {a,b}〉, and 〈{a,b}, {a,b}〉. However,
there are six VSE-models for Q : 〈{a, c}, {a, c}〉, 〈{b,d }, {b,d }〉, 〈{a, c}, {a,b, c}〉, 〈{b,d }, {a,b,d }〉,
〈{a,b, c}, {a,b, c}〉, and 〈{a,b,d }, {a,b,d }〉. �

Since Definition 3.3 reformulates Definition 2.12, we relate them when A = Atv (P):

• If 〈X ,Y 〉 is anA-SE model of P , thenY is a hidden minimal model of PY and there is a hidden
minimal model X ′ of PY such that X ′v = Xv and 〈X ′,Y 〉 ∈ VSE(P).

• If 〈X ,Y 〉 ∈ VSE(P), then X = Y implies that 〈X ,Y 〉 is an A-SE model of P and, otherwise,
〈Xv,Y 〉 is an A-SE model of P .

It is also worth pointing out two corner cases of Definitions 3.1 and 3.3. If Ath (P) = ∅ holds for
the programs under consideration, then VSE(P) = SE (P) and ≡vs coincides with ≡s. However, if
Atv (P) = ∅, then VSE(P) = {〈M,M〉 | M ∈ SM(P)} and≡vs coincides with≡v subject to Atv (P) = ∅,
so that in which case only the numbers of stable models are being compared. Lemma 2.2 and hidden
minimality imply the following.

Proposition 3.5. If 〈X ,Y 〉 ∈ VSE(P), then (i) Y |= P and (ii) X = Y if Xv = Yv.

The latter part shows how total SE-models in the sense of Definition 2.12 are captured with
VSE-models. Our next objective is to define when two sets of VSE-models can be considered to be
the same. In contrast to References [45, 46], we partly disregard hidden information at this point.
To ease the treatment of VSE-interpretations in the sequel, we adopt a few operations that are
familiar from database theory. Given a set S of VSE-interpretations, define two projections of S by
setting π1 (S) = {X | 〈X ,Y 〉 ∈ S } and π2 (S) = {Y | 〈X ,Y 〉 ∈ S }. Moreover, given an interpretation
Z ⊆ At(P), we may select the set of VSE-interpretations σZ (S) = {〈X ,Y 〉 ∈ S | Y = Z }. The same

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

33:14 J. Bomanson et al.

notation is used for Zv ⊆ Atv (P), but then the selection condition is Yv = Zv. Sets of VSE-models
are compared as follows to capture ≡vs.

Definition 3.6. Given programs P and Q such that Atv (P) = Atv (Q), the respective sets VSE(P)

and VSE(Q) visibly match, denoted VSE(P)
v
= VSE(Q), if and only if

(1) π2 (VSE(P)) =v π2 (VSE(Q)) via a bijection f and
(2) for each matching pair of models Y ∈ π2 (VSE(P)) and f (Y) ∈ π2 (VSE(Q)),

π1 (σY (VSE(P)))v = π1 (σf (Y) (VSE(Q)))v. (6)

Example 3.7. Given the sets VSE(P) and VSE(Q) from Example 3.4, we obtain π2 (VSE(P)) =

{{a}, {b}, {a,b}} and π2 (VSE(Q)) = {{a, c}, {b,d }, {a,b, c}, {a,b,d }}. Thus, VSE(P) � v= VSE(Q), which
reflects P �v Q and P �vs Q . This is easily confirmed by the context R = {a. b . }: SM(P ∪ R) =
{{a,b}} but SM(Q ∪ R) = {{a,b, c}, {a,b,d }}. �

The bijective relationship of models, which is an inherent property of visible equivalence in the
first place, is expected of the second components of VSE-models. No such one-to-one restriction
is imposed on the first components: The condition (6) simply checks the VSE-models associated
with Y and f (Y) and ensures that the visible parts of the first components are the same. Indeed, it
is possible that a particular projectionXv is perceived from multiple VSE-models of P , i.e.,Xv = X ′v
for 〈X ,Y 〉 ∈ VSE(P) and 〈X ′,Y 〉 ∈ VSE(P) such that X � X ′. See below for a concrete example.

Example 3.8. Let P be the program consisting of the following rules:

a ← c . a ← d . c | d . b ← c,d . c ← b . d ← b .

Given Atv (P) = {a,b}, the program P has, e.g., VSE-models M1 = 〈{a, c}, {a,b, c,d }〉 and M2 =

〈{a,d }, {a,b, c,d }〉. Then, we observe that π1 (M1)v = {a} = π1 (M2)v. �

The set S of interpretations π1 (σY (VSE(P))) associated with an interpretation Y ∈ π2 (VSE(P))
essentially forms a certificate 〈S \ {Yv},Yv〉 in the sense of Reference [16] as detailed in Section 2.4.
Conversely, the set S can be recovered from the first component of the certificate for Y by adding
Yv as a member.4 Given the characterization of relativized strong equivalence in Theorem 2.16,
our main contribution on the semantic side is the identification of the bijective relationship of
certificate structures when it comes to establishing the visible strong equivalence of programs.

Example 3.9. Consider a logic program P consisting of the rules

a ← c . a ← d . c | d .

and the logic program Q whose only rule is a as a fact. Let Atv (P) = Atv (Q) = {a}. The VSE-
models of P are 〈{a, c}, {a, c}〉 and 〈{a,d }, {a,d }〉, whereas 〈{a}, {a}〉 is the unique VSE-model of Q .
These models induce a unique minimal certificate 〈∅, {a}〉 for both programs. It follows by The-
orem 2.16 that SM(P ∪ R)v = SM(Q ∪ R)v for every context R such that At(R) ⊂ {a}. But since
SM(P) = {{a, c}, {a,d }} and SM(Q) = {{a}}, it is clear that P �v Q and P �vs Q by the empty con-
text R = ∅. �

The module theorem of References [26, 36] shows how the stable models of a program P can
be obtained from those of its component programs also known as modules. The key idea is that
mutually compatible stable models of the modules can be joined together to form a stable model
of P . As regards stable models, there is an important restriction to this result: Arbitrary unions

4The difference is a matter of bookkeeping, not truly affecting the notion of minimality in Theorem 2.16.

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

Applying Visible Strong Equivalence in Answer-Set Program Transformations 33:15

of component programs cannot be supported. The main principle is that strongly connected com-

ponents (SCCs) with respect to positively interdependent atoms cannot be split between modules.
However, such settings cannot arise when considering VSE-models under the assumption that
component programs mutually respect the hidden atoms of each other. Thus any SCCs subject to
stable semantics will stay distinct from each other. Let us also emphasize that the visible parts of
VSE-models are interpreted classically, which effectively cuts any loops that would result across
visible parts of programs.

Definition 3.10. Let P1 and P2 be two programs that mutually respect the hidden atoms of each
other. Then, the respective VSE-interpretations 〈X1,Y1〉 and 〈X2,Y2〉 of P1 and P2 are compatible if
and only if

(1) X1 ∩ Atv (P2) = X2 ∩ Atv (P1) and
(2) Y1 ∩ Atv (P2) = Y2 ∩ Atv (P1).

Theorem 3.11. If programs P1 and P2 mutually respect the hidden atoms of each other, then

VSE(P1 ∪ P2) = VSE(P1) � VSE(P2) where the join VSE(P1) � VSE(P2) is defined as the set of

VSE-interpretations 〈X1 ∪ X2,Y1 ∪ Y2〉 for each pair of VSE-interpretations 〈X1,Y1〉 ∈ VSE(P1) and

〈X2,Y2〉 ∈ VSE(P2) that are compatible.

Proof. Let 〈X1,Y1〉 such thatX1 ⊆ Y1 ⊆ At(P1) and 〈X2,Y2〉 such thatX2 ⊆ Y2 ⊆ At(P2) be com-
patible. As a consequence, the interpretationsX1,X2, Y1, and Y2 can be extracted fromX1 ∪ X2 and
Y1 ∪ Y2 as simple projections over At(P1) and At(P2). Since Y1 ∪ Y2 is a well-defined interpretation
for P1 ∪ P2, we obtain

Y1 ∪ Y2 |= (P1 ∪ P2)Y1∪Y2 ⇐⇒ Y1 ∪ Y2 |= P1 ∪ P2 [Lemma 2.2]
⇐⇒ Y1 |= P1 and Y2 |= P2 [Modularity of |=]

⇐⇒ Y1 |= PY1

1 and Y2 |= PY2

2 . [Lemma 2.2]

In analogy, since X1 ∪ X2 is an interpretation for P1 ∪ P2, we have

X1 ∪ X2 |= (P1 ∪ P2)Y1∪Y2 ⇐⇒ X1 ∪ X2 |= PY1

1 ∪ P
Y2

2 [Definition 2.1]

⇐⇒ X1 |= PY1

1 and X2 |= PY2

2 . [Modularity of |=]

Moreover, since P1 and P2 mutually respect each other’s hidden atoms, we have Ath (P1 ∪ P2) =
Ath (P1) ∪ Ath (P2) and Ath (P1) ∩ Ath (P2) = ∅. It follows that Y1 ∪ Y2 is a Ath (P1 ∪ P2)-minimal

model of (P1 ∪ P2)Y1∪Y2 = PY1

1 ∪ P
Y2

2 iff Y1 is a Ath (P1)-minimal model of PY1

1 and Y2 is a Ath (P2)-

minimal model of PY2

2 . In summary, we have shown that 〈X1 ∪ X2,Y1 ∪ Y2〉 ∈ VSE(P1 ∪ P2) if and
only if 〈X1,Y1〉 ∈ VSE(P1) and 〈X2,Y2〉 ∈ VSE(P2). �

Example 3.12. Let us consider the logic programs

P : a ← c . c ← b . Q : b ← d . d ← a.

where Atv (P) = {a,b} = Atv (Q). Despite the positive loop in P ∪Q , we may safely apply Theo-
rem 3.11 to compute VSE(P ∪Q). Both programs have six VSE-models:

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

33:16 J. Bomanson et al.

VSE(P): 〈∅, ∅〉 VSE(Q): 〈∅, ∅〉
〈∅, {a}〉 〈∅, {b}〉

〈{b, c}, {b, c}〉 〈{a,d }, {a,d }〉
〈∅, {a,b, c}〉 〈∅, {a,b,d }〉

〈{b, c}, {a,b, c}〉 〈{a,d }, {a,b,d }〉
〈{a,b, c}, {a,b, c}〉 〈{a,b,d }, {a,b,d }〉

Of these VSE-models, three pairs are compatible. First, since 〈∅, ∅〉 is a member of both VSE(P)
and VSE(Q), it is also a member of VSE(P ∪Q). Second, the respective members 〈∅, {a,b, c}〉
and 〈∅, {a,b,d }〉 of VSE(P) and VSE(Q) are compatible and contribute 〈∅, {a,b, c,d }〉 to VSE(P ∪
Q). In analogy, 〈{a,b, c}, {a,b, c}〉 and 〈{a,b,d }, {a,b,d }〉 give rise to 〈{a,b, c,d }, {a,b, c,d }〉. For
contrast, an example of an incompatible pair is given by the VSE-models 〈{b, c}, {a,b, c}〉 and
〈{a,b,d }, {a,b,d }〉, which differ in the visible projections {b} and {a,b} of their X components,
although they match in their Y components. Due to the difference, the pair does not contribute a
VSE-model to VSE(P ∪Q). �

3.1 Relationship with Classical Equivalence

Given a program P and an SE-model 〈X ,Y 〉 of P , the second component Y is a classical model of P .
By Proposition 3.5, the same holds for VSE-models, but more importantly, Y is a hidden minimal
model of PY . In what follows, we take such models as representatives for classical equivalence in
settings where some atoms are hidden and define

VCE(P) = {Y ⊆ At(P) | Y ∈ MMh (PY)}. (7)

As hinted above, the visible part Yv of Y ∈ VCE(P) serves the purpose of satisfying in the classical

sense rules that define visible atoms in P . However, the hidden part Yh is essentially a stable model

for rules that define hidden atoms in P . By recognizing the importance of such models for visible
strong equivalence, we arrive at the following generalization of (ordinary) classical equivalence as
well as a number of auxiliary results that facilitate the study of visible strong equivalence in the
sequel.

Definition 3.13 (Visible Classical Equivalence). Programs P andQ are visibly classically equivalent,
denoted by P ≡vc Q , iff Atv (P) = Atv (Q) and VCE(P) =v VCE(Q).

Definition 3.14. Given a program P , define a context program Ctx(P) that contains for every
visible atom a ∈ Atv (P), the respective choice rule {a}.

Theorem 3.15. For a program P , the context program Ctx(P), and an interpretation M ⊆ At(P),
M ∈ VCE(P) iff M ∈ SM(P ∪ Ctx(P)).

Proof. For the program P and any interpretation M ⊆ At(P),

M ∈ VCE(P) ⇐⇒ M ∈ MMh (PM) and M |= {a ← | a ∈ M }
⇐⇒ M ∈ MM (PM ∪ {a ← | a ∈ M })
⇐⇒ M ∈ MM ((P ∪ Ctx(P))M)
⇐⇒ M ∈ SM(P ∪ Ctx(P)),

where Ctx(P)M = {a ← | a ∈ M } holds in general. �

Corollary 3.16. For programs P and Q with Atv (P) = Atv (Q),

(1) P ≡vc Q if and only if P ∪ Ctx(P) ≡v Q ∪ Ctx(Q), and

(2) P ≡vs Q implies P ≡vc Q .

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

Applying Visible Strong Equivalence in Answer-Set Program Transformations 33:17

It is clear by the definition of VSE-models that Y ∈ VCE(P) iff 〈Y ,Y 〉 ∈ VSE(P). Thus, we obtain
the following result as a restriction of Theorem 3.11.

Corollary 3.17. If P1 and P2 are logic programs that mutually respect the hidden atoms of each

other, then VCE(P1 ∪ P2) = VCE(P1) � VCE(P2).

