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Neural Network Based Digital Predistortion for
Active Antenna Arrays Under Load Modulation

Alberto Brihuega, Lauri Anttila, and Mikko Valkama

Abstract—In this letter, we propose an efficient solution to
linearize mmWave active antenna array transmitters that suffer
from beam-dependent load modulation. We consider a dense neu-
ral network that is capable of modeling the correlation between
the nonlinear distortion characteristics among different beams.
This allows to provide consistently good linearization regardless
of the beamforming direction, avoiding thus the necessity of
executing continuous digital predistortion parameter learning.
The proposed solution is validated, conforming to 5G New Radio
transmit signal quality requirements, with extensive over-the-air
RF measurements utilizing a state-of-the-art 64-element active
antenna array operating at 28 GHz carrier frequency.

Index Terms—5G New Radio, digital predistortion, load mod-
ulation, mmWave, nonlinear distortion, neural networks.

I. INTRODUCTION

IN order to increase the power-efficiency of active antenna
arrays operating at mmWaves, specifically the so-called

frequency range 2 (FR2), different polynomial-based digital
predistortion (DPD) solutions have been proposed [1]–[8]. In
these works, a replica of the main-beam signal is utilized for
DPD learning, as most of the nonlinear distortion is radiated
towards this direction [9]. One key challenge in this context
is the so-called beam-dependent load modulation [10]. Due
to the high level of integration of mmWave array transmitters,
where isolators between antennas and PA units are preferably
avoided [10], the interactions between neighboring antennas
cause the PA’s output port impedance, and consequently also
their nonlinear characteristics, to change with the steering
angle [3], [4], [10]. As a result, a given DPD system that
was initially trained considering a specific beam-direction or
nonlinear conditions, may no longer be adequate for a new
beam-direction [3], [4]. In 5G New Radio (NR), the beam
direction can be updated at a millisecond level, thus this
imposes very tight time constraints on the DPD parameter
estimation – potentially implying even continuous adaptation.
Due to the large signal bandwidths in FR2 systems, real time
adaptation may be challenging. This constraint greatly contrasts
with common adaptation times in ordinary single- or few-
antenna systems, where the DPD system only needs to track
long-term variations, e.g., due to temperature drifts.

As an alternative to polynomial-based DPD solutions, neural
networks (NNs) can offer effective linearization solutions
due to their excellent nonlinear modelling capabilities [11]–
[13]. Different NN topologies have been considered in the
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Fig. 1. Considered active array transmitter with DNN-based DPD.

DPD context, while most recent ones are based on real input
data, where the I and Q components along with the envelope
of the signal are considered for training the NN [11], [12].
Additionally, [12] augments the NN input layer so that it is
capable of modeling possible I/Q imbalance and crosstalk
effects. As in physical systems, the nonlinearities primarily
act on the envelope of the signal, thus [13] proposed to only
utilize the envelope of the signal as input to the NN, along
with a phase recovery stage at the last hidden layer to obtain
the complex baseband signal. However, similar to traditional
polynomial-based DPD solutions, regular NNs should be re-
trained as the beamforming direction changes – something that
is very challenging since generally NNs require even longer
training times compared to polynomial-based solutions.

In this letter, we propose to utilize a dense NN (DNN) that
is trained with a data set that contains signals from different
beamforming directions. Despite the antenna array exhibiting
distinct nonlinear characteristics for every beam direction,
the resulting radiated distortions at different directions are
mutually correlated. This can thus be exploited by the DNN,
if properly trained, so that consistently good linearization is
provided across the whole range of beamforming directions.
Once the DNN is trained properly, only occasional offline
re-learning is needed to adapt to long-term variations, similar
to ordinary DPD systems in single or few-antenna transmitters.
The proposed concept is formulated in Section II while RF
measurement results are provided in Section III.

II. PROPOSED DENSE NEURAL NETWORK BASED DPD

A. Nonlinear Active Array Model

We consider an active antenna array transmitter that is
depicted in Fig. 1. Due to the mutual coupling between
the antenna elements, the coupled waves drive the output
ports of the PAs, which results in a dynamic variation of
the PAs’ output port impedances which in turn modifies their
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nonlinear characteristics. Under these circumstances, dual-
input behavioral models [14], [15] are commonly adopted
to accurately model the PAs’ behaviour. Given the considered
transmitter architecture, such model can be reduced to classical
single-input behavioral model as described in [3], yielding
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where P1, P2, P3 denote polynomial orders, M1, . . . ,M6 des-
ignate memory depths of the model, while α

(2p+1)
m1 , β0

m2
,

β2p+1
m4m3

and ζ2p+1
m6m5

are the model coefficients or free parameters.
Additionally, fi(n) =

∑L
l=1

wlλil(n) ? µl(n) where λil(n) is
the filter impulse response that models the crosstalk from the
lth to the ith antenna, µl(n) is an impulse response that models
the linear distortion in the lth antenna/PA branch, ? denotes the
convolution operator, while L is the total number of antennas.

