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Abstract
We study the hydrodynamic forces acting on a small impurity moving in a two-dimensional
Bose–Einstein condensate at non-zero temperature. The condensate is modelled by the
damped-Gross Pitaevskii (dGPE) equation and the impurity by a Gaussian repulsive potential
coupled to the condensate. For weak coupling, we obtain analytical expressions for the forces
acting on the impurity, and compare them with those computed through direct numerical
simulations of the dGPE and with the corresponding expressions for classical forces. For
non-steady flows, there is a time-dependent force dominated by inertial effects and which has a
correspondence in the Maxey–Riley theory for particles in classical fluids. In the steady-state
regime, the force is dominated by a self-induced drag. Unlike at zero temperature, where the drag
force vanishes below a critical velocity, at low temperatures the impurity experiences a net drag
even at small velocities, as a consequence of the energy dissipation through interactions of the
condensate with the thermal cloud. This dissipative force due to thermal drag is similar to the
classical Stokes’ drag. There is still a critical velocity above which steady-state drag is dominated by
acoustic excitations and behaves non-monotonically with impurity’s speed.

1. Introduction

The motion of an impurity suspended in a quantum fluid depends on several key factors such as the
superfluid nature and flow regime, as well as the size of the impurity and its interaction with the
surrounding fluid [1–5]. Therefore, it is disputable whether the forces acting on an impurity in a quantum
fluid should bear any resemblance to classical hydrodynamic forces. In the case of an impurity immersed in
superfluid liquid helium, classical equations of motion and hydrodynamic forces are assumed a priori [6],
since impurities are typically much larger than the coherence length and then quantum hydrodynamic
effects like the quantum pressure can be neglected. For Bose–Einstein condensates (BEC) in dilute atomic
gases, impurities can be neutral atoms [7], ion impurities [8, 9] or quasiparticles [10]. The size of an
impurity in a BEC is typically of the same order of magnitude or smaller than the coherence length, and
quantum hydrodynamic effects cannot be readily ignored.

There are several theoretical and computational studies of the interaction force between an impurity and
a BEC at zero absolute temperature, using different approaches depending on the nature of the particle and
its interaction with the condensate. A microscopic approach is used to analyse the interaction of a rigid
particle with a BEC by solving the Gross–Pitaevskii equation (GPE) for the condensate macroscopic
wavefunction and using boundary conditions such that the condensate density vanishes at the particle
boundary [11]. This methodology allows to study complex phenomena such as vortex nucleation and flow
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instabilities, but it is more oriented to find the effects of an obstacle on the flow rather than the coupled
particle-flow dynamics. In addition, the boundary condition introduces severe nonlinearities which can
only be addressed numerically. At a more fundamental level of description, the impurity is treated as a
quantum particle with its own wavefunction described by the Schrödinger equation and that is coupled
with the GPE for the macroscopic wavefunction of the BEC [12]. A more versatile model for the interaction
of impurities with the BEC has been explored in several papers [3–5, 13–15]. Here, an additional repulsive
interaction (a Gaussian or delta-function potential) is added to model scattering of the condensate particles
with the impurity. The force on the impurity is determined by this repulsion potential and the superfluid
density through the Ehrenfest theorem. The strong-coupling limit of this repulsive potential would be
equivalent to the rigid boundary-condition approach. Within this modelling approach, some works have
studied the complex motion of particles interacting with vortices in the flow, and the indirect interactions
between them arising from the presence of the fluid [4, 14]. Another line of research using this type of
modelling focused mainly on the superfluidity criterion of an equilibrium BEC [3, 5, 16–19] and
non-equilibrium BEC at zero temperature [20]. Within the Bogoliubov perturbation analysis for a small
impurity with weak coupling, analytical expressions can be derived for the steady-state force on the
impurity. At zero temperature, this force vanishes below a critical velocity and corresponds to the
dissipationless motion. Above this velocity identified through Landau criterion as the speed of the
long-wavelength sound waves, there is a net drag force and the motion of the impurity is damped by
acoustic excitations. While this is a form of drag, in that the force opposes motion by dissipating energy, it
is not the same as the classical Stokes’ drag in viscous fluids. Recent experiments probing superfluidity in a
BEC are able to indirectly estimate the drag force by measuring the local heating rate in the vicinity of the
moving laser beam and show that there is still a critical velocity even at non-zero temperatures and that the
critical velocity is lower for a repulsive potential than for an attractive one [21].

In this paper, we study the forces exerted on an impurity moving in a two-dimensional BEC at low
temperature, using an approach similar to [3–5, 13, 14], in which a repulsive Gaussian potential is used to
describe the interaction of the particle with the BEC, but using a dissipative version of the GPE. Our aim is
to bridge this microscopic approach with the phenomenological descriptions [6] that assume that the forces
from the superfluid are the same as those from a classical fluid in the inviscid and irrotational case. As in
the classical-fluid case, we find that the force is made of two contributions: one of them, dominant for very
weak fluid–particle interaction, bears a rather complete analogy with the corresponding force in classical
fluids (inertial or pressure-gradient force), which depends on local fluid acceleration and includes the
so-called Faxén corrections arising from velocity inhomogeneities close to the particle position [22]. The
difference is that, in a classical fluid, these corrections arise from the finite size of the particle and vanish
when the particle size becomes zero. In the BEC, Faxén-type corrections arise both from the particle size
(modelled by the range of the particle repulsion potential) and from the BEC coherence length. As
fluid–particle interaction becomes more important, a second contribution to the force becomes noticeable,
which takes into account the drag on the particle arising from the perturbation of the flow produced by the
presence of the particle. This is also called the particle self-induced force. We are able to obtain explicit
formulae for the steady-state motion of the particle in an otherwise homogeneous and steady BEC. This
drag is a dissipative (damping) force due to thermal drag of the BEC with the thermal cloud. It occurs in
addition to the drag due to acoustic excitations in the condensate that occurs only above a critical velocity.
It can be compared with the corresponding force in classical fluids, namely the viscous Stokes drag. We find
an analytical expression for this self-induced drag at arbitrary speeds and show that in the low speed limit,
it reduces to a linear dependence on speed akin to the classical Stokes drag.