Proposition 3.18. For a program P and a hidden minimal model Y ∈ VCE(P), Y ∈ SM(P) if and

only if 〈∅,Yv〉 is the certificate induced by Y .

Proof. Let Y ∈ VCE(P). (=⇒) Suppose that Y ∈ SM(P) and that Y induces a certificate 〈S,Yv〉
such that S � ∅. Then, there is 〈X ,Y 〉 ∈ VSE(P) such that Xv ∈ S and Xv ⊂ Yv. Thus Y |= PY and
X contradicts the ⊆-minimality of Y as Y ∈ SM(P).

(⇐=) Suppose that 〈∅,Yv〉 is the certificate induced by Y and Y � SM(P), i.e., X |= PY for some
X ⊂ Y . Then, there is a hidden minimal modelX ′ ⊆ X such thatX ′ |= PY ,X ′v = Xv, andX ′v ⊂ Yv by
Proposition 3.5. It follows that 〈X ′,Y 〉 ∈ VSE(P) andX ′v = Xv should be a member of the certificate
induced by Y , a contradiction. �

3.2 Relationship with Ordinary Visible Equivalence

It is clear by the definition of visible strong equivalence that P ≡vs Q implies P ≡v Q . The following
lemma establishes the respective implication but starting from the model-theoretic correspondence
of VSE-models laid out in Definition 3.6.

Lemma 3.19. If VSE(P)
v
= VSE(Q) for programs P and Q , then P ≡v Q .

Proof. Let us assume that VSE(P)
v
= VSE(Q). Then, consider any M ∈ SM(P), i.e., M ∈

MM (PM). Assuming that M � MMh (PM), there is a model M ′ of PM such that M ′v = Mv and
M ′

h
⊂ Mh. But then M ′ ⊂ M , contradicting the overall minimality of M . Thus M ∈ MMh (PM),

〈M,M〉 ∈ VSE(P), and M ∈ π2 (VSE(P)).

Using the bijection f inducing VSE(P)
v
= VSE(Q), we obtainN = f (M) ∈ π2 (VSE(Q)) withNv =

Mv. Since N ∈ MMh (QN), we obtain 〈N ,N 〉 ∈ VSE(Q) and N |= QN . Let us then assume that N ′ |=
QN for some ⊆-minimal model N ′ ⊂ N .

• If N ′v = Nv, then N ′
h
⊂ Nh and N � MMh (QN), a contradiction.

• Thus N ′v ⊂ Nv and N ′ ∈ MMh (QN) as N ′ ∈ MM (QN). It follows that 〈N ′,N 〉 ∈ VSE(Q) and
N ′v ∈ π1 (σN (VSE(Q))). The inverse of f and (6) interpreted over M and N = f (M) give us
a corresponding pair 〈M ′,M〉 ∈ VSE(P) such that M ′v = N ′v. Thus M ′ ⊂ M and M ′ |= PM as
〈M ′,M〉 ∈ VSE(P). A contradiction, since M ∈ SM(P).

Thus, we have shown that f maps a stable model M ∈ SM(P) to a distinguished stable model
N = f (M) ∈ SM(Q) such that Nv = Mv. The converse holds by symmetry making the restriction
of f from SM(P) to SM(Q) a bijection. Thus P ≡v Q . �

3.3 Characterization of Visible Strong Equivalence: Soundness

Our next goal is to characterize ≡vs in terms of VSE-models and in analogy to a number of similar
results (Reference [44, Theorem 1], Reference [31, Theorem 1], and Reference [14, Theorem 4.5]).
It is natural that in our case, the bijective relationship of models plays its particular role in the
resulting characterization of ≡vs.

Lemma 3.20. Let P and Q be programs such that Atv (P) = Atv (Q), and R a context program such

that P and R as well as Q and R mutually respect the hidden atoms of each other. Then, VSE(P)
v
=

VSE(Q) implies VSE(P ∪ R)
v
= VSE(Q ∪ R).

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

33:18 J. Bomanson et al.

Proof. Let VSE(P)
v
= VSE(Q) hold via a bijection f from π2 (VSE(P)) = VCE(P) to

π2 (VSE(Q)) = VCE(Q) and let R be any context program as described above. It follows that
VSE(P ∪ R) = VSE(P) � VSE(R) and VSE(Q ∪ R) = VSE(Q) � VSE(R) by Theorem 3.11. Then,
consider any Y ∈ π2 (VSE(P ∪ R)) for which there is 〈X ,Y 〉 ∈ VSE(P ∪ R). It follows that
〈X1,Y1〉 ∈ VSE(P) and 〈X2,Y2〉 ∈ VSE(R), where X1 = X ∩ At(P), Y1 = Y ∩ At(P), X2 = X ∩ At(R),
and Y2 = Y ∩ At(R).

(1) SinceY1 ∈ π2 (VSE(P)), we can map it toY ′1 = f (Y1) ∈ π2 (VSE(Q)) such that (Y ′1)v = (Y1)v.
Thus, Y ′1 is compatible with Y2, because Y1 is compatible with Y2 and R mutually respects
the hidden atoms of P and Q .

(2) From X1 ∈ π1 (σY1 (VSE(P))) and Equation (6), we obtain X ′1 ⊆ Y ′1 such that 〈X ′1,Y ′1〉 ∈
VSE(Q) and (X ′1)v = (X1)v. This makes X ′1 compatible with X2 as X1 is compatible with
X2 and R mutually respects the hidden atoms of P and Q .

It follows that 〈X ′,Y ′〉 ∈ VSE(Q ∪ R) holds for X ′ = X ′1 ∪ X2 and Y ′ = Y ′1 ∪ Y2. Thus, Y ′ ∈
π2 (VSE(Q ∪ R)) and we have obtained a function f ′(Y) = Y ′ = Y ′1 ∪ Y2 = f (Y ∩ At(P)) ∪ (Y ∩
At(R)), which is a bijection as f is. To establish Equation (6) in the presence of R, we have to
consider any Xv ⊆ Yv with 〈X ,Y 〉 ∈ VSE(P ∪ R), i.e., Xv ∈ π1 (σY (VSE(P ∪ R))). Using the same
line of reasoning as above, we obtain 〈X ′,Y ′〉 ∈ VSE(Q ∪ R). A simple calculation yields X ′v =
(X ′1)v ∪ (X2)v = (X1)v ∪ (X2)v = Xv, i.e., X ′v ∈ π1 (σY ′ (VSE(Q ∪ R))) where Y ′ = f (Y). This shows
one half of Equation (6) and the other follows by symmetry using the inverse of f ′. Thus

VSE(P ∪ R)
v
= VSE(Q ∪ R) via f ′. �

Theorem 3.21. For programs P andQ with Atv (P) = Atv (Q), VSE(P)
v
= VSE(Q) implies P ≡vs Q .

Proof. Let P andQ be programs with Atv (P) = Atv (Q) and VSE(P)
v
= VSE(Q). Now, if R is any

context such that P and R as well as Q and R mutually respect the hidden atoms of each other,

we obtain VSE(P ∪ R)
v
= VSE(Q ∪ R) by Lemma 3.20. It follows by Lemma 3.19 that SM(P ∪ R) =v

SM(Q ∪ R). Since R was an arbitrary context program respecting the hidden atoms of P andQ , we
obtain P ≡vs Q as desired. �

3.4 Characterization of Visible Strong Equivalence: Completeness

Next, we would like to establish in general that if VSE(P) and VSE(Q) do not visibly match, this
boils down to P and Q not being visibly strongly equivalent. To understand the difference with
respect to Theorem 2.16, let us illustrate how even non-minimal certificates may affect visible
strong equivalence. Basically, we use the programs P and Q from Example 2.18 but extend P by
one rule to make the programs visibly classically equivalent subject to Atv (P) = Atv (Q) = {a,b}.

Example 3.22. So, let us analyze the following programs in more detail:

P : a ← ∼a, ∼b . b ← ∼a, ∼b . Q : a ← ∼a, ∼b . b ← ∼a, ∼b .
a ← b . b ← a. a ← b . b ← a, ∼c .

c | d . a ← c . b ← c .
a ← d . b ← d .

c | d ← a, b .

It is easy to satisfy all rules concerning a and b by setting these atoms true and it remains to satisfy
the hidden disjunction c | d , present in both P and Q when a and b are true, in a minimal way. It
follows thatY 1 = {a,b, c} andY 2 = {a,b,d } are the hidden minimal models of both programs. Thus,
we have P ≡vc Q . However, an exact visible match between VSE(P) and VSE(Q) is pre-empted
by the certificate 〈{∅, {a}}, {a,b}〉 associated with Q and Y 1, since the respective certificate for P

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

Applying Visible Strong Equivalence in Answer-Set Program Transformations 33:19

and Y 1 is 〈{∅}, {a,b}〉. But it is not obvious how to capture such differences in terms of context
programs. �

Therefore, for showing the converse of Theorem 3.21, we need a sophisticated context program
that is specific to a given hidden minimal model Y ∈ VCE(P). The overall goal of the context pro-
gram is to capture the complement of the set π1 (σY (VSE(P)))v from Equation (6) by detecting all

interpretations Z j
v ⊂ Yv for which there is no 〈Z ,Y 〉 ∈ VSE(P) such that Zv = Z j

v. The context pro-
gram given below encodes all such subsets. Note that since 〈Y ,Y 〉 ∈ VSE(P) holds for Y , the set Yv

trivially lacks the property of interest and hence it is excluded from consideration as one of the

sets Z j
v.

Definition 3.23 (Context Program). Let P be a logic program and Y ⊆ At(P) an interpretation.
Given any collectionZ 1

v , . . . ,Z
n
v of proper subsets of the visible partYv so thatn < 2 |Yv | , the context

program R denoted by Ctx(Yv;Z 1
v , . . . ,Z

n
v) consists of:

z | uj .
(
1 ≤ j ≤ n and z ∈ Z j

v

)
, (8)

z1 | uj ← z2.
(
1 ≤ j ≤ n, z1 ∈ Yv \ Z j

v, and z2 ∈ Yv \ Z j
v

)
, (9)

u ← u1, . . . ,un . (10)

uj ← u . (1 ≤ j ≤ n), (11)

y ← u . (y ∈ Yv), (12)

u ← Yv. (where Yv abbreviates a conjunction), (13)

u ← ∼u . (14)

The hidden signature Ath (R) is defined to be ∅ so that Atv (R) = At(R) = Yv ∪U , where U =
{u,u1, . . . ,un } is the set of new (visible) atoms used above.

Since Yv ⊆ Atv (P), it is clear that the program above respects the hidden atoms of P . The rules
encode a parallel test for the sets Z 1

v , . . . ,Z
n
v using a technique known as saturation from Refer-

ence [15]. The test for a particular subset Z j
v where 1 ≤ j ≤ n is encoded by the rules (8) and (9).

Assigning uj to false activates a subprogram analogous to R (Xv,Yv) in the end of Section 2.3 (Xv

is being replaced by Z j
v). The atom uj is derived upon a successful test (Z j

v is not extendible to a

model of PY) and eventually u is derived by rule (10) to indicate the success of all tests as well as
overall inconsistency. The derivation of u implies the derivation of all other atoms using rules (11)
and (12). This is necessary to stabilize Y ∪U . The tests concern only proper subsets of Yv that is
implemented by the rule (13). The final rule (14) ensures that only stable models containing u are
accepted. The context program works as follows.

Lemma 3.24. Let P be a program, Y ⊆ At(P) an interpretation, and R = Ctx(Yv;Z 1
v , . . . ,Z

n
v) a

context program from Definition 3.23 based on a collection Z 1
v , . . . ,Z

n
v of proper subsets of Yv. Then,

Y ∪U ∈ SM(P ∪ R) iffY ∈ VCE(P) and noZ j
v is extendible to a model Z ⊂ Y of PY such thatZv = Z j

v.

Proof. (=⇒): Assume that Y ∪U ∈ SM(P ∪ R), i.e., Y ∪U is a minimal model of (P ∪ R)Y∪U .
The reduct equals to PY ∪ R, since R is a positive disjunctive program respecting the hidden atoms
of P , and At(P) ∩U = ∅. It follows thatY |= PY . Let us then assume thatY is not a Ath (P)-minimal
model of PY , i.e., there is Y ′ |= PY such that Y ′ ⊂ Y and Y ′v = Yv. But then also Y ′ ∪U is a model
of PY ∪ R, which contradicts the ⊆-minimality of Y ∪U . Thus Y is a Ath (P)-minimal model of PY

and Y ∈ VCE(P).
Then, suppose that some Z j

v with 1 ≤ j ≤ n can be extended to a model Z ⊂ Y of PY such that

Zv = Z j
v ⊂ Yv. Let Z ′ = Z ∪ {uk | 1 ≤ k ≤ n and k � j} for which Z ′ �|= uj and Z ′ |= PY holds as

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

33:20 J. Bomanson et al.

Z |= PY . The structure of R implies Z ′ |= R as Z ′v = Z j
v. In particular, the respective instances of

rules (8) and (9) involvinguj (that is falsified byZ ′) are satisfied, sinceZ j
v ⊂ Yv satisfies them. Since

Z ′ ⊂ Y ∪U , this contradicts the ⊆-minimality of Y ∪U |= PY ∪ R. Hence, no Z j
v is extendible in

the intended way.

(⇐=) Suppose that Y ∈ VCE(P), i.e., Y ∈ MMh (PY), and no Z j
v is extendible to a model Z |= PY

such that Z ⊂ Y and Zv = Z j
v. Define Y ′ = Y ∪U . It is clear that Y ′ |= PY , since At(P) ∩U = ∅ and

Y |= PY . It is also easy to inspect Y ′ |= R given the definition of Y ′ and the rules of R listed above.

