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Methods for the three-dimensional (3D) reconstruction of forest trees have been suggested for data from active
and passive sensors. Laser scanner technologies have become popular in the last few years, despite their high
costs. Since the improvements in photogrammetric algorithms (e.g. structure from motion—SfM), photographs
have become a new low-cost source of 3D point clouds. In this study, we use images captured by a smartphone
camera to calculate dense point clouds of a forest plot using SfM. Eighteen point clouds were produced by
changing the densification parameters (Image scale, Point density, Minimum number of matches) in order
to investigate their influence on the quality of the point clouds produced. In order to estimate diameter at
breast height (d.b.h.) and stem volumes, we developed an automatic method that extracts the stems from
the point cloud and then models them with cylinders. The results show that Image scale is the most influential
parameter in terms of identifying and extracting trees from the point clouds. The best performance with cylinder
modelling from point clouds compared to field data had an RMSE of 1.9 cm and 0.094 m3, for d.b.h. and volume,
respectively. Thus, for forest management and planning purposes, it is possible to use our photogrammetric
and modelling methods to measure d.b.h., stem volume and possibly other forest inventory metrics, rapidly
and without felling trees. The proposed methodology significantly reduces working time in the field, using ‘non-
professional’ instruments and automating estimates of dendrometric parameters.

Introduction
Traditionally, foresters use mechanical or optical instruments,
such as calipers, hypsometers and measuring tapes, to measure
biometric parameters in field plots. These traditional methods
are time-consuming and cannot directly measure some tree
attributes, such as stem volume and biomass components (total,
stem and branches). Assessing the later parameters in the field
typically requires felling the trees (Liang et al., 2016) or rely-
ing on allometries of earlier studies that felled and measured
trees to establish these allometries. Numerous studies applied
mathematical functions for representing the longitudinal profile
of stems of certain species. These equations were used to esti-
mate the diameters of cross sections of the stem at different
heights from the ground, and the volume of stem portions, or
to represent the particular shape of the stem (Brink and Gadow,
1986; Tarp-Johansen et al., 1997; Gaffrey et al., 1998; Dhôte et al.,
2000; Kublin, 2003). These functions are useful for describing the
stem profile at varying heights from the ground. However, this
type of approach does not consider the particular morphology

and inclination of individual stems, which are difficult parameters
to evaluate on standing trees.

In the last two decades, introduction of terrestrial laser
scanning (TLS) technologies has increased the set of available
methods for assessing forest attributes in the field (Moskal and
Zheng, 2011; Kankare et al., 2015; Liang et al., 2016; Giannetti
et al., 2018). There is growing interest in using TLS to estimate
biometric parameters of trees, based on their three-dimensional
(3D) reconstruction. The 3D reconstruction of trees does not
only enable estimating d.b.h. (Maas et al., 2008; Strahler et al.,
2008; Huang et al., 2011; Liang et al., 2014) and volume (Liang
et al., 2014) but also possible to measure other biometric param-
eters useful for forest management and planning purposes
including biomass (Van Aardt et al., 2008) and stem locations.
Furthermore, some metrics that have less frequently been
addressed so far, including lower crown height, or crown depth
may potentially be extracted. The latter could be estimated by
combining point clouds collected from the ground and from
the air.
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The reconstruction of trees from 3D point clouds has
been mostly accomplished using cylinder fitting algorithms so
far. Although the cross sections of tree stems are generally
ellipsoidal, the ratio between the major and the minor axes of
these ellipses is close to 1 (Patrone, 1963), particularly if they
are not located on heavily sloping lands or in areas subject to
strong dominant winds. Therefore, since the diameters do not
change very quickly along the stem, the use of cylinders enables
good estimates of the volume on a relatively short vertical
section (Åkerblom et al., 2015). Corresponding approaches were
for example presented in the work of Dassot et al. (2012),
Hackenberg et al. (2014), Calders et al. (2015), Hackenberg et al.
(2015) and Stovall and Shugart (2018).

There is an ongoing discussion whether the efficiency of forest
inventories could be improved using TLS in combination with
automatic procedures extracting the desired tree metrics (Liang
et al., 2016; Giannetti et al., 2018). Besides a potential improve-
ment in efficiency, TLS data provide a permanent detailed spatial
record of the forest structure of a given area. It could thus be
possible to carry out temporal monitoring of measured parame-
ters through additional acquisitions over time (Liang et al., 2012;
Srinivasan et al., 2014; Liang et al., 2016).