The rest of the paper is structured as follows. In section 2, we discuss the general modelling setup and in
section 3 a perturbation analysis is used to derive the linearised equations for the perturbations in the
wavefunction related to non-steady condensate flow and the particle repulsive potential. Sections 3.1 and
3.2 derive analytical expressions within perturbation theory for the two contributions to the force
experienced by the particle. In section 4, we compare our theoretical predictions with numerical
simulations of the dissipative GPE coupled to the impurity, and the final section summarises our
conclusions.

2. Modelling approach

We model the interaction between the impurity and a two-dimensional (2D) BEC through a Gaussian
repulsive potential which can be reduced to a delta-function limit similar to previous studies [3, 5]. The
BEC at low temperatures is well-described by the damped Gross Pitaevskii equation (dGPE) for the
condensate wavefunction ψ (r, t) [23–29]:
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i�∂tψ = (1 − iγ)

(
− �

2

2m
∇2 + g|ψ|2 − μ+ Vext + gpUp

)
ψ, (1)

where g is an effective scattering parameter between condensate atoms. Vext is any external potential used to
confine or stir the condensate. The damping coefficient γ > 0 also called the thermal drag is related to the
net exchange of atoms through collisions between thermal atoms with each other or with the condensate at
fixed chemical potential μ. In the low-temperature limit, this damping γ is very small and can be expressed
as a function of temperature T [25, 30]. The dGPE is a phenomenological model that can also be derived
from the stochastic GPE in the low temperature limit where noise is negligible [23, 24]. The dGPE has been
used extensively to study different vortex regimes from vortex lattices [25] to quantum turbulence [26–28,
31, 32] and was shown to capture well, at least qualitatively, experimental observations [32].

A hydrodynamic description of the BEC uses the Madelung transformation of the wavefunction
ψ = |ψ|eiφ to define the condensate density as ρ(r, t) = |ψ(r, t)|2 and the condensate velocity as
v(r, t) = (�/m)∇φ(r, t). This velocity can also be obtained from the superfluid current J(r, t) as

J =
�

2mi
(ψ∗∇ψ − ψ∇ψ∗) = ρv, (2)

where ψ∗ denotes the complex conjugate of ψ. In addition to damping the BEC velocity, the presence of
γ �= 0 in the dGPE also singles out the value ρh = |ψ|2 = g/μ as the steady homogeneous density value
when the phase is constant and Vext = 0.

The interaction potential Up(r − rp) between the condensate and the impurity is modelled by a

Gaussian potential Up(r − rp) = μ/(2πσ2)e−(r−rp)2/(2σ2). The parameter gp > 0 is the weak coupling
constant for repulsive impurity–condensate interaction, rp = rp(t) denotes the center-of-mass position of
the impurity, and σ its effective size. Here we consider an impurity of size σ of the order the coherence
length ξ = �/

√
mμ of the condensate. The impurity is too small to nucleate vortices in its wake [33].

Instead, it will create acoustic excitations with Bogoliubov–C̆erenkov wake. Similar wave fringes in the
condensate density have been reported numerically in [2] for a different realisation of non-equilibrium
Bose–Einstein condensates. In the limit of a point-like impurity, the Gaussian interaction potential
converges to a two-body scattering potential Up(r − rp, t) = μδ(r − rp(t)) that has been used in previous
analytical studies [3, 4, 13, 14]. Note that we are modelling only the interaction of the particle with the
BEC, so that the viscous-like drag we obtain arises from the indirect coupling to the thermal bath via the
BEC. Any direct interaction of the particle with the thermal cloud will lead to additional forces which could
be important at high temperatures, and which are not included here.

In order to gain insight into the forces and their relationship with the classical case, we keep the set-up
as simple as possible. We consider a 2D condensate and assume that the size of the condensate is large
enough so that we can neglect inhomogeneities in the confining part of Vext. Also, we consider a neutrally
buoyant impurity so that effects of gravity can be neglected. This would imply Vext = 0 except if an external
forcing is introduced to stir the system, in which case we assume the support of this external force is
sufficiently far from the impurity.

The impurity and the condensate will exert an interaction force on each other that is determined by the
Ehrenfest theorem for the evolution of the center-of-mass momentum of the particle. The potential force
−gp∇Up(r − rp) is the force exerted by an impurity on a condensate particle at position r. By space
averaging over condensate density, we then determine the force exerted by the impurity on the condensate
as −gp

∫
dr|ψ(r, t)|2∇Up(r − rp) [14]. Hence, the force acting on the impurity has the opposite sign and is

equal to

Fp(t) = +gp

∫
d2r|ψ(r, t)|2∇Up(r − rp) (3)

which, through an integration by parts, is equivalent to

Fp(t) = −gp

∫
d2r Up(r − rp, t)∇|ψ(r, t)|2. (4)

Note that this last expression can also be used, reversing the sign, to give the force exerted on the BEC by a
laser of beam profile given by Up.

At zero temperature, i.e. γ = 0, and if we neglect the effect of quantum fluctuations [16–19], the
impurity moves without any drag through a uniform condensate below a critical velocity, which is the
low-wavelength speed of sound c =

√
μ/m, as determined by the condensate linear excitation spectrum, in

agreement with Landau’s criterion of superfluidity [3]. Above the critical speed, the impurity will create
excitations, and depending on the size of the impurity these excitations range from acoustic waves
(Bogoliubov excitation spectrum) to vortex dipoles and to von-Karman street of vortex pairs [33]. Previous

3



New J. Phys. 22 (2020) 073018 J Rønning et al

studies focused on the theoretical investigations of the self-induced drag force and energy dissipation rate in
the presence of Bogoliubov excitations emitted by a pointwise [3, 16, 19] or finite-size [5] particle, or
numerical investigations of the drag force due to vortex emissions [1, 13, 14]. The energy dissipation rate
depends on whether the impurity is heavier, neutral or lighter with respect to the mass of the condensate
particles [14]. The dependence on the velocity of the self-induced drag force above the critical velocity
changes with the spatial dimensions [3]. This means that the energy dissipation rate is also dependent on
the spatial dimensions. If instead of a single impurity one considers many of them there will be, besides
direct inter-particle interactions, additional forces between the impurities mediated by the flow, leading to a
much more complex many-body dynamics even in an otherwise uniform condensate, as discussed in [4].
Here we neglect all these effects and consider a single impurity in a 2D BEC.