It follows by Lemma 2.2 that Y ′ |= (P ∪ R)Y ′ where the reduct coincides with PY ∪ R. Let us then

assume Z ′ |= (P ∪ R)Y ′ for some Z ′ ⊆ Y ′. It follows that Z ′ |= PY and Z ′ |= R. Now, assuming u �
Z ′ implies uj � Z ′ for some 1 ≤ j ≤ n as Z ′ |= u ← u1, . . . , un . Since Z ′ |= z | uj for each z ∈ Z j

v

and Z ′ �|= uj , we obtain Z j
v ⊆ Z ′. Moreover, Z ′ |= z1 ← z2 for each z1, z2 ∈ Yv \ Z j

v, because Z ′ |=
z1 | uj ← z2 from R and Z ′ �|= uj . As Z ′ ⊆ Y ′, it follows that Z ′v = Z j

v or Z ′v = Yv. The former is

impossible, as Z j
v is not extendible to a model Z ⊂ Y of PY such that Zv = Z j

v. But then u ∈ Z ′
follows as Z ′ |= u ← Yv, a contradiction. Henceu ∈ Z ′ and Yv ⊆ Z ′ as Z ′ |= y ← u for each y ∈ Yv.
Moreover, we have U ⊆ Z ′, because Z ′ |= uj ← u for each 1 ≤ j ≤ n. It follows that Z ′ = Y ′ as

Z ′ |= PY and Y is a Ath (P)-minimal model of PY . Thus, we have established that Y ′ = Y ∪U ∈
SM(P ∪ R). �

We are ready to form a context program that is able to detect the difference of the programs P
and Q from Example 3.22.

Example 3.25. The certificate 〈{∅}, {a,b}〉 yields subsetsZ 1
v = {a} andZ 2

v = {b} for the respective
tester program. Given Yv = {a,b}, we obtain the context program R = Ctx(Yv;Z 1

v ,Z
2
v) listed below:

a | u1. b | u1 ← b . b | u2. a | u2 ← a.
u ← u1, u2. u1 ← u . u2 ← u .
a ← u . b ← u . u ← a, b .
u ← ∼u .

Then, let U = {u,u1,u2}, Y 1 = {a,b, c}, and Y 2 = {a,b,d } so that Y 1
v = {a,b} = Y 2

v . It follows that
Y 1 ∪U ∈ SM(P ∪ R) and Y 1 ∪U � SM(Q ∪ R), while Y 2 ∪U ∈ SM(P ∪ R) and Y 2 ∪U ∈ SM(Q ∪
R). Thus R is a sufficient context program to establish P �vs Q . �

Lemma 3.26. Let P and Q be logic programs such that P ≡vs Q holds. Moreover, let Y 1, . . . ,Y k be

distinct members of VCE(P) such that

(1) the visible parts Y 1
v = · · · = Y k

v coincide with some Yv ⊆ Atv (P) = At(Q),
(2) S ⊆ 2

Yv is an upper bound for certificates, and

(3) each Y i with 1 ≤ i ≤ k induces a certificate 〈Si ,Yv〉 with Si ⊆ S for P .

Then, there are at least k distinct membersV 1, . . . ,V k of VCE(Q) such thatV 1
v = · · · = V k

v = Yv and

for each 1 ≤ i ≤ k , the certificate of V i for Q is 〈Ti ,Yv〉 where Ti ⊆ S .

Proof. Let Z 1
v , . . . ,Z

n
v be the proper subsets of Yv not contained in S and R the context program

Ctx(Yv;Z 1
v , . . . ,Z

n
v) from Definition 3.23. Then, consider any of Y i with 1 ≤ i ≤ k and the certifi-

cate 〈Si ,Yv〉 for P . The certificate with Si ⊆ S implies that no Z j
v is extendible to a model Z ⊂ Y i

of PY i

such that Zv = Z j
v. It follows by Lemma 3.24 that Y i ∪U ∈ SM(P ∪ R) for each 1 ≤ i ≤ k

and the set U of new atoms involved in the context program R. Since P ≡vs Q , the bijection fR

from SM(P ∪ R) to SM(Q ∪ R) conveys us k stable models V i ∪U ∈ SM(Q ∪ R) with 1 ≤ i ≤ k

andV i
v = Y

i
v = Yv. It follows by Lemma 3.24 that no Z j

v is extendible to a model Z ⊂ V i ofQY i

such

that Zv = Z j
v. Thus, the certificate 〈Ti ,V

i
v 〉 for Q induced by V i satisfies V i

v = Yv and Ti ⊆ S . �

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

Applying Visible Strong Equivalence in Answer-Set Program Transformations 33:21

Theorem 3.27. For programs P andQ with Atv (P) = Atv (Q), P ≡vs Q implies VSE(P)
v
= VSE(Q).

Proof. Let P ≡vs Q hold, i.e., SM(P ∪ R) =v SM(Q ∪ R) is induced by a bijection, say, fR , for any

context R that is mutually compatible with P and Q . The proof of VSE(P)
v
= VSE(Q) takes place in

two steps in accordance with Definition 3.6.

(1) Using the context program Ctx(P) = Ctx(Q) from Definition 3.14, we obtain P ∪
Ctx(P) ≡v Q ∪ Ctx(Q) via a bijection f . Thus we know that VCE(P) =v VCE(Q) by The-
orem 3.15. But then f is also a bijection from π2 (VSE(P)) to π2 (VSE(Q)), since Y ∈
π2 (VSE(P)) iff 〈Y ,Y 〉 ∈ VSE(P) iff Y ∈ VCE(P) for Y ⊆ At(P) in general, and analogously
forQ . Thus the classical models of P andQ , as represented by the hidden minimal models
in VCE(P) and VCE(Q), are in a one-to-one correspondence.

(3) In what follows, we consider a particular projection Yv associated with some hidden min-
imal model Y ∈ VCE(P) and all distinct members Y 1, . . . ,Y k of VCE(P) such that Y i

v = Yv

for every 1 ≤ i ≤ k . Thus Y is one of the models Y 1, . . . ,Y k under consideration. Then,
let 〈S i ,Yv〉 be the certificate induced by each Y i for 1 ≤ i ≤ k . Moreover, we may assume
without loss of generality that the sequence Y 1, . . . ,Y k is ordered so that Si ⊆ S j implies
i < j or S j = S j−1 = · · · = Si , i.e., certificates are ordered by ⊆-inclusion and hidden min-
imal models giving rise to the same certificate populate subsequent index values in the
order. In the rest of the proof, our strategy is to establish a bijective mapping to hidden
minimal modelsV 1, . . . ,V k from VCE(Q) so thatV i

v = Yv for each 1 ≤ i ≤ k and the certifi-
cate associate withV i coincides with 〈Si ,Yv〉. This is a key property to show Equation (6),
since π1 (σY (VSE(P)))v = S ∪ {Yv} for the certificate 〈S,Yv〉 of Y ∈ VCE(P) in general. We
use induction on 1 ≤ i ≤ k to map Y i to V i while preserving certificates 〈Si ,Yv〉.

In the base case i = 1, the certificate 〈S1,Yv〉 induced by Y 1 is necessarily a minimal
one. Letm ≥ 1 be the maximal index value such that S1 = · · · = Sm , i.e., distinct members
Y 1, . . . ,Ym of VCE(P) induce exactly the same certificate 〈S1,Yv〉. It follows by Lemma 3.26
that there are distinct members V 1, . . . ,Vm of VCE(Q) inducing certificates 〈Ti ,Yv〉 for
Q . Now, if Ti ⊂ S1 were to hold, we may appeal to Lemma 3.26 in the case k = 1 and
S = Ti to obtain a member Y ′ of VCE(P) such that Y ′v = Yv and the certificate induced by
Y ′ for P is 〈Ti ,Yv〉. But this would be a contradiction, since Y ′ should occur before Y 1 in
Y 1, . . . ,Y k . ThusTi = S1 for each 1 ≤ i ≤ m and the certificate associated withV i is 〈S1,Yv〉
for 1 ≤ i ≤ m. Moreover, if we would assume that there were more thanm such members
V i of VCE(Q), we obtain a contradiction by Lemma 3.26, sincem is a maximal index value,
i.e., there are further members of VCE(P) with certificate 〈S1,Yv〉. Thus Equation (6) holds.

For the induction step, we may assume without loss of generality that 〈Si ,Yv〉 is a non-
minimal certificate associated with some Y i ∈ VCE(P). Recalling the order imposed on
Y 1, . . . ,Y k , let i ≤ m ≤ k be the maximal index value so that Si = · · · = Sm and let 〈S,Yv〉
be the identical certificate in question. Since 〈S,Yv〉 is non-minimal, there are 1 ≤ l < i
members Y j ∈ VCE(P) with 1 ≤ j < i inducing a certificate 〈S j ,Yv〉 such that S j ⊂ S for P .
Since S j ⊂ S , it follows by the inductive hypothesis that each such memberV j of VCE(P)

is bijectively mapped to to a member V j of VCE(Q) such that V j
v = Y

j
v = Yv, preserving

the certificate 〈S j ,Yv〉. In total, there are now l +m members Y j of VCE(P) inducing a cer-
tificate 〈S j ,Yv〉with S j ⊆ S . It follows by Lemma 3.26 that there are at least l +m members

of V j of VCE(Q) such that V j
v = Y

j
v = Yv and the certificate 〈Tj ,Yv〉 induced by V j satis-

fiesTj ⊆ S . The inductive hypothesis implies that the first l modelsV j induce a certificate
〈Tj , S〉withTj ⊂ S andTj = S j . Moreover, assumingTj ⊂ S for some i ≤ j ≤ m contradicts
the one-to-one correspondence betweenY j andV j for 1 ≤ j < i . ThusTj = S for i ≤ j ≤ m

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

33:22 J. Bomanson et al.

is necessarily the case and the respective models Y j and V j induce identical certificates
〈S,Yv〉 for P and Q . Therefore, an arbitrary bijective mapping between Y i , . . . ,Ym and
V i , . . . ,Vm can be selected and, as a consequence, we have established the intended one-
to-one correspondence between Y 1, . . . ,Ym and V 1, . . . ,Vm .

To conclude the proof, we have shown that VSE(P) and VSE(Q) visibly match. �

3.5 Relationship with Correspondence Frames

This section shows how to capture visible strong equivalence ≡vs with correspondence frames [16]
when the hidden signatures of the compared programs are fixed. This requirement to fix signatures
stems from the design of correspondence frames F = 〈U ,C, ρ〉, which carry signature informa-
tion in themselves as opposed to in programs as per the definitions in Section 2.4. Consequently,
there is no single correspondence frame that captures ≡vs, but rather a sub-family of frames that
together cover ≡vs.

In more detail, recalling that the frame 〈U ,PA,=B〉 captures relativized strong equivalence with
projection, the frame can be developed into another frame F = 〈U ,PA,=

B
v 〉 involving another

comparison relation =B
v that insists on a one-to-one correspondence between the B-projections of

stable models. This obtained frame is close to ≡vs, but requires some care in picking the parameters
A and B. Since the parameter set A controls which atoms are available for context programs R,
it must contain all atoms except those hidden in P and Q in order for A to capture the context
programs relevant for P ≡vs Q . Moreover, since B controls which atoms are included in answer
set comparisons, it must contain at least all visible atoms of P and Q and no hidden ones. Both of
these requirements are met by the parameterization A = B = U \ H where H = Ath (P) ∪ Ath (Q)
and U is assumed to contain all atoms that may occur in any program. The connection between
the resulting frame and ≡vs is given formally after the following lemma that is useful in proving
the connection.

Lemma 3.28. For programs P and Q , P ≡vs Q holds if and only if Atv (P) = Atv (Q) and SM(P ∪
R) =v SM(Q ∪ R) for any context R that mutually respects the hidden atoms of P and Q and has no

hidden atoms.

Proof. The “only if” direction holds trivially.
To establish the “if” direction, let us assume the right-hand side to hold and take any context

R with possibly some hidden atoms and a similar context R′ with the same rules but without any
hidden atoms so that Ath (R′) = ∅. The right-hand side then implies SM(P ∪ R′) =v SM(Q ∪ R′).
Hence, there is a bijection f : SM(P ∪ R′) → SM(Q ∪ R′) such that for everyM ∈ SM(P ∪ R′),M ∩
V ′ = f (M) ∩V ′, whereV ′ = Atv (P) ∪ Atv (R′) = Atv (Q) ∪ Atv (R′) and Atv (R′) = At(R′) = At(R).
Certainly, the same holds with any V ⊆ V ′ in place of V ′ and in particular with V = Atv (P) ∪
Atv (R) = Atv (Q) ∪ Atv (R). Thus, f also serves to prove SM(P ∪ R) =v SM(Q ∪ R). �

Proposition 3.29. For programs P and Q with Atv (P) = Atv (Q), let F be the correspondence

frame F = 〈U ,PU\H ,=U\Hv 〉 where U is a universe of all atoms that may occur in P , Q , or any

context program, and H = Ath (P) ∪ Ath (Q) is the set of hidden atoms of P and Q , Then, P ≡vs Q
holds if and only if P and Q are F -corresponding.

Proof. Let P , Q ,U , and H be defined as above. Then, let us recall that by Lemma 3.28, P ≡vs Q
holds if and only if SM(P ∪ R) =v SM(Q ∪ R) for any context program R that mutually respects
the hidden atoms of P and Q and for which Ath (R) = ∅. Observe that this statement continues to
hold if the conditions for the context program R are replaced with any of the conditions:

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

Applying Visible Strong Equivalence in Answer-Set Program Transformations 33:23

• At(R) ∩ (Ath (P) ∪ Ath (Q)) = ∅ and Ath (R) = ∅,
• At(R) ∩ H = ∅ and Ath (R) = ∅,
• R ∈ PU\H .

Furthermore, in the context of these programs R without hidden atoms, the visible equality

SM(P ∪ R) =v SM(Q ∪ R) coincides with SM(P ∪ R) =U\Hv SM(Q ∪ R). In summary, P ≡vs Q if

and only if SM(P ∪ R) =U\Hv SM(Q ∪ R) for any R ∈ PU\H . Hence, P ≡vs Q amounts to checking

〈U ,PU\H ,=U\Hv 〉-correspondence. �

4 ISOLATING VISIBLE NEGATIVE CONDITIONS

This section gives results on evaluating visible strong equivalence for specific subclasses of pro-
grams. Namely, for positive programs, it is shown that visible strong equivalence can be proved
or disproved by comparing the visible parts of hidden minimal models of the programs. Finding
such proofs is an easier alternative to comparing VSE-models and then using Theorem 3.21 or 3.27.
Moreover, for the more general class of programs with negative conditions on visible atoms, a suf-
ficient precondition for visible strong equivalence is given in terms of hidden minimal models of
simple translations of the compared programs. This more general result is particularly applicable
to verifying rule-by-rule translations of programs, which are the topic of Section 5.