Despite the beam-dependent load-modulation impacting the
exact nonlinear characteristics of the antenna array, formally
expressed through the filter impulse response fi(n), there is
strong mutual correlation between the nonlinear distortion
radiated towards different beamforming directions. This is
visible from (1), where the model parameters defining the
nonlinear behavior of the PAs, i.e., α(2p+1)

m1 , β0
m2

, β2p+1
m4m3

and ζ2p+1
m6m5

do not depend on the beamforming direction.
Based on this, we argue that a single DPD system should
be capable of providing sufficient linearization regardless of
the beamforming direction, but only if it is trained so that the
overall nonlinear distortion – i.e., distortion radiated across the
range of considered beamforming directions – is considered.
This will be verified with measurements in Section III.

B. Proposed Multi-beam Oriented DNN-based DPD

In order to effectively linearize the antenna array for every
beamforming direction with a single DPD unit, we consider a
feedforward fully connected DNN with one hidden layer with
G neurons. The DNN architecture is depicted in Fig. 2, where
the transmit signal I and Q components, denoted as Iin(n) and
Qin(n), respectively, as well as the pth order envelopes |a1(n)|p
for p = 1, 2, . . . PDNN are used as the inputs. In order to model
wideband memory effects, also the delayed replicas up to
memory depth of MDNN are adopted. Furthermore, the hidden
layer is assumed to utilize the hyperbolic tangent sigmoid
activation function [11].

MDNN MDNN MDNN MDNN1 1 1 1

Fig. 2. Block diagram of the DNN DPD system.

Algorithm 1 DNN DPD Training Procedure

1: Generate the dataset D based on (2) and Dref accordingly
2: Train the post-distorter DNN with D and Dref
3: Copy the DNN as pre-distorter and transmit
4: Repeat from step 1 until convergence

In order to train the NN, we consider an indirect learning
architecture (ILA), where a DNN-based post-inverse is trained
by considering replicas of the far-field beamformed signals
for different beam directions. Then, the weights of the DNN
post-distorter are copied as the actual DNN DPD, as illustrated
in Fig. 1, while the process is iterated until convergence. More
specifically, within one ILA iteration, the feedback samples
of signals belonging to K different main-beam directions are
concatenated into a large single vector

D = [rTθ1r
T
θ2 . . . r

T
θK ]T , (2)

where the vectors rθk , k = 1, 2 . . . ,K, contain N samples of
the signal beamformed towards θk. These feedback samples
can be obtained e.g., through a hardware-based combiner and
an observation receiver [1], or through over-the-air (OTA)
feedback from a far-field receiver, with both options being
depicted in Fig. 1 [4], [10]. The HW-based combining solution
is preferable in the sense that it would also allow to keep track
of the long-term variations by occasionally gathering beam-
based data during the online data transmission. The reference
data for training, denoted as Dref is the DPD output as depicted
in Fig. 1, and must follow the same structure as that used for D,
i.e., it is built by concatenating the signals a1(n) that reflects
the digital transmit waveform behind the feedback signals
rTθk , k = 1, 2, · · · ,K.

During the training, the following cost function of the form

e =
1

2B

B∑
n=1

(
(Iout(n)−Iref(n))

2+(Qout(n)−Qref(n))
2
)
, (3)

is calculated for every epoch, with batch size of B, where
Iref(n), Qref(n) are the I and Q components of the reference
data. Then, the synaptic weights and biases of the different
neurons are updated utilizing back-propagation approach and
the Levenberg-Marquardt algorithm [16], until convergence.
Minimizing e implies minimizing the distortion across the
considered range of beam directions. It is noted that, as memory
effects are considered in the DNN, the last MDNN samples
of rθk will impact the training of rθk+1

. However MDNN is
generally much smaller than N , thus the impact is negligible.
The training procedure is summarized in Algorithm 1.
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Fig. 3. OTA observed spectra at 28 GHz with (a) the reference PW-CL DPD [4] trained at zero degrees direction, (b) the proposed DNN DPD. The spectra
w/o DPD are only shown in (b). In (c), the TRP-based ACLRs as functions of the electrical beam direction are shown. The EIRP is +42 dBm.