However, TLS data acquisition is limited by the time and costs
involved (Mikita et al., 2016; Wilkes et al., 2017), limited software
and a possible lack of trained personnel (Liang et al., 2016). The
mobility of instruments is still relatively low and hardware costs,
although decreasing, are still rather high (Giannetti et al., 2018).

Considering particularly the latter points, photogrammetric
approaches may be an interesting alternative to TLS based
approaches. Given the improvements in photogrammetric
algorithms, image-based techniques are now able to produce
3D point cloud data that are similar to the data obtained with
TLS technologies (Cavegn et al., 2014; Liang et al., 2015; Liang et
al., 2016). The most commonly applied algorithm is structure
from motion (SfM) (Ullman, 1979; Szeliski, 2011). Similar to
traditional photogrammetry, SfM uses images acquired from
multiple viewpoints and dense image-matching algorithms, such
as the Scale Invariant Feature Transform (SIFT) (Lowe, 2004)
and the Speeded-Up Robust Features (SURF) (Bay et al., 2008),
to create the 3D geometry of an object or surface present in
multiple images (Remondino and Fraser, 2006; Remondino et al.,
2012; Verhoeven et al., 2013; Wallace et al., 2016; Bakker and
Lane, 2017).

Several studies have demonstrated the feasibility of using
terrestrial images as a source of point cloud data for tree
mapping (Morgenroth and Gomez, 2014; Liang et al., 2015;
Miller et al., 2015; Forsman et al., 2016; Mikita et al., 2016;
Panagiotidis et al., 2016; Surový et al., 2016) and as a low-cost
alternative to TLS (Liang et al., 2014). The main advantage of
image-based techniques is that they produce similar outputs
to TLS systems, but use less expensive hardware (Mokroš et al.,
2018), i.e. small and light instruments that are affordable and
easy for non-professional users to operate. As stated by Liang
et al. (2016), in the future, an untrained person may be capable
of carrying out forest inventories using photogrammetry after
a short instruction. This method could therefore significantly
reduce the cost of field plot inventories, thus increasing the
number of field plots and enhancing forest field inventories
(Liang et al., 2016).

Approaches to collect image-based point clouds in forestry
applications vary in terms of the image acquisition system and
accuracy assessment of the point cloud obtained. The image
acquisition phase is very important. Mokroš et al. (2018) present
seven data collection methods, which differ in terms of cam-
era orientation, shooting mode and photographic path. These
authors found that the most accurate method used vertical
camera orientation, stop-and-go walking rhythms and a path
around the plot with two diagonal paths through the plot. Liang
et al. (2015) proposed an application of terrestrial image-based
point clouds acquired with a handheld camera for forest plot
inventories. They used two photographic paths to take photos:
a circular path inside the plot (30 × 30 m) with the camera
pointing out of the plot and a closed loop outside the plot.
Panagiotidis et al. (2016) took 350 photos in a circular plot with a
6 m radius, following the photographic path along the perimeter
of the plot and pointing the camera at eye level, at the base
and at the top of the tree. Mikita et al. (2016) used aerial and
terrestrial images to obtain a dense point cloud of a 0.8 ha
research plot. The terrestrial images were captured by walking
through the forest at 5 km h−1, with one captured image per
second. Forsman et al. (2016) developed a method for terrestrial
mapping of tree structures; they used a multi-camera rig with
five cameras, taking all images from the centre of the field plot,
looking outwards in different directions. Piermattei et al. (2019)
estimated diameter at breast height (d.b.h.) and stem curves
up to 2.8 m above the ground using a cylinder fitting method
in four forest plots with a tree density ranging from 390 to
875 stems ha−1.

In most cases, the accuracy of the reconstructed 3D mod-
els was assessed by comparing the d.b.h. and heights mea-
sured in the field with those obtained using the 3D model and
analysing the root mean square error (RMSE) or percentage error
values for each parameter (Liang et al., 2014; Morgenroth and
Gomez, 2014; Liang et al., 2015; Mikita et al., 2016; Surový et
al., 2016). In Panagiotidis et al. (2016), forest inventory metrics
(d.b.h. and height) obtained from the terrestrial photogrammetry
point clouds were compared with those measured on the TLS
point clouds.