The first main result of this section shows that the visibility-aware semantics of positive pro-
grams is completely captured by their hidden minimal models. The result builds on the follow-
ing lemma, which states that checking whether the VSE-models of two positive programs visibly
match can be determined by checking whether their sets of hidden minimal models are visibly
equal.

Lemma 4.1. For positive programs P andQ with Atv (P) = Atv (Q), it holds that VSE(P)
v
= VSE(Q)

if and only if MMh (P) =v MMh (Q).

Proof. Since P andQ are positive programs, both are unchanged when reduced with respect to

any interpretation. Thus for positive programs P andQ , the first requirement for VSE(P)
v
= VSE(Q)

to hold via a bijection f simplifies into:

π2 (VSE(P)) =v π2 (VSE(Q)) via f

⇐⇒ {Y ⊆ At(P) | Y ∈ MMh (PY)} =v {Y ⊆ At(Q) | Y ∈ MMh (QY)} via f

⇐⇒ MMh (P) =v MMh (Q) via f .

Moreover, the second requirement for VSE(P)
v
= VSE(Q) simplifies into a redundant require-

ment implied by MMh (P)v = MMh (Q)v, and therefore also by the above. More precisely, for every
matching pair of interpretations Y ∈ π2 (VSE(P)) = MMh (P) and f (Y) ∈ π2 (VSE(Q)) = MMh (Q),

π1 (σY (VSE(P)))v = π1 (σf (Y) (VSE(Q)))v

⇐⇒ {Xv | X ⊆ Y ,X ∈ MMh (PY)} = {Xv | X ⊆ f (Y),X ∈ MMh (QY)}

⇐⇒ (2Y ∩MMh (P))v = (2f (Y) ∩MMh (Q))v

⇐⇒ 2Yv ∩MMh (P)v = 2f (Y)v ∩MMh (Q)v.

In summary, the requirements behind
v
= and =v coincide for positive programs. �

As a corollary of Theorem 3.21 and Lemma 4.1, a higher-level result follows stating that the
visible strong equivalence of two positive programs can be determined by checking whether their
sets of hidden minimal models are visibly equal.

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

33:24 J. Bomanson et al.

Corollary 4.2. For positive programs P andQ with Atv (P) = Atv (Q), it holds that P ≡vs Q if and

only if MMh (P) =v MMh (Q).

The use of this result for proving or disproving visible strong equivalence requires strictly less
work than by using Theorem 3.21 or 3.27 directly and Definition 3.6 in testing whether sets of VSE-
models visibly match. This holds, because the condition MMh (P) =v MMh (Q) coincides with the
first prerequisite condition in Definition 3.6 when the condition is applied to positive programs.

As Corollary 4.2 concerns only positive programs, an immediate question arises on whether
similar results hold for more general subclasses of programs. The rest of this section answers the
question in the affirmative by developing a generalization of the “if” direction of the corollary. The
generalization accepts programs with negative conditions over visible atoms. Moreover, the main
premises of the generalization are stated in terms of simple translations of the compared programs.
In preparation for the generalization and its proof, a number of supporting lemmas and definitions
are given.

The first lemma states that visible strong equivalence ≡vs is a congruence relation for a hiding

operator h© defined below. Simply put, mutually hiding visible atoms preserves visible strong equiv-
alence. To state the lemma, the following notation is defined. Namely, given a program P and a set
of visible atoms A ⊆ Atv (P), we denote by P h©A a program with the same set of rules as P , the
same signature At(P h©A) = At(P), a subset of its visible signature Atv (P h©A) = Atv (P) \A, and a
superset of its hidden signature Ath (P h©A) = Ath (P) ∪A. That is, the program P h©A is otherwise
the same as P , but has the atoms in A hidden in addition to any atoms already hidden in P .

Lemma 4.3. For programs P and Q with Atv (P) = Atv (Q), and a set A ⊆ Atv (P) of visible atoms,

P ≡vs Q implies P h©A ≡vs Q h©A.

Proof. Let P ,Q , andA be as above, so that Atv (P) = Atv (Q) andA ⊆ Atv (P), and take any con-
text program R that mutually respects the hidden atoms of P h©A and Q h©A. Since the signatures
of P and Q are equal to those of P h©A and Q h©A, respectively, also P and Q respect the hidden
atoms of R, and since the hidden signatures of P and Q are subsets of those of P h©A and Q h©A,
respectively, R respects the hidden atoms of P and Q also. Therefore, R is an applicable context
program for P and Q , and the assumption P ≡vs Q guarantees that SM(P ∪ R) =v SM(Q ∪ R) via a
bijection f . Since Atv (P h©A) ⊆ Atv (P), we have for every stable model Y ∈ SM(P ∪ R) that

Y ∩ Atv (P) = f (Y) ∩ Atv (P)

=⇒ Y ∩ Atv (P h©A) = f (Y) ∩ Atv (P h©A).

Thus the sets of interpretations SM(P ∪ R) and SM(Q ∪ R) are visibly equal also when atoms in
A are hidden. Since stable models are unaffected by changes in signature visibility, it follows that
SM((P h©A) ∪ R) =v SM((Q h©A) ∪ R) and thus P h©A ≡vs Q h©A. In summary, P ≡vs Q implies P h©
A ≡vs Q h©A. �

An example of hiding in the context of concrete programs follows.

Example 4.4. Consider the logic programs

P : a ← ∼b . Q : a ← c . c ← ∼b .

with visible signatures Atv (P) = Atv (Q) = {a,b}. These programs are visibly strongly equivalent
as witnessed by the sets of VSE-models

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

Applying Visible Strong Equivalence in Answer-Set Program Transformations 33:25

VSE(P): 〈{a}, {a}〉 VSE(Q): 〈{a, c}, {a, c}〉
〈∅, {b}〉 〈∅, {b}〉
〈{b}, {b}〉 〈{b}, {b}〉
〈∅, {a,b}〉 〈∅, {a,b}〉
〈{a}, {a,b}〉 〈{a}, {a,b}〉
〈{b}, {a,b}〉 〈{b}, {a,b}〉
〈{a,b}, {a,b}〉 〈{a,b}, {a,b}〉

As per Lemma 4.3, hiding any subset of the atoms {a,b} from both programs preserves visible
strong equivalence. The claim can be verified in the case thata is hidden by observing that there is a
visible match between the VSE-models VSE(P h© {a}) = {〈{a}, {a}〉, 〈∅, {b}〉, 〈{b}, {b}〉} and VSE(Q h©
{a}) = {〈{a, c}, {a, c}〉, 〈∅, {b}〉, 〈{b}, {b}〉}. Similarly, hiding b yields VSE(P h© {b}) = {〈{a}, {a}〉} and
VSE(Q h© {b}) = {〈{a, c}, {a, c}〉}.Moreover, hiding both a and b yields the same sets of VSE-models
as when hiding b, and therefore visible strong equivalence is again preserved. �

One may notice that Lemma 4.3 holds only in the stated direction. Indeed, revealing hidden
atoms may break visible strong equivalence. This is evidenced, for example, by the fact that any
two programs are visibly strongly equivalent if all of their atoms are hidden, as long as they have
equal numbers of stable models.

Example 4.5. Consider the logic programs P = {a.} and Q = {b .} with visible signatures
Atv (P) = Atv (Q) = {a,b}. When both atoms a and b are hidden, the programs are visibly strongly
equivalent, i.e., P h© {a,b} ≡vs Q h© {a,b}. Yet, certainly P �vs Q . �

Next, a simple translation is given that will be used in the statement of the main result of the
rest of this section, Proposition 4.12. The translation eliminates negative body literals based on
given visible atoms a by substituting them with positive body literals that refer to fresh atoms a−.
We extend this naming notation to sets A of atoms by writing A− = {a− | a ∈ A}.

Definition 4.6. Given a program P and a set A ⊆ Atv (P) of visible atoms, the negation substi-

tution translation Tr� (P ,A) consists of the rules of P with every ∼a replaced with a−, where a ∈ A.
The signature of the translation consists of the visible part Atv (Tr� (P ,A)) = Atv (P) ∪A− and the
hidden part Ath (Tr� (P ,A)) = Ath (P).

Example 4.7. The negation substitution translation of the program P :

d ← ∼a, ∼b, ∼c . e ← a, b .

given the set A = {a,b, c} of atoms is Tr� (P ,A):

d ← a−, b−, c−. e ← a, b . �

On its own, the translation Tr� (·, ·) breaks the logical connection between the original neg-
ative body literals ∼a and the respective atoms a. This connection can be re-established by the
addition of a context program that defines the auxiliary atoms a− as equivalent to the respective
negative conditions ∼a. This context program, given below, will be used in proofs leading up to
Proposition 4.12.

Definition 4.8. Given a set A ⊆ Atv (P) of visible atoms, the complement definition program

Ctx∼ (A) contains the rule a− ← ∼a for every a ∈ A. The signature of the program consists of the
visible part Atv (Ctx∼ (A)) = A and the hidden part Ath (Ctx∼ (A)) = ∅.

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

33:26 J. Bomanson et al.

The idea of eliminating negative conditions from rule bodies and then compensating them with
a context program is already investigated in Reference [33]. There the purpose is to eliminate
unstratified negation from programs. The difference here is that the class of considered programs
is larger and the context program simpler.

Along these definitions, given a program P and a set A of atoms, the set of introduced auxiliary
atomsA− = {a− | a ∈ A} is always visible in both programs Tr� (P ,A) and Ctx∼ (A). Once the atoms
in A− are hidden, the union of these programs gives a visibly strongly equivalent refactoring of
the original program P .

Lemma 4.9. For a program P and a set A ⊆ Atv (P) of visible atoms, such that A− ∩ At(P) = ∅, it

holds that P ≡vs (Tr� (P ,A) ∪ Ctx∼ (A)) h©A−.

Proof. Let P and A be as above, let Q = f (P ,A) be a translation of P denoted by f (P ,A) =
(Tr� (P ,A) ∪ Ctx∼ (A)) h©A−, and let R be any context program that mutually respects the hidden
atoms of P and Q . Observe that f (P ,A) = f (· · · f (P , {a1}) · · · , {an }), where A = {a1, . . . ,an } and
that therefore, a proof of the lemma for n = 1 generalizes by induction to any n ≥ 0. Hence, let us
assume thatA = {a}. Consider a mapping of interpretations I ⊆ At(P ∪ R) of P ∪ R to visibly equal
interpretations J = I ∪ {a− | a � I } of Q ∪ R. We will show that I ∈ SM(P ∪ R) iff J ∈ SM(Q ∪ R),
i.e., I ∈ MM ((P ∪ R)I) iff J ∈ MM ((Q ∪ R) J). To this end, first the classical and then the minimal
models of (Q ∪ R) J are inspected.

As regards the classical models, observe that CM(Q ∪ R) = CM(Tr� (P , {a})I) �
CM(Ctx∼ ({a})I) � CM(RI), where the reducts can be computed with respect to I instead
of J given that J \ I ⊆ {a−} appears only in positive conditions. From the structure of the
translations Tr� (P , {a}) and Ctx∼ ({a}) it can be seen that

CM(Tr� (P , {a})I) = {M ∪ {a } | M |= P I \{a } } ∪ {M | M |= P I∪{a } }.
CM(Ctx∼ ({a})I) = {{a }, {a ,a} | a � I } ∪ {∅, {a}, {a }, {a ,a} | a ∈ I }.

Therefore,

CM(Tr� (P , {a})I) � CM(Ctx∼ ({a})I)

= {M ∪ {a } | M |= P I \{a } } ∪ {M | M |= P I ,a ∈ I }.

Moving on to the minimal models, let us denote by Min(·) the set of subset minimal elements of
a set. Moreover, to express joins involving the set {{a−}} of models, let us consider it to have the
signature {a−}. Given these notations, if a � I , then

MM ((Q ∪ R) J) = Min(CM(P I) � {{a }} � CM(RI))

= MM ((P ∪ R)I) � {{a }}.

However, if a ∈ I , then

MM ((Q ∪ R) J) = Min(({M ∪ {a } | M |= P I \{a } } ∪ CM(P I)) � CM(RI))

= Min({M ∪ {a } | M |= P I \{a } ∪ RI } ∪ CM((P ∪ R)I)).

By the properties of the reduct, P I \{a } is never easier to satisfy than P I and hence for every model
M |= P I \{a } , we have M |= P I . Thus, the interpretations M ′ ∈ {M ∪ {a−} | M |= P I \{a } ∪ RI } are
eliminated by their subsets M ′ \ {a−} |= (P ∪ R)I from the above minimal models. Given this and
the fact that R mutually respects the hidden atoms of P and Q , it follows that MM ((Q ∪ R) J) =
MM ((P ∪ R)I).

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

Applying Visible Strong Equivalence in Answer-Set Program Transformations 33:27

In both cases a � I and a ∈ I , we can thus write MM ((Q ∪ R) J) = MM ((P ∪ R)I) �
{{a− | a � I }}. Hence, I ∈ MM ((P ∪ R)I) iff J ∈ MM ((Q ∪ R) J). Certainly, every stable model of
Q ∪ R is of the form of J , and therefore the above establishes SM(P ∪ R) =v SM(Q ∪ R) via the
mapping I �→ I ∪ {a− | a � I }.

The above lemma helps us to prove a general theorem on visible strong equivalence of programs
P and Q and the role of visible negation. The theorem states that the visible strong equivalence
of two negation substitution translations operating on visible atoms carries over to their two ar-
gument programs. Stated more directly, when proving the visible strong equivalence of two pro-
grams, one may choose to treat negative conditions on a certain set of visible atoms as positive
conditions on fresh, logically unrelated atoms. In the main anticipated use case, the program P is
a source program and Q is a tentative translation of P that is intended to preserve the semantics
of P in the sense of visible strong equivalence.