We rewrite the dGPE in dimensionless units by using the characteristic units of space and time in terms
of the long-wavelength speed of sound c =

√
μ/m in the homogeneous condensate and the coherence

length ξ = �/(mc) = �/
√

mμ. Space is rescaled as r → r̃ξ and time as t → t̃ξ/c. In addition, the

wavefunction is also rescaled ψ → ψ̃
√
μ/g, where g/μ is the equilibrium particle-number density

corresponding to the solution with constant phase if Vext ,Up = 0. The external potential, Vext = μṼext, and
the interaction potential, gpUp = μg̃pŨp, are measured in units of the chemical potential μ with

Ũp = 1/(2πa2)e−(̃r−r̃p)2/(2a2), and a = σ/ξ, g̃p = gp/(ξ2μ). Henceforth, the dimensionless form of the dGPE
reads as

∂̃tψ̃ = (i + γ)

(
1

2
∇̃2 + 1 − Ṽ ext − g̃pŨp − |ψ̃|2

)
ψ̃. (5)

In these dimensionless units, the force from equation (4) exerted on an impurity reads as
Fp = (μ2ξ/g)F̃p, where

F̃p(t) = −g̃p

∫
d2r̃Ũp(r − rp)∇̃|ψ̃(r̃, t)|2. (6)

For the rest of the paper, we will now omit the tildes over the dimensionless quantities.
In the limit of a point-like particle, Up = δ(r − rp), the force from equation (6) becomes

Fp(t) = −gp∇|ψ(r, t)|2|r=rp(t). (7)

3. Perturbation analysis

For a weakly-interacting impurity, the condensate wavefunction ψ can be decomposed into an unperturbed
wavefunction ψ0(r) describing the motion and density of the fluid in the absence of the particle and the
perturbation δψ1(r) due to the impurity’s repulsive interaction with the condensate, hence
ψ = ψ0 + gpδψ1. Weak particle–condensate interaction condition is that max(gpUp) � 1, or gp � 2πa2,
which means that the particle–condensate interaction of strength gp and range σ is small compared with the
energy scale given by the chemical potential μ = 1 (dimensionless units).

The unperturbed wavefunction ψ0(r, t) can be spatially-dependent, if it is initialised in a nonequilibrium
configuration, or if external forces characterised by Vext are at play. Here, we consider deviations with
respect to the steady and uniform equilibrium state (ψh = 1 in dimensionless units). As stated before, we do
not consider large extended inhomogeneities produced by a trapping potential, and assume that any stirring
force acting on the BEC is far from the particle. Thus, we treat inhomogeneities close to the particle as small
perturbations to the uniform state ψh = 1: ψ0(r, t) = 1 + δψ0(r, t). Combining the two types of
perturbations, and using the relationships of the wavefunction to the density, velocity and current
(equation (2), which in dimensionless units reads ρv = (ψ∗∇ψ − ψ∇ψ∗)/(2i)) we find

ψ = 1 + δψ0 + gpδψ1 (8)

ρ = 1 + δρ0 + gpδρ1, (9)

v = δv(0) + gpδv
(1), (10)

where

δρ0 = δψ0 + δψ∗
0 , δρ1 = δψ1 + δψ∗

1 , (11)

δv(0) =
1

2i
∇
(
δψ0 − δψ∗

0

)
, δv(1) =

1

2i
∇(δψ1 − δψ∗

1 ). (12)

Combining equation (6) with the expressions for the density perturbations, we have that the total force
can be split into the contribution from the density variations in the BEC by causes external to the particle
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(initial preparation, stirring forces in Vext, . . . ), and the density perturbations due to the presence of the
particle Fp = F(0) + F(1):

F(0)(t) = − gp

2πa2

∫
d2re−

(r−rp(t))2

2a2 ∇δρ0(r, t), (13)

F(1)(t) = −
g2

p

2πa2

∫
d2re−

(r−rp(t))2

2a2 ∇δρ1(r, t). (14)

The perturbative splitting of the force in these two contributions is completely analogous to the
corresponding classical-fluid case in the incompressible [22] and in the compressible [34] situations. The
F(0) contribution is the equivalent to the classical inertial or pressure-gradient force on a test particle, which
does not disturb the fluid, in an inhomogeneous and unsteady flow. We call this the inertial force. The F(1)

contribution takes into account perturbatively the modifications on the flow induced by the presence of the
particle, and it is called the self-induced drag on the particle. To complete the comparison with the classical
expressions [22, 34], we need to express equations (13) and (14) in terms of the unperturbed velocity field
v(0)(r, t) = δv(0)(r, t) and of the particle speed Vp(t) = ṙp(t). We are able to do so in a general situation for
the inertial force F(0). For F(1), we obtain analytical expressions in the simple case where the impurity is
moving with a constant velocity in an otherwise uniform BEC.

The desired relationships between ∇δρ0 and ∇δρ1 in equations (13) and (14), and δv(0) and Vp will be
obtained from the linearisation of the dGPE equation (5) around the uniform steady state ψh = 1:

∂tδψ0 = (i + γ)

(
1

2
∇2 − 1

)
δψ0 − (i + γ)δψ∗

0 , (15)

∂tδψ1 = (i + γ)

(
1

2
∇2 − 1

)
δψ1 − (i + γ)δψ∗

1 − (i + γ)Up(r − rp). (16)

Terms containing Vext are not included in equation (15) because of our assumption of sufficient distance
between possible stirring sources and the neighbourhood of the particle position, the only region that—as
we will see—will enter into the calculation of the forces. In the next sections we solve these linearised
equations to relate density perturbations to undisturbed velocity field and particle velocity.