Fig. 4. mmWave OTA measurement setup.

III. MMWAVE OVER THE AIR MEASUREMENTS

A. mmWave OTA Measurement Setup

The measurement setup is depicted in Fig. 4. The M8190A
arbitrary waveform generator generates the TX IF signal
centered at 3.5 GHz. Two N5183B-MXG signal generators
running at 24.5 GHz are used as local oscillator that together
with two highly linear T3-1040 mixers, are utilized for up-
converting the IF signal to the 28 GHz carrier frequency, at
TX, and for downconverting the signal back to IF, at RX. The
modulated RF waveform is amplified with one HMC499LC4
and one HMC1131 driver amplifiers that allow to feed the
Anokiwave AWMF-0129 active antenna array such that its PAs
are driven close to saturation, delivering up to +42 dBm EIRP.
The OTA transmit signal is captured by a horn-antenna located
1.5 meters apart. After downconversion to IF, the signal is
captured by the DSOS804A oscilloscope, and taken to baseband.
The received samples are then processed in a host PC running
MATLAB. The measurement setup is calibrated to reduce the
impact of other HW components, such that the observed signal
quality is mainly dictated by the active antenna array. As the
considered active array does not facilitate HW-based combining,
the true OTA RX signal is deployed for DPD learning.

A 200 MHz 5G NR OFDM waveform with 64-QAM
subcarrier modulation, subcarrier spacing of 60 kHz, 3168
active subcarriers, and basic FFT size of 4096 is adopted.
With an oversampling factor of 5, the TX and RX sample
rate is 1.228 GHz. The sample-level PAPR of the DPD input
signal, after iterative clipping and filtering, reads 7 dB when
measured at 10−4 CCDF point. For training, validation and
testing, we consider beamforming directions from -40 to 40
degrees with a resolution of 5 degrees, resulting in K = 17,

each of them having N = 8k samples, out of which 70% are
used for training, 15% for validation and 15% for testing. 4
ILA iterations are considered, each employing between 3− 30
epochs containing independent symbol realizations in each
block. Memory-depth of MDNN = 2 and envelope orders up
to PDNN = 5 are considered in the proposed DNN DPD, with
G = 40 neurons, while the PW-CL DPD from [4] with the
same parameterization as the one used in [4, Section VII] is
considered as reference.

B. Measurement Results

Snapshot linearization performance examples in terms of
spectra are provided in Fig. 3 (a) and (b). As can be observed,
the linearization provided by the PW-CL DPD is good at few
beam directions only, close to the learning angle, while then
degrades substantially at those directions that exhibit more
distinct distortion. On the other hand, the proposed DNN DPD
is capable of providing consistently good linearization for the
whole considered range of beamforming directions. Fig. 3 (c)
then illustrates the linearization performance in terms of the
ACLR measured through the total radiated power (TPR) metric
defined by 3GPP [17], while it also illustrates the ACLR limit
for systems operating at FR2 [17]. As can be observed, the
proposed DNN DPD allows to fulfill the TRP ACLR target
across the whole range of beamforming directions, at the cost
of slightly reducing the maximum linearization performance.
The DNN DPD thus avoids the need for beam-level parameter
learning, opposed to the PW-CL DPD, whose performance
falls clearly below the ACLR target when switching to beam
directions further away from the learning beam. Consequently,
the proposed DNN DPD stands as an effective solution to
linearize active antenna arrays affected by load-modulation.

IV. CONCLUSIONS

In this letter, a novel NN based DPD solution and parameter
learning approach were proposed to linearize active antenna
arrays that are affected by beam-dependent load modulation.
The proposed approach avoids the need for continuous beam-
based parameter learning in the online operation, while it
was shown through RF measurements to be capable of
linearizing a state-of-the-art active antenna array regardless of
the beamforming direction. Future work considers applying the
proposed DPD learning approach to polynomial-based DPD
solutions.



4

REFERENCES

[1] M. Abdelaziz, L. Anttila, A. Brihuega, F. Tufvesson, and M. Valkama,
“Digital Predistortion for Hybrid MIMO Transmitters,” IEEE J. Sel.
Topics Signal Process., vol. 12, no. 3, pp. 445–454, June 2018.