Theorem 4.10. For programs P and Q with Atv (P) = Atv (Q), and a set A ⊆ Atv (P) of visible

atoms, such that A− ∩ (At(P) ∪ At(Q)) = ∅, it holds that Tr� (P ,A) ≡vs Tr� (Q,A) implies P ≡vs Q .

Proof. Let P and Q be programs with matching visible signatures Atv (P) = Atv (Q), and let
A ⊆ Atv (P) be a subset of the visible atoms. Assume Tr� (P ,A) ≡vs Tr� (Q,A) holds. Recall Propo-
sition 3.2, which states that ≡vs is a congruence relation for ∪ as long as the added program
part respects the hidden atoms of the compared programs. Since the complement definition pro-
gram Ctx∼ (A) mutually respects the hidden atoms of Tr� (P ,A) and Tr� (Q,A), we obtain by con-
gruence that Tr� (P ,A) ∪ Ctx∼ (A) ≡vs Tr� (Q,A) ∪ Ctx∼ (A). The set A− of visible atoms defined
in Ctx∼ (A) on both of the sides can be hidden while preserving the equivalence according to
Lemma 4.3, and therefore we obtain Tr� (P ,A) ∪ Ctx∼ (A) h©A− ≡vs Tr� (Q,A) ∪ Ctx∼ (A) h©A−. Ap-
plying Lemma 4.9 to both sides of this equivalence, yields that the left-hand side is visibly strongly
equivalent to P while the right-hand side to Q . Finally, P ≡vs Q by transitivity. �

The converse of Theorem 4.10 does not hold in general, as witnessed by the following example.

Example 4.11. Consider logic programs P = {a ← ∼a. } and Q = {a ← ∼b . b ← a. }
with visible signatures Atv (P) = Atv (Q) = {a}. The programs translate to Tr� (P , {a}) =
{a ← a−. } and Tr� (Q, {a}) = Q . In this case, it can be proved that P ≡vs Q . Nevertheless,
Tr� (P , {a}) �vs Tr� (Q, {a}). The lack of visible strong equivalence between the translations
can be seen for example in the context R = {a−. } where SM(Tr� (P , {a}) ∪ R) = {a,a−} while
SM(Tr� (Q, {a}) ∪ R) = ∅. �

The use of negation substitution translations when proving visible strong equivalence via Theo-
rem 4.10 becomes truly useful once the translated programs are free of any negation. In this specific
case, Corollary 4.2 on positive programs guarantees that an inspection of hidden minimal models
is sufficient to establish visible strong equivalence. This proof strategy is captured in the following
result, which is obtained as a corollary of the mentioned results, Theorem 4.10 and Corollary 4.2.

Proposition 4.12. For programs P andQ with Atv (P) = Atv (Q) that are positive except for possi-

bly any negative body atoms included in a set A ⊆ Atv (P) of visible atoms, such that A− ∩ (At(P) ∪
At(Q)) = ∅, it holds that MMh (Tr� (P ,A)) =v MMh (Tr� (Q,A)) implies P ≡vs Q .

The precondition of this proposition amounts to the requirement that programs P and Q must
be without choice rules and without negative conditions based on hidden atoms.

To end this section, a few notes are presented on the usability of the main result of the sec-
tion, Proposition 4.12. On the one hand, the comparison of hidden minimal models as opposed
to VSE-models yields an improved level of convenience. On the other hand, the result holds only
in the stated direction and is therefore incomplete, and its converse does not hold. This fact is

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

33:28 J. Bomanson et al.

inherited from Theorem 4.10. As a consequence, the proposition is only useful in proving visi-
ble strong equivalence between some types of programs. The lack of completeness is related to
the fact that the complement atoms of the form a− are not logically connected to the respective
original atoms a. Although the atoms a− substitute negative body conditions, they are fresh aux-
iliary atoms without defining rules. Therefore, the VSE-models 〈X ,Y 〉 of the translated programs
Tr� (·,A) generally involve modelsX orY where atoms a and their complements a− are both either
present or absent. Likewise, a hypothetical context program R may define them in arbitrary ways
in terms of other visible atoms, with no regard to any functional dependency between a and a−,
as is seen in Example 4.11.

Whereas these reasons generally present an added challenge in proving the premises of Propo-
sition 4.12, and may make it impossible, they are not a problem in certain interesting cases. Specif-
ically, the lack of a logical connection between a complement atom a− and the respective original
atom a is of no concern when the original programs do not mention the atom a outside negative
body conditions ∼a. Indeed, in such use cases, the translated programs are free of direct refer-
ences to a, and therefore, no perplexing relations between a− and a may arise. One may note that
this condition is more likely to be satisfied by smaller than larger programs. In the extreme case,
the condition is trivially satisfied by programs consisting of a single rule, as long as the rule con-
tains no repeated occurrences of atoms with opposite polarities. This makes it particularly viable
to apply the proposition to single rules and their translated or normalized versions, for example.
Moreover, this kind of equivalence checking lends itself naturally to modular settings where two
programs are split into unions of smaller programs, and these smaller programs are verified to be
visibly strongly equivalent using the proposition. This type of rule-by-rule verification is further
studied in Section 5.

5 APPLICATION IN PROGRAM TRANSFORMATIONS

In this section, we illustrate the use of visible strong equivalence in a practical setting. We present
and analyze program transformations that refactor parts of programs while preserving the mean-
ing of the programs. In this context, we regard a transformation correct if it maps input rules to
visibly strongly equivalent sets of output rules. The transformations considered here are normal-

izations of extended rule types, and more specifically, of choice rules (2) and cardinality (3) rules
as illustrative examples. We refer by normalization to the substitution of heterogeneous types of
rules with semantically identical sets of normal rules, which typically involve some fresh auxil-
iary atoms that help reduce the number of used rules. Normalization is useful, for example, when
translating answer-set programs into formalisms with no extended rule support such as classical
logic [24], when debugging answer-set programs [39], when implementing extended rule support
for new solvers [7], and when pursuing performance improvements on benchmarks [5, 6]. As dis-
cussed previously, strong equivalence [29] as well as relativized strong equivalence [45, 46] are
prohibitively strict in this context given that they compare not only visible atoms, but undesirably
also hidden atoms (recall Example 2.11). In contrast, visible strong equivalence suits the task. We
demonstrate this first in the case of choice rules, for which we use VSE-models and the corre-
spondence established in Theorem 3.21, and then for cardinality rules, for which we use hidden
minimal models as justified by the results of Section 4.

As presented in Reference [24], a choice rule of the form (2) can be turned into a normal rule
d ← b1, . . . , bn , ∼c1, . . . , ∼cm where the head has been replaced by a new atom d denoting that
the body of the rule is satisfied. Moreover, we need 2h normal rules

a1 ← d, ∼a1. a1 ← ∼a1. . . . ah ← d, ∼ah . ah ← ∼ah .

with new atoms a1, . . . ,ah that denote the complements of a1, . . . ,ah , respectively.

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

Applying Visible Strong Equivalence in Answer-Set Program Transformations 33:29

Example 5.1. Consider a program P consisting of a single choice rule {a} ← b, ∼c such that
Atv (P) = {a,b, c} and Ath (P) = ∅. The translation Q = {a ← d, ∼a. d ← b, ∼c . a ← ∼a. } such
that Atv (Q) = Atv (P) and Ath (Q) = {a,d }. Any subset Y ⊆ At(P) satisfies P . The reduct PY

contains a ← b iff a ∈ Y and c � Y . Thus only Y = {a,b} gives rise to exceptional VSE-models
〈∅, {a,b}〉, 〈{a}, {a,b}〉, 〈{a,b}, {a,b}〉 whereas all other VSE-models based on Y � {a,b} take the
form 〈X ,Y 〉 with any X ⊆ Y . A summary of the VSE-models is given in the table below. Any
model Y ⊆ At(P) of P (and PY) can be turned into a Ath (Q)-minimal model Y ′ of Q (resp. QY) by
adding d ∈ Y ′ iff b ∈ Y and c � Y , and by adding a ∈ Y ′ iff a � Y . The respective Ath (Q)-minimal

models X ′ of QY ′ are listed in the final column of the table.

Y PY X Y ′ QY ′ X ′

∅ ∅ {a} d ← b . a. {a}
{a} a ← b . ∅ . . . {a} {a} a ← d . d ← b . ∅ . . . {a}
{b} ∅ . . . {b} {a,b,d } d ← b . a. {a}, {a,b,d }
{c} ∅ . . . {c} {a, c} a. {a}, {a, c}
{a,b} a ← b . ∅, {a}, {a,b} {a,b,d } a ← d . d ← b . ∅, {a}{a,b,d }
{a, c} ∅ . . . {a, c} {a, c} a ← d . ∅ . . . {a, c}
{b, c} ∅ . . . {b, c} {a,b, c} a. {a} . . . {a,b, c}
{a,b, c} ∅ . . . {a,b, c} {a,b, c} a ← d . ∅ . . . {a,b, c}

The sets π2 (VSE(P)) and π2 (VSE(Q)) are in one-to-one correspondence and coincide up to

Atv (P) = Atv (Q) = {a,b, c}. It is also easy to check (6) for each pair Y and Y ′. Thus VSE(P)
v
=

VSE(Q) and P ≡vs Q by Theorem 3.21. In other words, the choice rule and its translation behave
identically in any context not referring to d and a.

Finally, let us note that SE-models of P coincide with VSE-models. The relativized {a,b, c}-SE-
models of Q can be obtained using the respective projections of X ′. �

Proposition 5.2. Let P be a program consisting of a choice rule {A} ← B,∼C and Q its normal-

ization in the way described above. Then, VSE(P)
v
= VSE(Q).

Proof. As regards signatures, we have Atv (P) = A ∪ B ∪C and Ath (P) = ∅, which reduces
VSE(P) to SE (P). Then, Y |= P holds for any Y ⊆ At(P) as choice rules are always satisfied

by definition. However, we have Atv (Q) = Atv (P) and Ath (Q) = {d } ∪A where A = {a | a ∈ A}.
Then, consider anyY ⊆ At(P) and its extensionY ′ = f (Y) = Y ∪ {d | B ⊆ Y and C ∩ Y = ∅} ∪ {a |
a ∈ A \ Y } to an interpretation of Q . It is clear that Y ′ |= d ← B,∼C directly by the definition of
Y ′. Likewise, Y ′ |= a ← ∼a holds for any a ∈ A, as a � Y ′ implies a � Y and a ∈ Y ′. Moreover, as-
suming that Y ′ �|= a ← d, ∼a implies that a � Y and a � Y ′, which contradict by the definition of

Y ′. Hence Y ′ |= Q and Y ′ |= QY ′ by Lemma 2.2.

Let us then suppose that Y ′ is not Ath (Q)-minimal, i.e., there is X ′ |= QY ′ such that X ′ ⊂ Y ′

and X ′v = Y
′
v. (i) Assuming d ∈ Y ′ \ X ′ implies d � X ′, d ∈ Y ′, and Y ′ |= B ∪ ∼C by the definition

of Y ′. Thus Y ′ |= ∼C so that d ← B ∈ QY ′ . However Y ′ |= B and X ′ |= B as X ′v = Y
′
v. Since d � X ′

we have X ′ �|= QY ′ , a contradiction. (ii) Assuming that a ∈ Y ′ \ X ′ gives us a � X ′ but a ∈ Y ′. The

latter implies a � Y ′ by the definition of Y ′. Thus a appears as a fact in QY ′ so that X ′ �|= QY ′ a
contradiction. By (i) and (ii), we conclude that Y ′ is Ath (Q)-minimal.

Thus π2 (VSE(P)) =v π2 (VSE(Q)) via f defined above. To establish (6), let us consider any Y ⊆
At(P), Y ′ = f (Y), and Xv for which 〈X ,Y 〉 ∈ VSE(P) = SE (P), i.e., X ⊆ Y and X |= PY . Note that
X = Xv is trivially Ath (P)-minimal as Ath (P) = ∅ by definition. The reducts of P andQ with respect
to Y and Y ′ are

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

33:30 J. Bomanson et al.

PY = {a ← B | a ∈ A ∩ Y and C ∩ Y = ∅} and

QY ′ = {a ← d | a ∈ A ∩ Y } ∪ {d ← B | C ∩ Y = ∅} ∪ {a | a ∈ A \ Y }

by the definition of Y ′ = f (Y). Then, define an interpretation of Q by setting

X ′ = X ∪ {d | B ⊆ X and C ∩ Y = ∅} ∪ {a | a ∈ A \ Y },
which is contained in Y ′ = f (Y) as X ⊆ Y . The inspection of X ′ |= QY ′ leads to three cases. (i)
Assuming X ′ �|= a ← d for some a ∈ A ∩ Y implies that a � X ′ and d ∈ X ′, i.e., a � X and B ⊆ X ,
andC ∩ Y = ∅. Since a ∈ Y andC ∩ Y = ∅, we know that a ← B ∈ PY so thatX � |= PY , a contradic-
tion. (ii) Suppose that X ′ �|= d ← B and C ∩ Y = ∅. It follows that d � X ′ and B ⊆ X ′, i.e., B � X ,
as C ∩ Y = ∅, and B ⊆ X ′v = X , a contradiction. (iii) By definition, X ′ satisfies each fact a with

a ∈ A \ Y . Thus X ′ |= QY ′ follows by (i)–(iii). To argue for the Ath (Q)-minimality of X ′, let us con-

sider Z ′ |= QY ′ such that Z ′v = X ′v = Xv and Z ′
h
⊂ X ′

h
. Now d cannot be in the difference, because

d ∈ X ′
h
\ Z ′

h
implies B ⊆ X and C ∩ Y = ∅, i.e., d ← B ∈ QY ′ , Z ′ |= B as Z ′v = Xv, and Z ′ �|= QY ′ as

d � Z ′
h
. Nor can the difference be explained by any a ∈ A \ Y for which QY ′ includes a as a fact.

