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Hover or Perch: Comparing Capacity of Airborne
and Landed Millimeter-Wave UAV Cells

Vitaly Petrov1, Margarita Gapeyenko1, Dmitri Moltchanov, Sergey Andreev, and Robert W. Heath Jr.

Abstract—On-demand deployments of millimeter-wave
(mmWave) access points (APs) carried by unmanned aerial
vehicles (UAVs) are considered today as a potential solution to
enhance the performance of 5G+ networks. The battery lifetime
of modern UAVs, though, limits the flight times in such systems.
In this letter, we evaluate a feasible deployment alternative for
temporary capacity boost in the areas with highly fluctuating
user demands. The approach is to land UAV-based mmWave
APs on the nearby buildings instead of hovering over the area.
Within the developed mathematical framework, we compare the
system-level performance of airborne and landed deployments
by taking into account the full operation cycle of the employed
drones. Our numerical results demonstrate that the choice
of the UAV deployment option is determined by an interplay
of the separation distance between the service area and the
UAV charging station, drone battery lifetime, and the number
of aerial APs in use. The presented methodology and results
can support efficient on-demand deployments of UAV-based
mmWave APs in prospective 5G+ networks.

Index Terms—mmWave networks, drone cells, beyond-5G.

I. INTRODUCTION

Millimeter-wave (mmWave) communication is one of the
key features introduced by the fifth-generation (5G) wireless
networks. The use of mmWave bands enables transmissions
with higher data rates than those available in 4G microwave
systems. With the first cellular networks exploiting mmWave
connectivity already appearing, follow-up research is targeting
advanced topologies, such as multi-hop mmWave communica-
tion and moving mmWave cells [1]. Among these opportuni-
ties, the use of mobile mmWave access points (APs) mounted
on unmanned aerial vehicles (UAVs) is an attractive solution
to temporarily boost network capacity and coverage [2].

These UAV-based mmWave APs enable on-demand network
densification to facilitate e.g., spontaneous massive events and
thus provide additional flexibility on top of the static infras-
tructure. Without a major innovation in battery technology,
UAVs will continue to suffer from battery constraints [3].
In addition, drones hovering over people’s heads raise safety
concerns and noise pollution from the UAV motors.

An alternative deployment option for the UAV-based
mmWave APs is to land the drones on the objects surrounding
the service area rather than continuously fly over it. Modern
drones can land on rooftops, balconies, lampposts, and even

V. Petrov, M. Gapeyenko, D. Moltchanov, and S. Andreev are with Tampere
University, Finland. R. Heath is with The University of Texas at Austin, USA.

1A part of this work was completed during the research visit of Vitaly Petrov
and Margarita Gapeyenko to The University of Texas at Austin, USA. This
work was supported in part by the Academy of Finland (project RADIANT)
and by the National Science Foundation under Grant No. ECCS-1711702.

perch to building walls without the operator involvement [4].
Following this method, the UAV-based mmWave APs can
be temporarily deployed in the service area and leave their
landing point only to recharge batteries or when the service is
no longer needed. Such levels of flexibility exceed those that
could be provided by the static network infrastructure alone.

As compared to the airborne UAV-based APs, these landed
deployment options result in a considerable improvement
to the battery lifetime, since the primary source of energy
consumption – the motors – can be switched off during the
AP service time. At the same time, the mmWave access link
becomes a challenge as the appropriate landing point may
be farther away from the target user equipment (UE) than
the AP location under airborne option, where the drone can
hover closer to the UEs. The greater separation distances
consequently result in lower signal-to-noise (SNR) levels [5].

The landed and airborne deployment options have their own
strengths and weaknesses. Depending on the system parame-
ters, either option can be preferable. Therefore, a thorough
comparison of airborne vs. landed alternatives for UAV-based
mmWave APs in prospective usage scenarios is needed.

Some studies on landed and airborne drones have been
done in prior work. The authors in [6] analyzed the concept
where drones deploy microwave APs in the service area.
Later, the work in [7] contributed a spatial framework for
airborne mmWave networks. Finally, methods to account for
UAV battery constraints in airborne microwave networks were
presented in [3] and [8], among others. To the best of our
knowledge, no comparison of airborne vs. landed deployment
options for UAV-based mmWave APs has been offered to date.
We aim to address this gap in the present work.