3.1. Inertial force
To convert equation (13) for the inertial force into an expression suitable for comparison with the
corresponding term in classical fluids, we need to express ∇δρ0 in terms of the undisturbed velocity field
v(0)(r, t) = δv(0)(r, t). To this end, we substract equation (15) from its complex conjugate, obtaining:

(
∇2 − 4

)
∇δρ0 = 4

(
∂t −

γ

2
∇2

)
δv(0), (17)

where we have used equations (11) and (12). Since the force formulae require to obtain the condensate
density in a neighbourhood of the particle position, it is convenient to move to frame co-moving with the
particle. Thus we change variables from (r, t) to (z, t), with z = r − rp(t), and the velocity field will be now
referred to the particle velocity Vp(t) = ṙp(t): δw(0)(z, t) = δv(0)(r, t) − Vp(t). Equation (17) becomes:

(
∇2

z − 4
)
∇zδρ0 = 4

(
∂t − Vp · ∇z −

γ

2
∇2

z

)
δw(0) + V̇p(t), (18)

which has the corresponding equation for its Green’s function given by

(
∇2

z − 4
)

G(z) = δ(z) (19)

with the boundary condition G(|z| →∞) → 0 (corresponding to vanishing ∇zδρ0(r) at |r| = ∞). The
solution is given by the zeroth order modified Bessel function G(z) = −K0(2|z|)/(2π). Hence, the gradient
of the density perturbation can be written as the convolution with the Green’s function:

∇zδρ0(z, t) = − 2

π

∫
dz′K0(2|z − z′|)

[(
∂t − Vp · ∇z′ −

γ

2
∇2

z′

)
δw(0)(z′, t) + V̇p(t)

]
, (20)

and the expression for the force (13), using the comoving variables (z, t), becomes:

F(0)(t) = − gp

π2a2

∫
dze−

z2

2a2

∫
dz′K0(2|z − z′|)

[(
∂t − Vp · ∇z′ −

γ

2
∇2

z′

)
δw(0)(z′, t) + V̇p(t)

]
. (21)
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The above expression is a weighted average of contributions from properties of the fluid velocity in a
neighbourhood of the impurity center-of-mass position (z = 0 in the comoving frame). The size of this
neighbourhood is given by the combination of the range of the Bessel function kernel, which in
dimensional units would be the correlation length ξ, and the range of the Gaussian potential, a, giving an
effective particle size. In classical fluids, the analogous force on a spherical particle involves the average of
properties of the undisturbed velocity field within the sphere size [34], and there is no equivalent to the role
of ξ.

As in the classical case [22, 34], if fluid velocity variations are weak at scales below a and ξ, we can
approximate the condensate velocity by a Taylor expansion near the impurity, i.e.:

δw(0)
i (z′, t) ≈ δw(0)

i (t) +
∑

j

eij(t)z′j +
1

2

∑
jk

eijk(t)z′j z
′
k + . . . , (22)

where the indices i, j, k = x, y denote the coordinate components. eij(t) = ∂jδw
(0)
i (z, t)|z=0 and

eijk(t) = ∂j∂kδw
(0)
i (z, t)|z=0 are gradients of the unperturbed condensate relative velocity. Inserting this

expansion into equation (21), and performing the integrals of the Gaussian and of the Bessel function
(using for example

∫
K0(2|z|)dz = π/2 and

∫
zizjK0(2|z|)dz = (δij/2)

∫∞
0 2πz3K0(2z)dz = δijπ/4), we

obtain:

F(0)(t) ≈ gpV̇p(t) + gp

[
∂t − Vp(t) · ∇z +

a2

2
∂t∇2

z −
γ

2
∇2

z +
1

4
∂t∇2

z

]
δw(0)(z, t)|z=0. (23)

The terms containing Laplacians are analogous to the Faxén corrections in classical fluids [22] which
arise for particles with finite size. Here, they arise from a combination of the finite effective size of the
particle, a, and of the quantum coherence length, ξ = 1. This last effect remains even in the limit of
vanishing particle size a → 0. Interestingly, one of the two terms in these quantum corrections depend on γ

hence indirectly on the presence of the thermal cloud.
As in the classical case, if flow inhomogeneities are unimportant below the scales a and ξ, we can neglect

the Laplacian terms in equation (23). Returning to the variables (r, t) in the lab frame of reference, the
terms containing Vp cancel out, showing that the inertial force is mainly given by the local fluid
acceleration:

F(0)(t) = gp∂tδv
(0)(r, t)|r=rp(t). (24)

We have assumed a small non-uniform unperturbed velocity field v(0)(r, t) = δv(0)(r, t). To leading order in
velocity, the partial derivative ∂tδv

(0) and the material derivative Dδv(0)/Dt = ∂tδv
(0) + δv(0) · ∇δv(0) are

identical. In classical fluids the same ambiguity occurs and it has been established, on physical grounds and
by going beyond linearisation, that using the material derivative is more correct [22]. After all, using this
material derivative in the equation of motion simply means that, under the above approximations and in
places where stirring and other external forces are absent, the local acceleration on the impurity arises from
the corresponding acceleration of the condensate. Since for a → 0 the condensate–impurity interaction has
a similar scattering potential (delta function) as that for the interaction between condensate particles,
similar accelerations would be experienced by a condensate particle and by the impurity, just modulated by
a different coupling constant. Thus, replacing ∂t by D/Dt in (24) the approximate inertial force becomes:

F(0)(t) = gp
Dv(0)

Dt

∣∣∣∣
r=rp(t)

, (25)

or, if we return back to dimensional variables:

F(0)(t) =
gp

g
m

Dv(0)

Dt

∣∣∣∣
r=rp(t)

. (26)

This is equivalent to the equation for the inertial force in classical fluids [22] except that the coefficient of
the material derivative in the classical case is the mass of the fluid fitting in the size of the impurity. In the
comoving frame, replacement of the partial by the material derivative amounts to replace
(∂t − Vp · ∇z′)δw(0) in equation (21) by Dδw(0)/Dt. Equation (25) is expected to be valid for small values
of gp and in regions where fluid velocity and density inhomogeneities are both small and weakly varying. At
this level of approximation neither compressibility nor dissipation effects appear explicitly in the inertial
force, in analogy with classical compressible fluids [34]. But these effects are indirectly present by
determining the structure of the field v(0)(r, t).