Thus 〈X ′,Y ′〉 ∈ VSE(Q) and X ′v = Xv is contained in the right-hand side of Equation (6).
Then, consider any X ′v such that 〈X ′,Y ′〉 ∈ VSE(Q). This makes X ′ an Ath (Q)-minimal model

of QY ′ . Then, define X = X ′ ∩ At(P) = X ′v and assume that X � |= PY . It follows that for some a ∈
A ∩ Y , a � X , B ⊆ X , andC ∩ Y = ∅. The reductQY ′ contains a ← d and d ← B. Since B ⊆ X ⊆ X ′

and X ′ |= QY ′ , we obtain d ∈ X ′. But then a ∈ X ′, as X ′ |= QY ′ , and a ∈ X , contradiction. Thus
X |= PY , 〈X ,Y 〉 ∈ SE (P) = VSE(P), and Equation (6) holds. �

Cardinality rules are much harder to normalize succinctly. In Reference [24], we present a trans-
formation following an approach introduced in the context of satisfiability checking [11]. To repre-
sent Equation (3) in general, a total of l × (n +m − l + 1) new atomsdi, j are required. Here 1 ≤ i ≤ l
is the count of satisfied literals and l − i + 1 ≤ j ≤ n +m − i + 1 points to the jth literal (either bj

or ∼c j−n) in the body of Equation (3). The reading of di, j is that the number of satisfied literals,
from the jth up to the (n +m)th literal, is at least i . Thus, dl,1 captures the intended condition for
the head a of Equation (3). The rules are as follows:

a ← dl,1.
di, j ← di, j+1. (1 ≤ i ≤ l and l − i + 1 ≤ j < n +m − i + 1)

di, j ← di−1, j+1, bj . (1 < i ≤ l and l − i + 1 ≤ j ≤ n)

di, j ← di−1, j+1, ∼c j−n . (1 < i ≤ l and max(l ,n + 1) ≤ j ≤ n +m − i + 1)

d1, j ← bj . (l ≤ j ≤ n)

d1, j ← ∼c j−n . (max(l ,n + 1) ≤ j ≤ n +m)

The rules formalize a kind of a counting grid where vertical moves (up) increase i upon a satisfaction
of a literal. Horizontal moves (left) are possible by default when a literal is not satisfied—decreasing
j. The positive case is analyzed below, first via the example l = 1, n = 2, m = 0, and then via a
lemma on the general correctness of the translation. Then, the case allowing negation m >= 0 is
considered.

Example 5.3. Consider a positive program P consisting of a ← 1 ≤ {b, c} and its translation
Q ={a ← d1,1. d1,1 ← d1,2. d1,1 ← b . d1,2 ← c . }. Let Atv (P) = Atv (Q) = {a,b, c}, Ath (P) = ∅, and
Ath (Q) = {d1,1,d1,2}. There are five classical models Y ⊆ At(P) of P , which are also hidden mini-
mal models due to the lack of hidden atoms in P . Each Y |= P can be turned into a Ath (Q)-minimal
model Y ′ of Q by adding d1,1 ∈ Y ′ when b ∈ Y or c ∈ Y , and d1,2 ∈ Y ′ when c ∈ Y .

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

Applying Visible Strong Equivalence in Answer-Set Program Transformations 33:31

Y Y ′

∅ ∅
{a} {a}
{a,b} {a,b,d1,1}
{a, c} {a, c,d1,1,d1,2}
{a,b, c} {a,b, c,d1,1,d1,2}

The bijective relationship of Y ∈ MMh (P) with Y ′ ∈ MMh (Q) is easy to inspect. Thus, MMh (P) =v

MMh (Q), and hence Corollary 4.2 gives P ≡vs Q . �
Lemma 5.4. Let P be a program consisting of a positive cardinality rule a ← l ≤ {B} and Q its

normalization in the way described above. Then, MMh (P) =v MMh (Q).

Proof. Suppose that the rule has the form of Equation (3) with no negative body literals, so that
m = 0 and C = ∅, and define the relevant signatures by setting Atv (P) = {a} ∪ B ∪C , Ath (P) = ∅,
Atv (Q) = Atv (P), and

Ath (Q) = {di, j | 1 ≤ i ≤ l and l − i + 1 ≤ j ≤ n − i + 1}.
By Corollary 4.2, it suffices to show that MMh (P) =v MMh (Q). To this end, consider any Y |= P
and define an interpretation Y ′ = f (Y) by adding to Y every di, j ∈ Ath (Q) for which the number
of satisfied literals under Y , from the jth to the nth literal, is at least i . We prove by complete
induction on the depth d (j) = n + 1 − j that Y ′ satisfies the rules of Q whose head atom is di, j .

• For the base case d (j) = 1, consider j = n and the satisfaction of d1,n ← bn . If Y satisfies bn ,
then the number of literals from bn to bn that Y satisfies is trivially 1. Hence, Y ′ |= d1,n and
thus Y ′ |= d1,n ← bn .

• Then, assume that d (j) > 1. There are three kinds of rules to consider, given that the rules
with negation are not instantiated. (i) Assuming thatY ′ �|= di, j ← di, j+1 implies thatdi,i � Y ′

and di, j+1 ∈ Y ′. Since d (j + 1) < d (j), we obtain by the definition of Y ′ and the inductive
hypothesis that the number of literals satisfied by Y , from the (j + 1)th to the nth literal, is
at least i . This clearly holds even if we consider the jth literal as well so that di, j ∈ Y ′ by the
definition ofY ′, a contradiction. (ii) The assumptionY ′ �|= di, j ← di−1, j+1, bj leads to similar
argumentation except that the number of satisfied literals under Y is i − 1 by the inductive
hypothesis. Furthermore, bj ∈ Y ′ implies bj ∈ Y so that the number of satisfied literals is at
least i and di, j ∈ Y ′ by the definition ofY ′, a contradiction. Last, the rule type (iii) with i = 1
can be treated as in the base case.

It remains to consider the rule a ← dl,1. If it were not satisfied by Y ′, then we would have a � Y ′

and dl,1 ∈ Y ′. The former implies a ∈ Y whereas the latter indicates that the number of literals
satisfied by Y in the body of (3) is at least l . But this contradicts the fact thatY |= P . Hence Y ′ |= Q .

To establish the Ath (Q)-minimality of Y ′, let us consider Z ′ |= Q such that Z ′ ⊆ Y ′ and Z ′v =
Y ′v = Y . Again, we use complete induction on d (j) to show that di, j ∈ Y ′ implies di, j ∈ Z ′. The
base case d1,n ∈ Y ′ implies by the definition of Y ′ = f (Y) that Y |= bn . Thus bn is true under Z ′

as Z ′v = Y and d1,n ∈ Z ′ as Z ′ |= Q . For the induction step, we note that di, j ∈ Y ′ implies that the
number of satisfied literals under Y , from the jth to the nth literal, is at least i . The relevant rule of
Q is di, j ← di, j+1 together with di, j ← di−1, j+1, bj .

5 If Y satisfies at least i literals from the (j + 1)th
to the nth, then di, j+1 ∈ Y ′ by the definition of Y ′ and di, j+1 ∈ Z ′ by the inductive hypothesis.
It follows that di, j ∈ Z ′ as Z ′ |= di, j ← di, j+1. Otherwise, the number of satisfied literals is i − 1

5The literal di−1, j+1 is not present in the latter rule if i = 1.

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

33:32 J. Bomanson et al.

from the (j + 1)th literal onward. Thus we necessarily have Y |= bj . The same applies to Z ′, as
Z ′v = Y . But then di, j ∈ Z ′, since Z ′ satisfies the respective rules. Thus, Z ′ = Y ′ making Y ′ then
Ath (Q)-minimal.

However, consider an Ath (Q)-minimal model Y ′ of Q . Then, define Y as the projection Y =
Y ′ ∩ At(P) = Y ′v. Again, we can show by induction on d (j) that di, j ∈ Y ′ iff the number of literals
satisfied by Y , from the jth literal to the nth, is at least i . Assuming that Y � |= P implies a � Y
but the number of literals satisfied by Y in the body of Equation (3) is at least l . It follows that
dl,1 ∈ Y ′ and a � Y ′ by the definition of Y , i.e., Y ′ �|= a ← dl,1, a contradiction. Hence Y |= P . Since
Y ′ = f (Y) uniquely extendsY to a Ath (Q)-minimal model ofQ , we have practically established that
MMh (P) =v MMh (Q) via f . The inverse of f can be defined forY ′ ∈ MMh (Q) by setting f −1 (Y ′) =
Y ′ ∩ At(P). �

Now that the correctness of the counting grid translation has been established for positive car-
dinality rules, the case allowing negation remains. Again, an example is analyzed first, here with
l = n =m = 1, and then a general correctness result is given. This time, the example resorts to
VSE-models to cope with negation. In contrast to this, the proof of the correctness result exploits
the results of Section 4 to generalize Lemma 5.4 to the case with negation.

Example 5.5. Consider a program P consisting of a ← 1 ≤ {b,∼c} and its translation Q ={a ←
d1,1. d1,1 ← d1,2. d1,1 ← b . d1,2 ← ∼c . }. Let Atv (P) = Atv (Q) = {a,b, c}, Ath (P) = ∅, and Ath (Q) =
{d1,1,d1,2}. There are five classical models Y ⊆ At(P) of P and the reduct PY contains a ← 1 ≤ {b}
if c ∈ Y , and a ← 0 ≤ {b} if c � Y . Each Y |= P can be turned into a Ath (Q)-minimal model Y ′ of
Q by adding d1,2 ∈ Y ′ iff c � Y , and by adding d1,1 ∈ Y ′ iff b ∈ Y or c � Y . The reduct QY ′ contains
the first three rules of Q and d1,2 as a fact iff c � Y ′. The respective Ath (Q)-minimal models X ′ are
reported below:

Y PY X Y ′ X ′

{a} a ← 0 ≤ {b} {a} {a,d1,1,d1,2} {a,d1,1,d1,2}
{c} a ← 1 ≤ {b} ∅ . . . {c} {c} ∅ . . . {c}
{a,b} a ← 0 ≤ {b} {a}, {a,b} {a,b,d1,1,d1,2} {a,d1,1,d1,2},

{a,b,d1,1,d1,2}
{a, c} a ← 1 ≤ {b} ∅ . . . {a, c} {a, c} ∅ . . . {a, c}
{a,b, c} a ← 1 ≤ {b} ∅ . . . {a, c}, {a,b, c,d1,1} ∅ . . . {a, c},

{a,b}, {a,b, c} {a,b,d1,1},{a,b, c,d1,1}

Again, the bijective relationship of Y ∈ π2 (VSE(P)) with Y ′ ∈ π2 (VSE(Q)) is easy to inspect and,

furthermore, Equation (6) holds for each such pair of Y and Y ′ = f (Y). Thus, VSE(P)
v
= VSE(Q)

and P ≡vs Q follows by Theorem 3.21. �
Proposition 5.6. Let P be a program consisting of a cardinality rule a ← l ≤ {B,∼C} where C ∩

({a} ∪ B) = ∅ and Q its normalization in the way described above. Then, P ≡vs Q .

Proof. Suppose that the rule has the form of Equation (3) and define the relevant signatures by
setting Atv (P) = {a} ∪ B ∪C , Ath (P) = ∅, Atv (Q) = Atv (P), and

Ath (Q) = {di, j | 1 ≤ i ≤ l and l − i + 1 ≤ j ≤ n +m − i + 1}.
The negation substitution translation Tr� (P ,C) of the cardinality rule in P consists of the

single positive cardinality rule a ← l ≤ {B,C−}. Moreover, the negation substitution translation
Tr� (Q,C) of the counting grid translation of P coincides with the counting grid translation
of the negation substitution translation Tr� (P ,C) of P . Since both negation substitution trans-
lations are positive and of the forms expected in the preconditions of Lemma 5.4, it follows

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

Applying Visible Strong Equivalence in Answer-Set Program Transformations 33:33

that MMh (Tr� (P ,C)) =v MMh (Tr� (Q,C)). By Corollary 4.2, this further implies Tr� (P ,C) ≡vs

Tr� (Q,C). Since C ⊆ Atv (P) and C− ∩ (At(P) ∪ At(Q)) = ∅, Theorem 4.10 gives P ≡vs Q . �

Propositions 5.2 and 5.6 imply that the translations of choice and cardinality rules above can be
safely used in any context which mutually respects the hidden atoms involved.

6 TRANSLATION-BASED VERIFICATION

The goal of this section is to develop a translation-based method to check whether P ≡vs Q holds
for two programs P and Q . We will restrict ourselves to the case of smodels programs and use
smodels-compatible solvers for actual computations. To realize this, we have to further constrain
the class of programs under consideration, i.e., we assume that each program has enough visible

atoms (the so-called EVA property [25]). This means that there is a unique stable model for the

hidden part of P relative to Iv, which is a program obtained from P by partially evaluating the
visible parts of rules and keeping the remaining hidden parts [25]. The evaluation process is in
close analogy to how the usual ASP reduct is obtained by partially evaluating the negative parts of
rules and keeping the remaining positive parts. Thus, each Ath (P)-minimal modelY of PY becomes
unique up to Atv (P). This reduces the complexity of verifying ≡vs to a level where actual smodels-
compatible solvers can be used.

The overall translation for the verification task is devised in two steps. First, we translate an
smodels program P into another program Trvs (P) that has the VSE-models of P as its stable
models. The VSE-models of Q are analogously captured by Trvs (Q). After this we can apply an
existing translation, Treq (·, ·), for the verification of weak equivalence [25] to finalize our ap-
proach: P ≡vs Q iff Trvs (P) ≡ Trvs (Q) iff the symmetric translations Treq (Trvs (P),Trvs (Q)) and
Treq (Trvs (Q),Trvs (P)) have no stable models. The below translation Trvs (P) introduces a new atom

a• for each atom a ∈ At(P). These atoms represent the unique least model X = LM(PY) given a
Ath (P)-minimal model Y of PY . We extend the notation to sets S ⊆ At(P) of atoms by setting
S• = {a• | a ∈ S }.