In this letter, we compare the network performance provided
by airborne and landed deployments of UAV-based mmWave
APs. We first develop a mathematical framework that models
a full UAV operating cycle – deployment, service, charging,
and travel to/from the service area – as well as accounts for
mmWave-specific propagation. We then apply our framework
to compare the performance of the considered options.

II. SYSTEM MODEL

The model focuses on serving a spontaneous massive event
in an unobstructed circular service area (e.g., a city square) of
radius R and features a drone charging station at a distance of
` from the area (see Fig. 1). The service area is populated with
humans distributed randomly by following the Poisson point
process (PPP) with density λ. Each human carries a mmWave
UE at height hU and distance rU from the body. Human bodies
are modeled as cylinders of height hB, hB > hU, and radius rB.
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A. Modeling mmWave Communications

Each of the mmWave UEs is connected to the nearest UAV-
based mmWave AP. We assume a fixed AP Tx power, PA,
and directional antennas at the AP and UE sides with the
gains of GA and GU. To facilitate a first-order analysis, we
assume that directional mmWave communications in our setup
are primarily noise-limited. As the service area represents an
open square, the mmWave link between the UE and its nearest
UAV-based AP can be occluded by human bodies, but not by
buildings. Hence, we model the line-of-sight (LoS) mmWave
link, as either blocked LoS (due to self-blockage or blockage
caused by other pedestrians) or non-blocked LoS [5], [9].

The received power on a non-blocked LoS link to the UE
from the nearest UAV-based AP, PN, is modeled by

PN = PAGAGUANd−γ, (1)
where d is the 3D distance between the nodes and AN is the
attenuation coefficient for non-blocked LoS propagation. Since
the altitude of UAV-based mmWave APs is assumed to not
exceed several tens of meters, we follow the parameters from
the 3GPP UMi-Street Canyon model and set γ = 2.1, AN =
10−3.24 f−2

C , where fC is the carrier frequency [9].
If the LoS path is occluded by humans (blocked LoS link),

the received power degrades according to the measurements
in [10]: PB = PAGAGUABd−γ, where AB is the attenuation
coefficient for blocked LoS propagation (AB� AN).

B. Modeling UAV Operation Cycle

We analyze and compare two options for the UAV operation:
airborne and landed1. In the airborne case, drones hover above
the service area. In the landed case, drones are assumed to land
on or perch to the nearby buildings [4]. For both options, the
fleet comprises of N UAV-based mmWave APs. Each UAV
follows its operation cycle with three major stages: (i) serving
stage, when the drone provides wireless access to the UEs;
(ii) charging stage, when the drone charges its battery at the
charging station; and (iii) en-route stage, when the drone is
flying from the charging station to the service area or back.

Following the described cycle (see Fig. 1), only a certain
subset of UAV-based APs are available for serving users:
NA < N and NL < N for airborne and landed options, respec-
tively. At the serving stage, all the UAVs are deployed at the
same heights: hA for the airborne option and hL for the landed
option. In both cases, the drone travels to the charging station
when its remaining energy is just enough for this flight.

C. UAV Locations During Service

Recalling that the SNR is a decreasing function of distance
to the UE, the task of deploying NA airborne APs is reduced to
minimizing the sum of distances to all the potential UEs [11].
Hence, for the circular shape of the service area, we use circle
in circle packing as a simple yet rational approximation [12].
Exact deployments following the circle in circle packing exist
for each practical number of UAV-based APs (NA < 7).

1To highlight the trade-offs between the UAV deployment options in a
clear setup, we do not model stationary mmWave APs. The framework can
be further extended to consider the presence of ground network infrastructure.
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Fig. 1. Illustration of the considered system model.

Following similar considerations, NL landed drones are
assumed to be located at the circumference of the circle having
the radius R at the equal distances from each other, thus
approximating the UAV deployment on some of the buildings
surrounding the service area (see Fig. 1).

III. EVALUATION METHODOLOGY

A. Projections of mmWave Links
Let us first assume that there are currently M UAV-based

mmWave APs within the service area. Each of these M APs
thus serves the UEs in a sector of radius R and angle 2π/M.

1) General approach: To obtain the probability density
function (PDF) of distances between a random UE and its
nearest AP for both landed and airborne options, we utilize the
conventional stochastic geometry approach [13]. Particularly,
the PDF of the 2D distance x is produced as the length of the
arc of radius x around the AP projection onto ℜ2 lying within
the considered sector divided by the area of this sector.