In this study, we build upon the findings of these earlier
studies but examine several new aspects. First, we derived our
3D point clouds from images taken with a smartphone camera,
which has rarely been examined so far. Considering a future
operationalization of the presented approach, we developed
and tested an image acquisition grid (walking pattern) that fits
most practical cases. This is an important step to standardize
the image acquisition phase. Further, we tested the influence
of the different densification parameters (Image scale, Point
density, Minimum number of matches) in the SfM algorithm to
produce the point clouds to analyse which kind of set-up leads
to the best results. Finally, we also developed an automatic
cylinder fitting method to extract and model individual tree
stems from the image-based point clouds. Although cylinder
stem modelling has been applied to TLS point clouds, to our
knowledge there were no previous applications on image-based
data. Therefore, the overall aim of this study was to estimate
the accuracy and feasibility of using SfM and cylinder stem
modelling techniques for d.b.h. and volume estimates of forest
stands.
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Figure 1 Location of the forest plot in Mercadante Forest within Italy.

Materials and methods
Study area

The forest plot used in our study is located in Puglia, southern
Italy (Figure 1). It is part of the Mercadante Forest (1300 ha)
in the Alta Murgia National Park. The forest was created by
hydrogeological afforestation work to counteract the descent
of rainwater from the Murgia uplands after floods struck the
Bari area in the early 1900s. The plot is characterized by an
even-aged forest stand, and the main tree species are Aleppo
pine (Pinus halepensis) and cypress (Cupressus sempervirens).
The plot (Figure 1) is 30 × 30 m with a buffer zone of 10 m
around the plot to enable photographic surveys. It consists of
45 trees (∼500 stems ha−1) and was chosen for the scarce pres-
ence of undergrowth combined with a good density of arboreal
vegetation.

Dendrometric parameters measured in the field
D.b.h. (measured at 1.30 m above ground level) and species were
recorded in the field. A caliper was used to measure d.b.h. as the
average of two perpendicular diameters. The 45 trees in the plot
had a mean d.b.h. of 28.90 cm (max = 49.70 cm, min = 15.70 cm).

Starting from the base of the trees, diameters were mea-
sured every 1 m using Wheeler’s pentaprism integrated with a
hypsometer to estimate the volume of the standing tree stems.
These measurements were taken for 15 ‘volume model trees’ out
of the total of 45 trees, which were randomly selected among
the most visible trees. Upper stem diameters were measured up
to a height of 12 m, but for some trees it was limited to 6 m.
At higher heights, it became increasingly difficult to measure
stem diameters as the visibility in the pentaprism decreased.
Hence, volumes by section were estimated up to a height of
6 m. Tree heights of the volume model trees were measured by a
Häglof VL5 Vertex Laser hypsometer (max = 20.6 m, min = 12 m,
mean = 17.80 m).

Volume estimates in the field
Diameters measured at different heights in the field enabled the
areas of tree cross sections to be calculated at each height. The
volume of each tree stem portion was calculated using Smalian’s
formula (Loetsch et al., 1973):

V′ =
(

S1 + S2

2

)
• h, (1)

where S1 and S2 are the areas of the two last sections of the
stem portion, and h is the height of each stem section, which was
selected as equal to 1 m. The data from field measurements were
compared with those obtained using cylinder modelling.

Terrestrial photogrammetry
Images were taken on the same day using a smartphone camera
with a focal length of 28 mm (35 mm equivalent) and a lens
aperture of f/1.9. The ISO sensitivity of the camera was set to 80
and the exposure time to 1/250 s, which matched the local light
conditions. The smartphone used was a Samsung Galaxy S6 and
it was mounted on a DJI OSMO Mobile smartphone stabilizer.

A total of 686 photos were taken using the stop-and-go
method and following the photographic path shown in Figure 2.
The images were captured at a distance of 2.5 m from each other
and at two different height levels (2 and 4 m above ground),
using a telescopic bar. The choice of the image acquisition grid
was based on our experience with previous surveys and aimed
to optimize the percentage overlap between the images. Photos
were taken in different light conditions due to the position of the
sun in relation to the study plot. Light conditions were optimal
in the forward survey images, unlike those in the return survey,
which were taken under backlighting conditions, with the camera
pointed at the sun. Image resolution was 5312 × 2988 pixels. It
took ∼30 min to acquire the photos on a single path, and a total
of ∼3 h to complete the full photographic survey.
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Figure 2 (a) Path of the forward photographic survey; (b) path of the return photographic survey; (c, d) path of the lateral photographic survey. The
large arrows in the images show the direction of progress of the survey.