6
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3.2. Self-induced drag force
The consideration of the self-induced force on a particle moving through a classical fluids leads to different
terms, namely [22, 34] the viscous (Stokes) drag, the unsteady-inviscid term that in the incompressible case
becomes the added-mass force, and the unsteady-viscous term that in the incompressible case becomes the
Basset history force. They are expressed in terms of the undisturbed velocity flow v(0) and the particle
velocity Vp(t). Here, for the BEC case, we are able to obtain the self-induced force only for a particle
moving at constant speed on the condensate. For the classical fluid case, in this situation the only
non-vanishing force is the Stokes drag, so that this is the force we have to compare our result with. We note
that the condensate itself in the absence of the particle perturbation can be in any state of (weak) motion
since in our perturbative approach summarised in equations (15) and (16), the inhomogeneity δψ0 and the
gp-perturbation δψ1 are uncoupled.

It is convenient to transform the problem to the co-moving frame (r, t) → (z, t) with z = r − rp(t), so
that equation (16) becomes

∂tδψ1 − Vp · ∇δψ1 = (i + γ)

(
1

2
∇2 − 1

)
δψ1 − (i + γ)δψ∗

1 − (i + γ)U(r). (27)

Note that such Galilean transformations of the GPE using a constant Vp are often accompanied by a
multiplication of the transformed wavefunction by a phase factor exp(iVp · z + i

2 V2
p t), in order to

transform the condensate velocity (see below) to the new frame of reference, and account for the shift in
kinetic energy. Indeed, such a combined transformation leaves the GPE unchanged at γ = 0 [35] (but not
for γ > 0). The density perturbation δρ1 is already given correctly by δψ1 + δψ∗

1 , where δψ1(z, t) is the
solution of (27), without the need of any additional phase factor. The velocity in the co-moving frame
would need to be corrected as δω(1)(z, t) = δv(1) − Vp, with δv(1) given by equation (12) in terms of the
solution of equation (27).

Equation (27) in the steady-state can be solved by using the Fourier transform δψ1(z) = 1/(2π)2∫
d2keik·zδψ̂1(k). It follows that the linear system of equations for δψ̂1(k) and δψ̂∗

1(−k) is given by

[
−2ik · Vp + (i + γ)(k2 + 2)

]
δψ̂1 + 2(i + γ)δψ̂∗

1 = −2(i + γ)e−
a2k2

2 ,

[
−2ik · Vp + (−i + γ)(k2 + 2)

]
δψ̂∗

1 + 2(−i + γ)δψ̂1 = −2(−i + γ)e−
a2k2

2 . (28)

By solving these equations, we find δψ̂1(k) and δψ̂∗
1(−k), and the Fourier transform of the density

perturbation δρ1 = δψ∗
1 + δψ1 then follows as

δρ̂1 =
e−

k2a2
2 (4k2(1 + γ2) − 8iγk · Vp)

4k · Vp(Vp · k + iγk2 + 2iγ) − k2(4 + k2)(1 + γ2)
. (29)

Using the convolution theorem, we can express the self-induced force (14) (in the co-moving frame, i.e.
with rp = 0) in terms of δρ̂1 as

F(1) = −
g2

p

(2π)2

∫
d2kikδρ̂1(k)e−

k2a2
2 . (30)

This force can be decomposed into the normal and tangential components relative to the particle velocity
Vp: F(1) = F‖e‖ + F⊥e⊥. Due to symmetry, the normal component vanishes upon polar integration, and we
are left with the tangential, or drag, force

F‖ = −
g2

p

(2π)2

∫ ∞

0
dk

∫ 2π

0
dθe−k2a2 ik2 cos(θ)

[
4k2(1 + γ2) − 8iγkVp cos(θ)

]
4kVp cos(θ)(kVp cos(θ) + iγk2 + 2iγ) − k2(4 + k2)(1 + γ2)

. (31)

Vp is the modulus of Vp. At zero temperature, i.e. when γ = 0, the drag force reduces to the one that has
also been calculated for a point particle in references [3] and in [5] for a finite-a particle:

F‖ = −
g2

p

π2

∫ ∞

0
dk

∫ 2π

0
dθ

ik2 cos θe−k2a2

4V2
p cos2 θ − (4 + k2)

, (32)

which is zero for particle speed smaller than the critical value given by the long-wavelength sound speed,
Vp < c = 1. Above the critical speed, the integral has poles and acquires a non-zero value given by

F‖ = −
g2

pk2
max

4Vp
e−

a2k2
max
2

[
I0

(
a2k2

max

2

)
− I1

(
a2k2

max

2

)]
(33)
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in terms of the modified Bessel functions of the first kind In(x) and where kmax = 2
√

V2
p − 1. For vanishing

a the dominant term is proportional to (V2
p − 1)/Vp [3]. This drag is pertaining to energy dissipation by

radiating sound waves in the condensate away from the impurity. We emphasise again that a is small
enough such that emission of other excitations, such as vortex pairs, does not occur. It is important to note
[3, 5] that in order to obtain a real value for the force in equation (33) one has to consider that it has been
obtained from the limit γ → 0+ in (31), which implies that an infinitesimal positive imaginary part needs
to be considered in the denominator to properly deal with the poles in the integral.

In general, for a non-zero γ, equation (31) simplifies upon an expansion in powers of Vp to the leading
order. For the linear term in Vp, we can perform the polar integration and arrive at

F‖ = − 2

π
Vp

γ

1 + γ2
g2

p

∫
k3e−a2k2

(4 + k2)2
dk. (34)

Substituting u = a2(k2 + 4), we find

F‖ = −Vp
γ

1 + γ2
g2

p

1

π

[
e4a2

E1(4a2)(1 + 4a2) − 1
]

, (35)

where E1(x) denotes the positive exponential integral. When a → 0, the expression inside the bracket
diverges as −γE − 1 − ln(4a2) with γE begin the Euler–Mascheroni constant. It is therefore necessary to
keep a finite size a.

This drag force is akin to the viscous Stokes drag in classical fluids, but it is due to loss of energy in the
condensate through its interaction with the thermal cloud. The effective drag coefficient depends on the
thermal drag such that it vanishes at zero temperature. But it also depends non-trivially on the size of the
impurity and it diverges in the limit of point-like particle. Faxén corrections involving derivatives of the
unperturbed flow are not present here because of the decoupling between δψ0 and δψ1 arising in the
perturbative approach leading to (15) and (16).