2) Airborne option: Here, we apply the approach detailed
above for the airborne option. We offer an example for M = 5
below. PDFs for other values of M are obtained similarly.

For M = 5, the radius of the packed circle is rA = R/(1+√
2+2/

√
5) [11], thus determining the 2D distance between

the AP (A in Fig. 2) and the nearest border of the sector.
Following the approach in subsection III-A1 and the geom-

etry in Fig. 2, the PDF of the 2D distance between a random
UE and its nearest UAV-based AP, XA, has three branches

fXA(x) =


2πx/Q, 0≤ x < rA,

[2πx−L1(x)−2L2(x)]/Q, rA ≤ x < dA,

L3(x)/Q, dA ≤ x≤ R− rA,

(2)

where L1(x), L2(x), and L3(x) are the arc lengths in Fig. 2,
Q = πR2/M, while dA is the 2D distance between the AP and
the corner of the sector shown in Fig. 2c and calculated in (3).

Notice that α = π/5, ψ = (π−α)/2. Applying the cosine
theorem to dA = ||AF || (see Fig. 2), we obtain

dA =

√
r2

A +(2Rsinα/2)2−4rARsinα/2cosψ. (3)
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Fig. 2. Link length pdf branches for airborne option, fXA(x).

Consequently, from basic geometry in Fig. 2, we have

L1(x) = 2x
[

2π− cos−1
(

x2 +(R− rA)
2−R2

2x(R− rA)

)]
, (4)

L2(x) = 2xcos−1 ([x2 + z2
A− (R− rA)

2]/2xzA
)
, (5)

zA = (R− rA)cosα−
√
(R− rA)2(cos2 α−1)+ x2, (6)

L3(x) = 2x
(

π− cos−1
[

x2 + z2
A− (R− rA)

2

2xzA

]
− π

5

)
. (7)

3) Landed option: Recall that the landed UAVs are located
at the circumference of the serving area. The PDF of the 2D
distance between a random UE and its nearest UAV-based AP,
XL, is obtained by following the approach detailed above.

Particularly, for M ≥ 3, we have

fXL(x) =


[2xcos−1(x/2R)]/Q, 0≤ x < rL,

[2xcos−1(x/2R)−L4(x)]/Q, rL ≤ x < dL,

L5(x)/Q, dL ≤ x≤ R,

(8)

where β = π/M and the parameters are given by

L4(x) = 4xcos−1([Rsinβ]/x), dL = R
√

2−2cosβ,

L5(x)=x
[
π−2β−2cos−1 (Rsinβ/x)

]
, rL=Rsinβ.

(9)

The PDFs of XL for M = 1 and M = 2 are obtained similarly.

B. UAV Flight and Charging Processes
1) Landed option: The fraction of time when the tagged

drone is in the serving stage, ρL, can be approximated as
TS,L/(TS,L + 2TF +TC), where TS,L is the time in service, TC
is the charging time, and TF is the time required to fly from
the charging station to the service area.

Let us define PE as the power of the UAV motors in watts, ν

as the drone cruise speed during the en-route stage2, E as the
UAV battery capacity in watt-hours, and PT as the UAV-based
AP power in watts3. The energy budget is thus

TS,LPT +2TFPE = E. (10)
Writing TF = `/ν and substituting TS,L from (10), we obtain

ρL =
T PEν−2PE`

T PEν+2`(PT−PE)+TCνPT
, (11)

where T is the drone flight time on batteries and E = T PE.

2The exact value of PE depends not only on the drone flight speed, ν, but
also on multiple other parameters: drone design, size, weight, etc. Later, in
the numerical study, we follow the approximation for PE given in [8].

3PE� PT� PA. PT includes the power of all the transceiver chains, signal
processing, and data processing at the UAV-based mmWave AP.

2) Airborne option: The main difference here is that the
UAV consumes PT +PH instead of PT when in service, where
PH is the engine power consumption in the hovering regime4.
Hence, the drone energy budget can be expressed as

TS,A(PT +PH)+2TFPE = E, (12)
where TS,A is the duration of the serving stage.

Consequently, the fraction of time when the drone remains
in the serving stage for the airborne option, ρA, is derived as

ρA =
T PEν−2PE`

T PEν+2`(PT +PH−PE)+TCν(PH +PT)
. (13)

3) Number of drones serving the area: We now use the
values ρL and ρA to estimate the number of drones that are
simultaneously in service. Following [14], we set NL = bNρLc
and NA = bNρAc, so that NL and NA represent the number of
serving drones guaranteed to be present in the service area. We
utilize NA and NL below to determine the metrics of interest.