Definition 6.1. The translation Trvs (P) extends an smodels program P with

(1) choice rules {a} and {a•} ← a for each visible atom a ∈ Atv (P);
(2) a constraint← a•,∼a for each visible atom a ∈ Atv (P);
(3) a rule a• ← B•,∼C for each normal rule a ← B,∼C in P ;
(4) a rule a• ← B• ∪ {a},∼C for each choice rule {A} ← B,∼C in P and each head atom a ∈ A;

and
(5) a rule a• ← l ≤ {B•,∼C} for each cardinality rule a ← l ≤ {B,∼C} in P ;
(6) a rule a• ← w ≤ {B• =WB• ,∼C =WC } for each weight rule a ← w ≤ {B =WB ,∼C =WC }

in P .

Let Atv (Trvs (P)) = Atv (P) ∪ Atv (P)• and Ath (Trvs (P)) = Ath (P) ∪ Ath (P)•.

Theorem 6.2. Let P be an smodels program with the EVA property and Trvs (P) its translation

to capture the VSE-models of P . Then, for any X ⊆ Y ⊆ At(P), 〈X ,Y 〉 ∈ VSE(P) if and only if M =
Y ∪ X • ∈ SM(Trvs (P)).

Proof. Consider any 〈X ,Y 〉 with X ⊆ Y ⊆ At(P) and the respective interpretation Y ∪ X • ⊆
At(Trvs (P)). The reduct Trvs (P)Y∪X • consists of PY , the fact a for each a ∈ Yv, the rule a• ← a
for each a ∈ Xv, the constraint← a• for each a ∈ Atv (P) \ Yv, and (PY)

•
. It follows that Y ∪ X • =

LM(Trvs (P)Y∪X •) iff Y is a Ath (P)-minimal model of PY , X ⊆ Y , and X is a Ath (P)-minimal model
of PY . Hence the result. �

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

33:34 J. Bomanson et al.

Table 1. CPU Time Taken and Numbers of Conflicts Encountered When Verifying
P ≡vs Q for a Choice Rule P with n Literals and Its Translation Q

n 128 256 512 1,024 2,048 4,096 8,192 16,384
time (s) (a) 0.0 0.2 1.4 8.7 60.7 440.3 3340.2 20152.2

(b) 0.0 0.2 1.5 10.4 75.2 581.1 4387.2 23401.5
conflicts (a) 216 259 514 1026 2051 4098 8195 16387

(b) 289 545 1058 2040 3990 12140 25172 49925

(a) Treq (Trvs (P), Trvs (Q)).
(b) Treq (Trvs (Q), Trvs (P)).

Due to the EVA property, the verification of the key condition (6) gets simpler. Given Y ∈
π2 (VSE(P)) and Y ′ ∈ π2 (VSE(P)), Y ′v = Yv implies Y ′ = Y . By this observation, the translation-
based method for weak/visible equivalence [25] implies the following.

Corollary 6.3. Let P and Q be smodels programs with the EVA property. Then, P ≡vs Q iff

Treq (Trvs (P),Trvs (Q)) and Treq (Trvs (Q),Trvs (P)) have no stable models.

7 EXPERIMENTS

This section presents scalability experiments on automated verification of visible strong equiva-
lence following the two step approach from Section 6. We recall that the approach relies on trans-
lation Trvs (·) to capture the sets of VSE-models of a program and translation Treq (·, ·) to compare
them. The translations are respectively implemented in the tools classic6 and lpeq [25]. Using
the translations, the visible strong equivalence P ≡vs Q of two programs P and Q is verified by
checking that neither Treq (Trvs (P),Trvs (Q)) nor Treq (Trvs (Q),Trvs (P)) has stable models. This is
done by running the state-of-the-art answer-set solver clasp [19] on Linux machines with Intel
Xeon E5-4650 2.70-GHz processors.

In the course of the experiments, different representations of extended rules are verified to be
equivalent, first for choice rules (2) and then for cardinality rules (3). The representations include
the normalizations from Section 5 as implemented in the tool lp2normal [4, 24]. In this way, the
formal correctness results from Section 5 and the quality of implementation are double checked
for the explored parameter values. For cardinality rules, more advanced normalizations are also
included from both lp2normal and another translation tool pbtranslate.7

Table 1 shows CPU times and the numbers of conflicts reported by clasp after verifying choice
rules to be visibly strongly equivalent to their normalizations. The verification consists of check-
ing unsatisfiability of the programs (a) Treq (Trvs (P),Trvs (Q)) and (b) Treq (Trvs (Q),Trvs (P)). These
symmetric tasks amount to ensuring that each VSE-model of P corresponds to one of Q and vice
versa. Each run was repeated five times and the results averaged. From the results it can be seen
that verification performance scales tremendously well for choice rules. Only choice rules with
hundreds of literals provide any significant challenge. Moreover, even huge choice rules with
n = 4,096 literals can be proven visibly strongly equivalent to their normalizations in a matter
of minutes and choice rules with n = 16,384 literals within half a day. This level of scalability is
particularly positive in light of the fact that model enumeration based verification would be infea-
sible on this scale even for weak equivalence, given the exponentially growing number of models.
In terms of time, verification performance scales superlinearly: doubling input size more than dou-
bles run time. In terms of conflicts, scaling is linear and close to linear for the respective translation

6Published under http://research.ics.aalto.fi/software/asp/.
7Published under https://github.com/jbomanson/pbtranslate.

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

http://research.ics.aalto.fi/software/asp/
https://github.com/jbomanson/pbtranslate

Applying Visible Strong Equivalence in Answer-Set Program Transformations 33:35

Fig. 2. The CPU time taken to verify visible strong equivalence P ≡vs Q between programs representing
cardinality rules C of different sizes as programs produced with the translations: id, grid, lp2normal, and
pbtranslate. In the layout, rows and columns indicate which translations produced P and Q , respectively.
For each pair P and Q , the verification process consists of unsatisfiability checks of programs of the form
Treq (Trvs (P),Trvs (Q)). The shown CPU times indicate averages over five identical checks of this type for
each parameter combination (n,k).

directions (a) and (b). This suggests that the solver is able to prove unsatisfiability of (a) and (b)
without performing much combinatorially challenging search. The results are asymmetric as di-
rection (a) is easier, indicating that it is easier to verify that VSE-models of a choice rule correspond
to VSE models of its normalization than vice versa.

Figures 2 and 3 illustrate the CPU time consumed when verifying different cardinality rule
representations against one another. Between the illustrations, Figure 2 gives regular plots on
cardinality rules with n ≤ 50 input literals and bounds k ∈ {5,n/4,n/2}, whereas Figure 3 gives
contour plots on cardinality rules with n ≤ 30 literals and bounds k ≤ n. In the results, the label
id stands for the identity translation, grid for the counting grid translation from Reference [24] as

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

33:36 J. Bomanson et al.

Fig. 3. The CPU time taken to verify visible strong equivalence P ≡vs Q as in Figure 2, but illustrated here
with contour plots and a different range of parameters. Namely, the horizontal and vertical dimensions in
these contour plots reflect the number n and fraction k/n, where n and k are the number of input literals
and the bound of each translated cardinality rule, respectively. Moreover, the contour lines mark CPU times
of 0.25, 1, 4, 16, 64 s, from left to right. Essentially, the larger the “mountain,” the higher the CPU time.
All illustrated times have been averaged over five identical runs for each parameter combination (n,k/n). In
each plot, parameter combinations taking less than 0.25 seconds form the largest area, outside the mountain.
Furthermore, parameter combinations taking more than 64 seconds form a plateau on top of the mountain
of several of the plots. These plateaus are a reflection of the used time limit; indeed, given a higher limit and
more contour lines, the mountains would grow higher.

analyzed in Section 5, lp2normal for the default translation of lp2normal, and pbtranslate for
the default translation of pbtranslate. The default for lp2normal heuristically and recursively
mixes a number of translations [4]. The default for pbtranslate uses small precomputed sorters
and Batcher’s odd-even merge sorters [2] with structure chosen via dynamic programming. More
precise descriptions of these translations is out of the scope of this article. Indeed, the translations
are complicated and involve miscellaneous implementation details not presented in research

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

Applying Visible Strong Equivalence in Answer-Set Program Transformations 33:37

papers. For this reason, they are particularly interesting in these experiments as their inclusion
helps obtain a picture of verification performance in a realistic, practical setting.

The results reveal that verification difficulty clearly increases as the number of literals increases
and as the bound k approachesn/2, i.e., as the fraction k/n approaches 0.5. Moreover, it is generally
tougher to verify that the VSE-models of a cardinality rule match VSE-models of its normaliza-
tions than vice versa. Beyond these trends, the results vary significantly between the different
pairs of compared cardinality rule representations. The most challenging verification tasks are
those involving the cardinality rule itself, as “produced” by the identity translation id. These cases
correspond to the column of plots on the left and the row of plots on the bottom, which are notably
uniform. Among these cases, the one where id is verified against itself is the easiest, but only by a
small margin.

The overall easiest verification tasks are those between pairs of actual normalizations, which
exclude the identity translation id. These cases are represented by the square of nine plots on the
top right. The improvement in performance over the cases with id is tremendous. The cases on
the diagonal where normalizations are verified against themselves are trivial. The cases with grid
against pbtranslate are solved withing fractions of a second for nearly all parameter combina-
tions in both verification directions. The cases with lp2normal against the other two normaliza-
tions are likewise easier than the cases with id, but curiously more challenging than the other
cases comparing normalizations against normalizations. Additional investigation into the matter
revealed that the difficulty largely disappears if lp2normal is configured to behave a bit more
similarly to pbtranslate by avoiding a defining feature of Parberry’s sorting networks [37] that
is implemented and used by default in lp2normal, but not pbtranslate. This is in line with the
intuition that structural similarity between normalizations eases verifiability.

In general, these results on cardinality rules speak strongly in favor of a practical verification
strategy for normalization schemes, in which schemes are verified against some already trusted
scheme, as opposed to the extended rule being normalized. Moreover, in a setting where a number
of normalization schemes are to be verified, the overall computation time can be optimized by
pairing up selected representations for comparison against one another such that visible strong
equivalence of all of the representations is established via transitivity while some difficult cases are
hopefully avoided. For example, in this experimental setting, the overall verification time would
be the lowest if the consecutive pairs of normalizations in the following order were verified: id,
grid, pbtranslate, lp2normal. This would prove the correctness of all of the normalizations for
the considered parameters while avoiding all but one of the most difficult cases.

8 RELATED WORK

The general framework of correspondence frames [16] expresses a broad class of equivalence check-
ing problems. The framework is parameterized by a class of context programs and an arbitrary
comparison relation. By appropriate choices of these parameters, the framework yields the prob-
lems of checking strong equivalence, uniform equivalence, and relativized strong equivalence, for
example. Due to the generality of the framework, even VSE checking can be cast as an instance of
the framework, as shown in Section 3.5. Despite this connection between correspondence frames
and VSE, the results in the study of Eiter et al. [16] are focused on another special case of the
framework. That special case is called relativized strong equivalence with projection, which is pa-
rameterized by a set A like its non-projective variant, but also by a further parameter set B used
for answer-set projection. This relation is similar to VSE, and is implied by VSE when given ap-
propriate parameters, but treats projections differently. Namely, the relation does not require a
one-to-one correspondence of answer sets, but instead requires for programs P andQ in a context
R with At(R) ⊆ A that SM(P ∪ R) |B= SM(Q ∪ R) |B . Thus, the requirement is independent of the

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

33:38 J. Bomanson et al.

numbers of answer set copies in contrast to VSE, which does depend on the numbers. This de-
pendence is meaningful, for example, when a disjunctive rule a | b, or the analogous normal rules
a ← ∼b and a ← ∼b, with a,b ∈ A \ B, are added to a program with no other references to a or b.
Indeed, such an addition preserves relativized strong equivalence with projection, but breaks VSE.
Due to this difference, VSE reflects standard ASP solving technology more strictly, as solvers such
as clasp do print answer set copies by default. While clasp also gives the user the option to project
answer sets, preprocessing transformations that preserve VSE also preserve that choice with the
user. However, transformations that preserve only relativized strong equivalence with projection
but not VSE require the use of such an option in order to preserve printed answer sets, thus taking
the choice away from the user. The differences to VSE are also particularly evident in certain prob-
abilistic applications [1, 3] and in corner cases: setting B = ∅means checking whether answer sets
exist on an equal basis whereas for ≡vs, setting Atv (P) = ∅ implies model counting. It is also worth
pointing out that the two approaches coincide in cases where answer set copies can not possibly
arise as an issue, such as in the case of smodels programs possessing the EVA property as used
in Section 6. That is, in these cases the stronger notion of VSE can be established via relativized
strong equivalence with projection. In the general case, however, knowledge of the visible strong
equivalence P ≡vs Q brings more information about P and Q than only knowing that P and Q are
strongly equivalent relative to A and projected onto B (subject to Atv (P) = A = B = Atv (Q)).

The model-based characterization of relativized strong equivalence (RSE) from [45] is closely
related to the characterization in this article. The respective definitions of A-SE-models 〈X ,Y 〉 and
VSE-models 〈X ,Y 〉 are close to each other: The main difference is in VSE-models having a more
streamlinedX -part. As recalled in Definition 2.12,A-SE-models distinguish total casesX = Y from
non-total casesX ⊂ Y and project the latter onto a setA of (visible) atoms. In contrast, VSE-models
from Definition 3.3 make the roles ofX andY more analogous by not projecting either of them. This
reflects the idea that Ath (P)-minimal models act as natural representatives of classical models in
the presence of hidden atoms. The lack of projection in VSE-models is accounted for by concealing
their hidden parts when checking the correspondence (6). This difference stems from how RSE and

VSE insist on the stable models of P ∪ R and Q ∪ R to match via = and
v
=, respectively.