4. Numerical results

To test the analytical predictions of the inertial force and the self-induced drag deduced above from the total
force expression equation (6), we performed numerical simulations of the dGPE. Actually, our simulations
are done in the co-moving frame of the impurity moving at constant velocity Vp, so that the equation we
solve is (see numerical details in the appendix):

∂tψ − Vp · ∇ψ = (i + γ)

[
1

2
∇2 ψ +

(
1 − gpUp − |ψ|2

)
ψ

]
, (36)

where the impurity is described by the Gaussian potential of intensity gp = 0.01 and effective size a = 1 (in
units of ξ), and is situated in the middle of the domain with the coordinates (x, y) = (128, 64) (in units of
ξ). As an initial condition, we start with the condensate being at rest and in equilibrium with the impurity.
This is done by imaginary time integration of equation (36) for Vp = 0 and γ = 0. Then, at t = 0, we solve
the full equation (36), and as a consequence, sound waves are emitted from the neighbourhood of the
impurity. Their speed is determined by the dispersion relation ω(k) giving the frequency as a function of
the wavenumber and can be obtained by looking for plane-wave solutions to equation (15). If γ = 0, ω(k)
is given by the Bogoliubov dispersion relation [36] ω(k) = k

√
1 + k2/4. Note that the smallest velocity,

c = 1, is that of long wavelengths, and that waves of smaller wavelength travel faster. For γ > 0, the planar
waves are dampened out and the dispersion relation becomes ω(k) = −iγ(k2/2 + 1) +

√
k2 + k4/4 − γ2.

The damping rate is determined by γ and increases quadratically with the wavenumber. Also, in this case all
waves have a group velocity faster than a minimum one that for small γ is close to c = 1.

When Vp < 1 all the waves escape the neighbourhood of the impurity (see an example in figure 1(a))
and are dissipated in a boundary buffer region that has large γ (see numerical details in the appendix and
supplemental material5). After a transient the condensate achieves a steady state. Figure 1(b) shows a steady
spatial configuration for γ = 0 and Vp = 0.9. Figures 1(d) and (e) show different profiles of the condensate
density along the x direction across the impurity position for Vp. The condensate density is depleted near
the impurity due to the repulsive interaction, and its general shape depends on the speed Vp and thermal
drag γ. If γ = 0 and Vp � 1 the density of this steady state has a rear–front symmetry with respect to the

5 See supplemental material at https://stacks.iop.org/NJP/22/073018/mmedia showing movies of the condensate density dynamics at
γ = 0 and several values of V p.
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Figure 1. Panels (a)–(c) show 2D snapshots of the condensate density for γ = 0. The impurity is at x/ξ = 128 and y/ξ = 64.
(a) is at Vp = 0.9 and at time t = 200, with transient waves still in the system. (b) is for the same Vp = 0.9 and at t = 2000, when
the final steady state has been reached. Panel (c) is for Vp = 1.6 > 1, for which some waves remain attached to the impurity as
front fringes and the Bogoliubov–C̆erenkov wake with sin(φ) = 1/Vp. Panels (d)–(f) show cross-section profiles along the x
direction of the steady-state condensate density around the impurity. Panel (d) shows the front–rear symmetry of the steady
profiles when Vp � 1 and γ = 0. An asymmetry develops [panel (e)] for γ > 0, which relates to the net viscous-like drag. Panel
(f) displays density profiles for Vp = 1.6 > 1 and different values of γ. The asymmetric density profile corresponds to waves
trapped in front of the moving particle. With increasing γ, these waves are damped out.

particle position (see specially figure 1(d)), so that under integration in equation (6) the net force is zero.
The presence of dissipation (γ > 0) breaks this symmetry even if Vp < 1 so that a net drag will appear in
agreement with the calculation of section 3.2. When Vp > 1, there are waves that can not escape from the
neighbourhood of the impurity, forming parabolic fringes in front of it and the Bogoliubov–C̆erenkov wake
behind it (see figures 1(c) and (f) and supplemental material5). The opening angle of the C̆erenkov cone is
determined by the dispersion relation of the waves with long-wavelength and satisfy the relation
sin(φ) = 1/Vp as shown in figure 1(c). It is clear that it narrows when the speed increases. The consequence
is that there is a net drag induced by these fringes even when γ = 0, and that it would eventually decrease at
very large velocity as the angle of the wake decreases. Similar fringes in the condensate density around an
obstacle in supersonic flows has also been observed experimentally [37]. Movies showing the transient and
long-time density behaviour for several values of Vp and at γ = 0 are included as supplemental material5.
The fluid suddenly starts to move towards the negative x direction, and its density approaches a steady state
after the transient. Note that during all the dynamics, the density deviation with respect to the equilibrium
value ρ = 1 is very small, justifying the perturbative approach of section 3. The time evolution for γ > 0 is
qualitatively similar to the γ = 0 shown in the movies, except that the waves become damped and that there
is a front–rear asymmetry in the steady state.

Our numerical setup is well suited to measure the force produced by the perturbation of the impurity
on the fluid, i.e. the self-induced drag. Nevertheless, in the absence of the impurity the unperturbed state is
the trivial ψ = 1, so that δψ0 = 0 and the inertial force is identically zero. In order to test the accuracy of
our expressions for the inertial force without the need of additional simulations under a different set-up, we
still use the computed condensate density and velocity dynamics, produced by the impurity introduced in
the system at t = 0, but we evaluate the inertial force exerted by this flow on another test particle located at
a different position. In fact, there is no need to think on the flow as being produced by an impurity: it can
be produced by a moving laser beam that can modelled by an external potential Vext and the only impurity
present in the system is the test particle on which the force is evaluated. In the following we evaluate the
inertial and the self-induced drag forces on the different particles from the general expressions
equations (13) and (14) and from the approximate expressions of sections 3.1 and 3.2.