C. Capacity Analysis

1) Spectral efficiency: We first obtain the mean spectral
efficiency (SE) of the mmWave link between a random UE
and its nearest AP – the mean capacity of this link per 1 Hz.

We account for the LoS blockage probability, pB(x), by
combining the model for the blockage by other pedestrians
from [5] and the cone self-blockage model from [15], i.e.,

pB(x) = 1−

[
2π− arcsin

(
rB

rB+rU

)]
2π

e−2rBλ

(
x(hB−hU)

hT
+rB

)
, (14)

where x is the 2D distance between the UE and its nearest AP,
while hT is the relative drone height compared to the UEs.

Observe that for a certain 2D distance of x the SE, S(x),
is a mixture of two values that correspond to blocked and
non-blocked link conditions (as detailed in subsection II-A)
weighed with probabilities, pB(x) and 1− pB(x), i.e.,

S(x) = pB(x) log2 (1+PB(x)/(N0NF))+

[1− pB(x)] log2 (1+PN(x)/(N0NF)) ,
(15)

where NF is the noise figure and N0 is the thermal noise power.
Using (15), we obtain the mean SE of the link between a

randomly selected UE and its nearest UAV-based mmWave AP
under airborne (SA) and landed (SL) deployments:

SA =
∫ R

0
S(x) fXA(x)dx, SL =

∫ R

0
S(x) fXL(x)dx. (16)

2) Network capacity: Recall that there are NA and NL UAV-
based mmWave APs continuously serving the UEs in airborne
and landed cases, respectively. Hence, the mean network
capacity for these options can be derived from (16) as

CA = NABSA, CL = NLBSL, (17)
where B is the bandwidth of the employed mmWave channel.

3) User capacity: We finally determine the mean user
capacity – the mean UE link capacity where all the radio
resources are equally shared among all the UEs in the service
area: CU,A and CU,L, respectively. We first parameterize pB(x)
not by the average density of the UEs in the area, λ, but by

4In our numerical study, we calculate PH following the approach from [8].
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the current density of the UEs, λC = K/(πR2), where K is the
number of UEs in the service area:

pB(x,K)=1−

[
2π− arcsin

(
rB

rB+rU

)]
2π

e−2rB
K

πR2

(
x(hB−hU)

hT
+rB

)
.(18)

The user capacity, CU(x,K), for M serving UAVs is then

CU(x,K) = B
M
K

[
pB(x,K) log2 (1+PB(x)/(N0NF))+

[1− pB(x,K)] log2 (1+PN(x)/(N0NF))
]
,

(19)

where M = NA for the airborne option and M = NL for landed.
Recall that x and K are independent random variables (RVs),

while K is discrete and follows a Poisson distribution with the
mean of λπR2. Hence, CU(x) is a weighed sum of CU(x,K):

CU(x) =
∞

∑
K=1

CU(x,K)
(λπR2)Ke−λπR2

K!
. (20)

Finally, the mean user capacity values under airborne and
landed options, CU,A and CU,L, are obtained similarly to (16):

CU,A =
∫ R

0

(
∞

∑
K=1

CU(x,K)
(λπR2)Ke−λπR2

K!

)
fXA(x)dx, (21)

CU,L =
∫ R

0

(
∞

∑
K=1

CU(x,K)
(λπR2)Ke−λπR2

K!

)
fXL(x)dx. (22)

IV. NUMERICAL RESULTS

In this section, we collect our numerical results illustrating
the trade-offs between the use of airborne and landed drones.
We first study the UAV operation cycle stages separately in
Fig. 3 and then focus on the overall system performance in
Fig. 4. The major parameters are summarized in Table I.

A. Analysis of Serving and En-route Stages

1) The effect of the drone height: We start with Fig. 3a,
which presents the mean SE as a function of the drone height
during the serving stage for M = 5. For both deployment
options, we notice a clear “optimal” drone height featured by
the highest SE: too low height results in numerous blockage
events, while the opposite leads to an SNR degradation at the
mmWave link due to the increased UE-UAV distance.

We then observe that the “optimal” heights for airborne and
landed cases are different; hence, these options should not be
compared with identical drone heights. Instead, for all further
figures, we set the drone height to its “optimal” value, chosen
individually for landed and airborne options. We also see a
match between the results derived with our framework and
those produced via computer simulations of our system model.