[2] X. Liu, Q. Zhang, W. Chen, H. Feng, L. Chen, F. M. Ghannouchi, and
Z. Feng, “Beam-Oriented Digital Predistortion for 5G Massive MIMO
Hybrid Beamforming Transmitters,” IEEE Trans. Microw. Theory Techn.,
vol. 66, no. 7, pp. 3419–3432, July 2018.

[3] E. Ng, Y. Beltagy, G. Scarlato, A. B. Ayed, P. Mitran, and S. Boumaiza,
“Digital predistortion of millimeter-wave RF beamforming arrays using
low number of steering angle-dependent coefficient sets,” IEEE Trans.
Microw. Theory Techn., pp. 1–14, 2019.

[4] A. Brihuega, M. Abdelaziz, L. Anttila, M. Turunen, M. Allén, T. Eriksson,
and M. Valkama, “Piecewise digital predistortion for mmWave active
antenna arrays: Algorithms and measurements,” IEEE Trans. Microw.
Theory Techn., pp. 1–1, 2020.

[5] C. Yu, J. Jing, H. Shao, Z. H. Jiang, P. Yan, X. Zhu, W. Hong, and
A. Zhu, “Full-angle digital predistortion of 5G millimeter-wave massive
MIMO transmitters,” IEEE Trans. Microw. Theory Techn., vol. 67, no.
7, pp. 2847–2860, July 2019.

[6] X. Liu, W. Chen, L. Chen, F. M. Ghannouchi, and Z. Feng, “Linearization
for hybrid beamforming array utilizing embedded over-the-air diversity
feedbacks,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 12, pp.
5235–5248, Dec. 2019.

[7] Q. Luo, X. Zhu, C. Yu, and W. Hong, “Single-receiver over-the-air digital
predistortion for massive MIMO transmitters with antenna crosstalk,”
IEEE Trans. Microw. Theory Techn., pp. 1–15, 2019.

[8] A. Brihuega, L. Anttila, M. Abdelaziz, T. Eriksson, F. Tufvesson, and
M. Valkama, “Digital predistortion for multiuser hybrid MIMO at
mmWaves,” IEEE Trans. Signal Process., pp. 1–1, 2020.

[9] L. Anttila, A. Brihuega, and M. Valkama, “On antenna array out-of-band
emissions,” IEEE Wireless Commun. Lett., vol. 8, no. 6, pp. 1653–1656,
Dec. 2019.

[10] C. Fager, T. Eriksson, F. Barradas, K. Hausmair, T. Cunha, and J. C.
Pedro, “Linearity and efficiency in 5G transmitters: New techniques for
analyzing efficiency, linearity, and linearization in a 5G active antenna
transmitter context,” IEEE Microw. Mag., vol. 20, no. 5, pp. 35–49, May
2019.

[11] D. Wang, M. Aziz, M. Helaoui, and F. M. Ghannouchi, “Augmented
real-valued time-delay neural network for compensation of distortions
and impairments in wireless transmitters,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 30, no. 1, pp. 242–254, Jan 2019.

[12] P. Jaraut, M. Rawat, and F. M. Ghannouchi, “Composite neural
network digital predistortion model for joint mitigation of crosstalk, I/Q
imbalance, nonlinearity in MIMO transmitters,” IEEE Trans. Microw.
Theory Techn., vol. 66, no. 11, pp. 5011–5020, 2018.

[13] Y. Zhang, Y. Li, F. Liu, and A. Zhu, “Vector decomposition based
time-delay neural network behavioral model for digital predistortion of
RF power amplifiers,” IEEE Access, vol. 7, pp. 91559–91568, 2019.

[14] K. Hausmair, S. Gustafsson, C. Sánchez-Pérez, P. N. Landin, U. Gus-
tavsson, T. Eriksson, and C. Fager, “Prediction of nonlinear distortion
in wideband active antenna arrays,” IEEE Trans. Microw. Theory Techn.,
vol. 65, no. 11, pp. 4550–4563, Nov. 2017.

[15] H. Zargar, A. Banai, and J. C. Pedro, “A new double input-double output
complex envelope amplifier behavioral model taking into account source
and load mismatch effects,” IEEE Trans. Microw. Theory Techn., vol.
63, no. 2, pp. 766–774, Feb. 2015.

[16] D. W. Marquardt, “An algorithm for least-squares estimation of
nonlinear parameters,” Journal of the Society for Industrial and Applied
Mathematics, vol. 11, no. 2, pp. 431–441, 1963.

[17] 3GPP Tech. Spec. 38.104, “NR; Base Station (BS) radio transmission
and reception,” v15.4.0 (Release 15), Dec. 2018.