4.1. Numerical evaluation of the inertial force
We consider a test particle traveling at the same speed Vp as the impurity or laser beam producing the flow,
but located at a distance of 10 coherence lengths in front of it, and 20 coherence lengths in the y direction
apart from it. This distance is sufficient to avoid inclusion of Up or Vext in equation (15) for the
neighbourhood of the test particle. Condensate and test particle interact via a coupling constant g′p
sufficiently small so that the full force on the later, equation (6), is well approximated by the inertial part

9
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Figure 2. x component of the time-dependent force Fx/g′p, using direct numerical simulations of the dGPE equation (36), on a
test particle of size a′ = 0.25, 0.5, 1 at a relative position (Δx,Δy) = (10, 20) with respect to the position of the particle
producing the flow perturbation. The speed of both particles is Vp = 0.1, 0.8, 1, and γ = 0. Cyan continuous lines correspond to
the full force (x component) from the exact expression equation (6). They are labeled as ‘potential force’ because of the rather
explicit appearance of the interaction potential in this formula. Black dotted lines are the predictions for the inertial force from
the approximation equation (25) (computed in the comoving frame as explained in the text).

equation (13), being the perturbation the particle induces on the flow, and thus the force (14) completely
negligible.

Figure 2 shows, for different values of Vp = 0.1, 0.8, 1 at γ = 0, the x component of the time-dependent
force produced by the transient flow inhomogeneities hitting the test particle in the form of sound waves.
The size of the test particle, taking several values, is called a′ to distinguish it from the size a of the particle
producing the flow perturbation. Blue lines are computed from the exact equation (6) or equivalently from
equation (13) to which it reduces for sufficiently small g′p. Because of the rather explicit appearance of the
interaction potential in this formula, we label the blue lines in figure 2 as ‘potential force’. High frequency
waves arrive before low-frequency ones, because its larger sound speed. We also see how the frequencies
become Doppler-shifted for increasing Vp. We have derived in section 3.1 several approximate expressions
for the inertial force. First, equation (21) is obtained with the sole assumption (besides gp sufficiently small)
of smallness of the unsteady and/or inhomogeneous part δψ0 of the wavefunction, which allows
linearisation. Equation (23) assumes in addition weak inhomogeneities below scales a and ξ, and finally
equations (25) and (26) (equivalent under the previous linearisation approximation) completely neglects
such inhomogeneities (or equivalently, they correspond to a, ξ → 0). We show as black lines in figure 2 the
prediction of this last approximation, similar to the most standard classical expressions. Since we have
computed the wavefunction ψ = 1 + δψ0 in the comoving frame from equation (36), we actually use
expression (23) without the Faxén Laplacian terms, with δω(0) = ∇(δψ0 − δψ∗

0 )/(2i) − Vp, and V̇p = 0.
Figure 2 shows that the full force computed from equation (6) is well-captured by the approximate
expression of the inertial force for small test-particle size a′. Accuracy progressively deteriorates for
increasing a′, and also for increasing Vp, but this classical expression remains a reasonable approximation
until a′ ≈ 1. The accuracy can be improved by considering higher-order Faxén corrections, equation (23),
or even better, by considering the integral form in equation (21). We have explicitly checked that keeping
the full Gaussian integration in equation (21) but approximating the integrand in the Bessel integral by its
value at the particle position gives a very good approximation to the exact force even for a′ = 1.

4.2. Numerical evaluation of the drag force
We now return to the situation in which there is a single impurity in the system, with size a = ξ = 1 and
gp = 0.01. It moves in the positive x direction with speed Vp producing a perturbation on the uniform and
steady condensate state ψ = 1. We compute it in the comoving frame, in which the particle is at rest and
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Figure 3. Self-induced drag in the steady-state regime as function of the speed Vp. Dashed lines are the analytical predictions
based on equation (33) (for γ = 0) and equation (31) (for γ > 0). The symbols correspond to the numerically computed force
from equation (6) based on direct simulations of the dGPE equation (36). The inset figure shows the small Vp behaviour, with
solid straight lines giving the linear dependence of the drag force on the speed for γ > 0, in the small-Vp approximation given by
equation (35). We use a = 1 and gp = 0.01.

fluid moves with speed −Vp, by using equation (36). Since in the absence of the impurity there is no
inhomogeneity nor time dependence, δψ0 = 0 and the exact force on the impurity, equation (6), is also
given by the self-induced drag expression given by equation (8). After a transient, that in analogy with the
results for compressible classical fluids [34, 38] we expect to be of the order of the time needed by the sound
waves to cross a region of size a or ξ, the condensate density near the particle achieves a steady state, and we
then measure the steady drag on the particle. Figure 3 shows this force, for several values of Vp and γ, as
dots.

The approximate value of the drag force that is obtained under the assumption of small perturbation
(small gp) that allows linearisation is shown as dashed lines. It is computed from equation (33) for γ = 0
and equation (31) for γ > 0. The agreement is excellent. As shown in the inset figure, in the regime of small
velocities, the self-induced drag is indeed linearly dependent on the speed with an effective drag coefficient
that is well captured by equation (35). This Stokes-like drag at small speeds is due to energy dissipation
through collisions between the condensate atoms and thermal atoms, quantified by the thermal drag γ. We
notice that the dependence of the drag force on Vp is consistent with having a critical velocity for
superfluidity even at γ > 0, in the sense that there is still a relatively abrupt change in the force (sharper for
smaller γ) around a particular impurity speed. The superfluidity of BECs at finite temperature is still an
open question. Recent experiments [39, 40] report superfluid below a critical velocity which is related to the
onset of fringes [41]. In the dGPE, the steady state drag is always nonzero. Nonetheless, there is a critical
velocity associated to the breakdown of superfluidity due to energy dissipation through acoustic excitations.
This is the regime where the drag force is dominated by the interaction of the impurity with the supersonic
shock waves to produce the C̆erenkov wake as seen in figure 1(c) and observed experimentally [37]. The
maximum drag force occurs near the velocity for which the cusp lines forming the wake still retain an angle
close to π. With increasing speed, this angle becomes more acute (figure 1(f)), and this lowers the density
gradient around the impurity.