2) The effect of the number of serving drones: We proceed
with Fig. 3b, which displays the mean SE as a function of the
number of drones in the serving stage, M. Here, we clearly
observe that the airborne option results in up to 20% higher SE
than the landed case across all the numbers of serving drones
available and all the densities of the UEs in the area.

3) The effect of the distance to the charging station: The
opposite trend is observed in Fig. 3c, which illustrates the
en-route+charging stages, where the shares of time when the
selected drone can serve the UEs – ρA and ρL for airborne

TABLE I
Notation and parameters of our numerical study

Symbol Definition Value
mmWave AP service parameters

fC, B Carrier frequency and system bandwidth 28 GHz, 1 GHz
PA UAV-based mmWave AP transmit power 23 dBm
AN /AB Power reduction due to human body blockage 20 dB [10]
GA, GU AP and UE antenna gains 15 dB, 5 dB
N0, NF Noise power over 1 GHz band and noise figure −84 dBm, 5 dB

UAV flight parameters
ν, TC UAV cruise flight speed and full charging time 40 km/h, 1 h
PE, PH UAV engines power during flight and hovering 871 W, 1024 W [8]
PT Total power of UAV-based mmWave AP 47 W [16]
R Radius of the considered service area 50 m

and landed cases, respectively – are functions of the distance
between the service area and the drone charging station, `.
Since the landed drones are featured by a considerably reduced
power consumption in the serving stage (the engines are off),
ρL is 50%–400% greater than ρA for the same parameters.

B. System-Level Analysis

1) The effect of the human crowd density: We now proceed
with Fig. 4, which studies the full cycle of drone operation.
Particularly, Fig. 4a presents the mean network capacity as a
function of the UEs density. Here, the landed drones enable
10%–40% higher capacity than the airborne case across all the
UE densities, λ, and the total numbers of drones, N. Hence,
the advantage of the landed option during the en-route stage
illustrated in Fig. 3c is more pronounced than the benefit of
the airborne option during the serving stage, as in Fig. 3b.

2) The effect of the flight time on batteries: It is important
to note that the conclusions from Fig. 4a are straightforward
only when the UAVs are equipped with relatively small
batteries, which allow up to one hour of flight time (T = 1 h).
We study the effect of battery lifetime in more detail in Fig. 4b,
by presenting the minimum number of drones, N, required to
maintain the desired UE capacity level as a function of T .

As can be observed in Fig. 4b, the landed option remains
preferable for most of the considered setups, when T ≤ 1.3 h.
Further, the same number of drones is required for both options
when T ∈ [1.3 h, 2.7 h). Finally, for CU,A =CU,L = 30 Mbit/s
and T ≥ 2.7 h, the airborne case becomes preferable: 3 air-
borne UAVs required vs. 4 drones with the landed option.

C. Summary: Airborne vs. Landed Cases

We conclude with Fig. 4c, which highlights the regions for
the “airborne vs. landed” trade-offs, when the mean network
capacity is the characteristic of interest. Recall that the exact
mean network capacity depends on multiple factors: the drone
height, the density of the UEs in the area, etc. In contrast,
as in Fig. 4c, the general answer to “Which option results in
higher network capacity?” is determined primarily by: (i) the
distance to the charging station, `; (ii) the UAV flight time on
batteries, T ; and (iii) the total number of drones, N.

Particularly, if four UAVs are available (N = 4), all the
system setups laying above the corresponding curve in Fig. 4c
are better served with the airborne deployment, while all the
sets below this curve achieve higher capacity with the landed
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option. In more detail, we notice that the landed case is more
attractive in complex setups: high N, high `, and low T .

V. CONCLUSIONS

In this letter, we developed a mathematical framework to
compare the capacity of the drone-cells deployed on-demand
by airborne and landed UAV-based mmWave APs. This frame-
work was then applied to identify the setups where one of the
deployment choices is preferable over the other. Our analysis
particularly indicates that, while the mean capacity is subject
to a number of factors, the preferred option (airborne vs.
landed) mainly depends on three parameters: (i) the separation
distance between the service area and the drone charging
station; (ii) the UAV battery lifetime, and (iii) the number
of UAV-based mmWave APs in use. The proposed approach
can be further extended to account for a presence of terrestrial
mmWave APs, multiple drone charging locations, as well as
for different considerations regarding the UAV backhaul.
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