As regards concrete practical applications to program transformations, the preservation of
strong and uniform equivalence [12] under various transformations is addressed in Reference [13].
Therein, a number of rule-level transformations from the literature, such as TAUT, RED−, NON-
MIN, WGPPE, and CONTRA, are considered. The fruitful use of the original strong and uniform
equivalence notions in this context is enabled by the fact that these simple transformations do
not involve auxiliary atoms. Transformations that do involve auxiliary atoms can be checked for
the preservation of RSE with projection via general translations into Quantified Boolean Formulas
(QBFs) [42]. In being a translation-based verification approach, this is similar to the approach from
Section 6, which reduces VSE checking given the EVA property into a pair of ASP unsatisfiabil-
ity checks. The approaches differ in the computational complexities of the equivalence checking
problems concerned: whereas RSE checking with projection is ΠP

4 -complete [42] and is thus out
of the reach of ASP solvers, VSE checking given EVA is instead within their reach. Despite the
high complexity of RSE checking, the problem can be tackled with the mentioned translation into
QBF, which is implemented in the correspondence checking tool ccT [34] that is designed to be cou-
pled with a QBF solver. Indeed, practical use of the approach has been demonstrated in verifying
student solutions to logic programming assignments [35].

9 CONCLUSIONS

In this article, we harness the qualities of strong equivalence [29] and visible equivalence [23]
and propose visible strong equivalence as a generalization of both. An associated characterization

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

Applying Visible Strong Equivalence in Answer-Set Program Transformations 33:39

based on VSE-models suggests that the construction is successful. We believe that VSE will have
both theoretical and practical value due to the provided formal results and the fact that it models
encapsulation the same way standard answer-set solvers do. Indeed, as illustrated in Section 5,
VSE can be used to prove translations introducing new auxiliary atoms correct in a very strict

sense (formalized by ≡v and
v
= in the article). Moreover, the implementation described in Section 6

provides a basis for the systematic verification and debugging of rule-level translators. This is
successfully showcased in scalability experiments in Section 7. The findings support a verification
strategy where outputs of translations are checked against one another as opposed to their inputs,
whenever feasible. The implementation relies on the so-called EVA property, which is a technical
restriction necessary to trade off computational complexity so that a polynomial translation is
achievable and answer-set solvers themselves can be used for checking the property. The outputs
of grounders, such as lparse and gringo, have this property by default unless enough atoms are
intentionally hidden to create a hidden program part with non-deterministic behavior that is not
apparent from the visible part. In the experiments, for instance, this limitation posed no issues.

As regards future work, there is a call for a complexity analysis of ≡vs in terms of #P-oracles.
Moreover, the close interconnection of uniform equivalence [12] and strong equivalence, as studied
in Reference [14], suggests an analogous extension to be worth considering for our approach using
sets of facts rather than arbitrary programs as contexts.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for thorough and informative comments.

REFERENCES

[1] A. Abdelbar. 1998. An algorithm for finding MAPs for belief networks through cost-based abduction. Artif. Intell. 104,

1–2 (1998), 331–338.

[2] K. E. Batcher. 1968. Sorting networks and their applications. In Proceedings of the AFIPS Spring Joint Computer Con-

ference. ACM, 307–314.

[3] H. Beaver and I. Niemelä. 1999. Finding MAPs for belief networks using rule-based constraint programming. Arpakan-

nus (Special Issue on Networks) 1 (1999), 8–11.

[4] J. Bomanson. 2017. lp2normal - A normalization tool for extended logic programs. In Proceedings of the 14th Inter-

national Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’17), M. Balduccini and T. Janhunen

(Eds.), Lecture Notes in Computer Science, Vol. 10377. Springer, 222–228. DOI:https://doi.org/10.1007/978-3-319-

61660-5_20

[5] J. Bomanson, M. Gebser, and T. Janhunen. 2014. Improving the normalization of weight rules in answer set programs.

In Proceedings of the 14th European Conference on Logics in Artificial Intelligence (JELIA’14) (LNAI), Vol. 8761. Springer,

166–180.

[6] J. Bomanson and T. Janhunen. 2013. Normalizing cardinality rules using merging and sorting constructions. In Pro-

ceedings of the 12th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’13), Lecture

Notes in Computer Science, Vol. 8148. Springer, 187–199.

[7] J. Bomanson, T. Janhunen, and A. Weinzierl. 2019. Enhancing lazy grounding with lazy normalization in answer-set

programming. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI’19). AAAI Press, 2694–2702.

DOI:https://doi.org/10.1609/aaai.v33i01.33012694

[8] G. Brewka, T. Eiter, and M. Truszczynski. 2011. Answer set programming at a glance. Commun. ACM 54, 12 (2011),

92–103.

[9] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone, F. Ricca, and T. Schaub. 2012.

ASP-core-2 Input Language Format.

[10] M. Dao-Tran, T. Eiter, M. Fink, and T. Krennwallner. 2009. Modular nonmonotonic logic programming revisited. In

Proceedings of the 25th International Conference on Logic Programming (ICLP’09), Lecture Notes in Computer Science,

Vol. 5649. Springer, 145–159.

[11] N. Eén and N. Sörensson. 2006. Translating Pseudo-Boolean constraints into SAT. J. Satis. Bool. Model. Comput. 2, 1–4

(2006), 1–26.

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

https://doi.org/10.1007/978-3-319-61660-5_20
https://doi.org/10.1007/978-3-319-61660-5_20
https://doi.org/10.1609/aaai.v33i01.33012694

33:40 J. Bomanson et al.

[12] T. Eiter and M. Fink. 2003. Uniform equivalence of logic programs under the stable model semantics. In Proceedings

of the 19th International Conference on Logic Programming (ICLP’03), Lecture Notes in Computer Science, Vol. 2916.

Springer, 224–238.

[13] T. Eiter, M. Fink, H. Tompits, and S. Woltran. 2004. Simplifying logic programs under uniform and strong equiva-

lence. In Proceedings of the 7th International Conference Logic Programming and Nonmonotonic Reasoning (LPNMR’04),

Lecture Notes in Computer Science, Vol. 2923. Springer, 87–99.

[14] T. Eiter, M. Fink, and S. Woltran. 2007. Semantical characterizations and complexity of equivalences in answer set

programming. ACM Trans. Comput. Logic 8, 3 (2007), Article 17.

[15] T. Eiter and G. Gottlob. 1995. On the computational cost of disjunctive logic programming: Propositional case. Ann.

Math. Artif. Intell. 15, 3–4 (1995), 289–323.

[16] T. Eiter, H. Tompits, and S. Woltran. 2005. On solution correspondences in answer-set programming. In Proceedings

of the 19th International Joint Conference on Artificial Intelligence (IJCAI’05). 97–102.

[17] M. Fink. 2011. A general framework for equivalences in Answer-Set Programming by countermodels in the logic of

Here-and-There. Theory Pract. Logic Program. 11, 2–3 (2011), 171–202.

[18] M. Gebser, R. Kaminski, A. König, and T. Schaub. 2011. Advances in gringo Series 3. In Proceedings of the 11th In-

ternational Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’11), Lecture Notes in Computer

Science, Vol. 6645. Springer, 345–351.

[19] M. Gebser, B. Kaufmann, and T. Schaub. 2012. Conflict-driven answer set solving: From theory to practice. Artif. Intell.

187 (2012), 52–89.

[20] M. Gelfond and V. Lifschitz. 1988. The stable model semantics for logic programming. In Proceedings of the 6th Inter-

national Conference on Logic Programming (ICLP’88). 1070–1080.

[21] M. Gelfond and V. Lifschitz. 1990. Logic programs with classical negation. In Proceedings of the 7th International

Conference on Logic Programming (ICLP’90). 579–597.

[22] M. Gelfond and V. Lifschitz. 1991. Classical negation in logic programs and disjunctive databases. New Gener. Comput.

9 (1991), 365–385.

[23] T. Janhunen. 2006. Some (in)translatability results for normal logic programs and propositional theories. J. Appl.

Non-Classic. Logics 16, 1–2 (June 2006), 35–86.

[24] T. Janhunen and I. Niemelä. 2011. Compact translations of non-disjunctive answer set programs to propositional

clauses. In Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning—Essays Dedicated to Michael

Gelfond on the Occasion of His 65th Birthday, Lecture Notes in Computer Science, Vol. 6565. Springer, 111–130.

[25] T. Janhunen and E. Oikarinen. 2007. Automated verification of weak equivalence within the Smodels system. Theory

Pract. Logic Program. 7, 6 (2007), 697–744.

[26] T. Janhunen, E. Oikarinen, H. Tompits, and S. Woltran. 2009. Modularity aspects of disjunctive stable models. J. Artif.

Intell. Res. 35 (2009), 813–857.

[27] V. Lifschitz. 1985. Computing circumscription. In Proceedings of the 9th International Joint Conference on Artificial

Intelligence. Morgan Kaufmann, 121–127.

[28] V. Lifschitz. 1999. Answer set planning. In Proceedings of the 16th International Conference on Logic Programming

(ICLP’99). 23–37.

[29] V. Lifschitz, D. Pearce, and A. Valverde. 2001. Strongly equivalent logic programs. ACM Trans. Comput. Logic 2, 4

(2001), 526–541.

[30] V. Lifschitz and H. Turner. 1994. Splitting a logic program. In Proceedings of the 11th International Conference on Logic

Programming (ICLP’94). MIT Press, 23–37.

[31] L. Liu and M. Truszczynski. 2006. Properties and applications of programs with monotone and convex constraints.

J. Artif. Intell. Res. 27 (2006), 299–334.

[32] J. McCarthy. 1986. Applications of circumscription to formalizing commonsense knowledge. Artif. Intell. 28 (1986),

89–116.

[33] I. Niemelä. 2008. Answer set programming without unstratified negation. In Proceedings of the 24th International

Conference on Logic Programming (ICLP’08), M. G. de la Banda and E. Pontelli (Eds.), Lecture Notes in Computer

Science, Vol. 5366. Springer, 88–92. DOI:https://doi.org/10.1007/978-3-540-89982-2_15

[34] Johannes Oetsch, Martina Seidl, Hans Tompits, and Stefan Woltran. 2006. ccT: A tool for checking advanced corre-

spondence problems in answer-set programming. In Proceedings of the FLOC-Workshop on Search and Logic (LaSh’06).

[35] Johannes Oetsch, Martina Seidl, Hans Tompits, and Stefan Woltran. 2009. ccT on stage: Generalised uniform equiva-

lence testing for verifying student assignment solutions. In Proceedings of the 10th International Conference on Logic

Programming and Nonmonotonic Reasoning (LPNMR’09), Lecture Notes in Computer Science, Vol. 5753. Springer,

382–395.

[36] E. Oikarinen and T. Janhunen. 2008. Achieving compositionality of the stable model semantics for smodels programs.

Theory Pract. Logic Program. 8, 5–6 (2008), 717–761.

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

https://doi.org/10.1007/978-3-540-89982-2_15

Applying Visible Strong Equivalence in Answer-Set Program Transformations 33:41

[37] I. Parberry. 1991. On the computational complexity of optimal sorting network verification. In Proceedings of Parallel

Architectures and Languages Europe (PARLE’91), Volume I: Parallel Architectures and Algorithms, E. H. L. Aarts, J. van

Leeuwen, and M. Rem (Eds.), Lecture Notes in Computer Science, Vol. 505. Springer, 252–269. DOI:https://doi.org/

10.1007/BFb0035109

[38] D. Pearce. 2006. Equilibrium logic. Ann. Math. Artif. Intell. 47, 1–2 (2006), 3–41.

[39] A. Polleres, M. Frühstück, G. Schenner, and G. Friedrich. 2013. Debugging non-ground ASP programs with choice

rules, cardinality and weight constraints. In Proceedings of the 12th International Conference Logic Programming

and Nonmonotonic Reasoning (LPNMR’13), P. Cabalar and Tran Cao Son (Eds.), Lecture Notes in Computer Science,

Vol. 8148. 452–464. DOI:https://doi.org/10.1007/978-3-642-40564-8_45

[40] J. Pührer and H. Tompits. 2009. Casting away disjunction and negation under a generalisation of strong equivalence

with projection. In Proceedings of the 10th International Conference on Logic Programming and Nonmonotonic Reasoning

(LPNMR’09). 264–276.

[41] P. Simons, I. Niemelä, and T. Soininen. 2002. Extending and implementing the stable model semantics. Artif. Intell.

138, 1–2 (2002), 181–234.

[42] Hans Tompits and Stefan Woltran. 2005. Towards implementations for advanced equivalence checking in answer-

set programming. In Proceedings of the 21st International Conference on Logic Programming (ICLP’05), M. Gabbrielli

and G. Gupta (Eds.), Lecture Notes in Computer Science, Vol. 3668. Springer, 189–203. DOI:https://doi.org/10.1007/

11562931_16

[43] H. Turner. 2001. Strong equivalence for logic programs and default theories (made easy). In Proceedings of the 6th In-

ternational Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’01) (), Lecture Notes in Computer

Science, Vol. 2173. Springer, 81–92.

[44] H. Turner. 2003. Strong equivalence made easy: Nested expressions and weight constraints. Theory Pract. Logic Pro-

gram. 3, 4–5 (2003), 609–622.

[45] S. Woltran. 2004. Characterizations for relativized notions of equivalence in answer set programming. In Proceedings

of the 9th European Conference on Logics in Artificial Intelligence (JELIA’04), Vol. 3229. Springer, 161–173.

[46] S. Woltran. 2008. A common view on strong, uniform, and other notions of equivalence in answer-set programming.

Theory Pract. Logic Program. 8, 2 (2008), 217–234.

Received June 2019; revised March 2020; accepted July 2020

ACM Transactions on Computational Logic, Vol. 21, No. 4, Article 33. Publication date: October 2020.

https://doi.org/10.1007/BFb0035109
https://doi.org/10.1007/BFb0035109
https://doi.org/10.1007/978-3-642-40564-8_45
https://doi.org/10.1007/11562931_16
https://doi.org/10.1007/11562931_16