5. Conclusions

We have studied, from analytic and numerical analysis of the dGPE, the hydrodynamic forces acting on a
small moving impurity suspended in a 2D BEC at low temperature. In the regime of small coupling
constant gp and thermal drag γ, the force arising from the gradient of the condensate density can be
decomposed onto the inertial force that is produced by the inhomogeneities and time-dependence of the
condensate in the absence of the particle, and the self-induced force which is determined by the
perturbation produced by the impurity on the condensate. When the unperturbed flow can be considered
homogeneous on scales below the particle size and the condensate coherence length, the classical Maxey and
Riley expression [22], giving the inertial force in terms of the local or material fluid acceleration, is a good
description of the force. When inhomogeneities become relevant below these scales, Faxén-type corrections
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arise, similar to the classical ones in the presence of a finite-size particle, but here the coherence length plays
a role similar to the particle size. In addition, the condensate thermal drag enters into these expressions, at
difference with the classical viscous case. We also determined the self-induced force in the steady-state
regime and shown that it is non-zero at any velocity Vp of the moving impurity if γ > 0. For small Vp, this
force is given as a Stokes drag which is linearly proportional to Vp with a drag coefficient dependent on the
thermal drag γ. The energy dissipation associated with this drag is due to the loss of condensate atoms into
the thermal cloud and is mediated by the thermal drag coefficient. In this sense, the drag on the impurity
relates to the way the condensate dissipates energy at low temperature through particle exchanges with the
thermal cloud. We have not considered the additional drag arising from direct interactions of impurity with
the thermal cloud, since these are negligible in the low-temperature regime but maybe important at higher
temperature. With increasing velocities, there are corrections to the linear drag and above a critical speed
Vc = 1, the self-induced drag is dominated by the interactions of the impurity with the emitted shock
waves.

We have checked our analytical expressions with numerical simulations in the situation in which the
impurity moves at constant velocity, possibly driven by external forces different from the hydrodynamic
ones analysed here. When the coupling constant gp is sufficiently small so that only the inertial force is
relevant, the equation of motion of the impurity under the sole action of the inertial force would be
mpdVp(t)/dt = F(0)(t), with mp the mass of the particle and F(0)(t) one of the suitable approximations to
the inertial force given in section 3.1. For larger gp, when the condensate becomes distorted by the impurity,
we have computed the self-induced drag only in the steady case. In analogy with classical compressible flows
[34, 38], we expect history-dependent forces in this unsteady situation. The dependence on the thermal
drag, however, would be quite different from that of viscous classical fluids, because of the lack of viscous
boundary layers in the BEC case.

In this study, we have focused on a small impurity that can only shed acoustic waves. Another
interesting extension of this would be to further investigate the drag and inertial forces for larger impurity
sizes, which can emit vortices, and study the effect of vortex–impurity interactions on the hydrodynamics
forces. Following the recent experimental progress on testing the superfluidity in BEC at finite temperature
[21], it would be interesting to test experimentally our prediction of the linear drag on the impurity due to
the condensate thermal drag at small velocities by using measurements of the local heating rate. For probing
the inertial force, it would be interesting to experimentally tracking the position of the impurity during
non-steady superfluid flow.
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Appendix. Numerical integration of dGPE

Numerical simulations of dGPE equation (36) are run for a system size of 128 × 256 (in units of ξ)
corresponding to the grid size dx = 0.25ξ, and dt = 0.01ξ/c. To simulate an infinite domain where the
density variations emitted by the impurity do not recirculate under periodic boundary conditions, we use
the fringe method from [33]. This means that we define buffer (fringe) regions around the outer rim of the
computational domain (see figure A1) where the thermal drag γ is much larger than its value inside the
domain, such that any density perturbation far from the impurity is quickly damped out and a steady
inflow is maintained. The thermal drag becomes thus spatially-dependent and given by
γ(r) = max[γ(x), γ(y)], where

γ(x) =
1

2

(
2 + tanh[(x − xp − wx)/d] − tanh[(x − xp + wx)/d]

)
+ γ0, (37)

and similarly for γ(y). Here rp = (xp, yp) = (128ξ, 64ξ) is the position of the impurity and γ0 is the
constant thermal drag inside the buffer regions (bulk region). We set the fringe domain as wx = 100ξ,
wy = 50ξ and d = 7ξ as illustrated in figure A1.

By separating the linear and non-linear terms in equation (36), we can write the dGPE formally as [42]

∂tψ = ω̂(−i∇)ψ + N(r, t), (38)
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Figure A1. Simulation domain showing the buffer region, outside the main simulation region, in which thermal drag is greatly
enhanced to eliminate the emitted waves sufficiently far from the moving particle (which is at x/ξ = 128, y/ξ = 64). The density
shown is the steady state (in the comoving frame, hence the direction of the arrows indicating the flow velocity in this frame) for
Vp = 1.6 and γ = 0.

where ω̂(−i∇) = i[ 1
2∇2 + 1] + Vp · ∇ is the linear differential operator and N(r, t) = −(i + γ)

(Up + |ψ|2)ψ + γψ + 1
2γ∇2ψ is the nonlinear function including the spatially-dependent γ and Up. Taking

the Fourier transform, we obtain ordinary differential equations for Fourier coefficients ψ(k, t) as

∂tψ̂(k, t) = ω̂(k)ψ̂(k, t) + N̂(k, t), (39)

which can be solved by an operator-splitting and exponential-time differentiating method [43]. It means
that we exploit the fact that the linear part of equation (39) can be solved exactly by multiplying with the
integrating factor e−ω̂(k)t . This leads to

∂t

(
ψ̂(k, t)e−ω̂(k)t

)
= e−ω̂(k)t N̂(k, t). (40)

The nonlinear term N̂(k, t) is linearly approximated in time for a small time-interval (t, t +Δt), i.e.

N̂(k, t + τ) = N0 +
N1

Δt
τ (41)

where N0 = N̂(t) and N1 = N̂(t +Δt) − N0. Inserting this into equation (40) and integrating from t to
t +Δt we get

ψ̂(k, t +Δt) = ψ̂(k, t)eω̂(k)Δt +
N0

ω̂(k)

(
eω̂(k)Δt − 1

)
+

N1

ω̂(k)

[
1

ω̂(k)Δt
(eω̂(k)Δt − 1) − 1

]
. (42)

Since computing the value of N1 requires knowledge of the state at t +Δt before we have computed it, we
start by setting it to zero and find a value for the state at t +Δt given that N̂(t) is constant in the interval.
We then use this state to calculate N1, and add corrections to the value we got when assuming N1 = 0.
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