In addition, in order to allow scaling and georeferencing of the
3D point clouds obtained with SfM processing, a Trimble PROXH
GPS receiver was used to collect the GPS coordinates of five
ground control points (GCPs) that were well distributed in the plot
area. Five black and yellow squared targets (20 × 20 cm) were
used to identify the positions of the five GCPs in the images in
which they were visible.

Data processing
The images captured in the terrestrial survey were processed
using Pix4Dmapper (Pix4D SA). This software implements
a fully automated photogrammetric workflow for indoor,
terrestrial, oblique and nadir imagery. Detailed descriptions
of the Pix4D workflow can be found in the study of Küng
et al. (2011).

Data were processed using a 64-bit system with an Intel Core
i7-7700 CPU at 3.6 GHz, 6 GB GPU and 64.0 GB RAM, and the
process took ∼1 h for each point cloud produced.

We tested the influence of the following parameters on the
resulting point cloud densification:

• Image scale (1, 1/2, 1/4, 1/8), which defines the scale of the
images at which additional 3D points are computed.

• Point density, which defines the density of the densified point
cloud. If set to optimal, a 3D point is computed for every
[4/Image scale] pixel; if set to high, a 3D point is computed for
every [Image scale] pixel; if set to low, a 3D point is computed
for every [16/Image scale] pixel. It is also strongly affected by
the previously set Image scale.

• Minimum number of matches, which represents the minimum
number of valid reprojections of each 3D point to the images.
This can range from 3 to 6.

The software default parameters are 1/2 Image scale, Optimal
point density and 3 as the Minimum number of matches. Varying
the parameters resulted in different numbers of 3D points and
average densities (per m3).

In total, 18 point clouds were produced, combining the param-
eters only in combinations which resulted in sufficiently dense
point clouds (Table 1).

Table 1 Densification parameters for the point clouds.

Index Image
scale

Point
density

Minimum
no. of
matches

No. of 3D
densified
points

Average
density
(per m3)

1 1/8 High 3 2 261 079 660
2 1/8 Optimal 3 546 487 255
3 1/8 Low 3 138 122 109
4 1/4 High 3 7 204 110 2028
5 1/4 High 4 4 568 156 1624
6 1/4 High 5 2 741 030 1243
7 1/4 Optimal 3 2 058 359 697
8 1/4 Optimal 4 1 267 541 532
9 1/4 Optimal 5 904 610 386
10 1/4 Low 3 536 909 247
11 1/2 High 4 18 013 134 4352
12 1/2 High 5 10 986 920 3331
13 1/2 High 6 6 557 732 2467
14 1/2 Optimal 3 13 154 154 1232
15 1/21 Optimal 3 3 736 455 1492
16 1/2 Optimal 4 5 127 568 1388
17 1/2 Optimal 5 3 040 808 1035
18 1/2 Low 3 2 260 114 602

1This point cloud has been unchecked the option ‘Multiscale’ (additional
3D points are computed on multiple image scales, starting with the
chosen scale and going to the 1/8 scale).

Point cloud processing
Before the identification and modelling of the tree stems, the plot
point cloud produced by photogrammetry was filtered (Figure 3)
to remove non-tree points, such as points from the ground,
understory and noise (incorrectly identified points).

This process contains five steps. First the point cloud was
clipped to the area of interest to exclude areas outside the plot.
Then, it was downsampled by partitioning the space containing
the point cloud into small cubes (voxels—here we used 1 cm edge
length) and keeping only one point from each non-empty cube
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Estimating tree stem diameters and volume from smartphone photogrammetric point clouds

Figure 3 Filtering steps for point clouds. Grey points are filtered out. (a) Downsampling, (b) approximation of ground level (rectangles) and removing
points near ground and (c) noise filtering based on point density.

(Figure 3a). Next, the ground level was approximated as a grid of
horizontal squares covering the point cloud. The edge length of
the squares was 1 m. The height of the squares was the height
(z-coordinate) of the lowest point inside the squares (Figure 3b).
Then, based on this ground level model, all points below a height
of 20 cm were removed, and points up to a height of 2 m were
removed if the third meter above ground level contained no
points (Figure 3b). Finally, some noise was filtered out based on
local point densities: for this, the space was divided into cubes
measuring 5 × 5 × 5 cm, and the points were kept inside a cube
if there were at least five points (for some very low-density point
clouds, thresholds below five were used; Figure 3c).

Stem extraction and cylinder modelling from
point clouds
In this section, we describe how the stems were extracted from
the point cloud and how they were modelled with two different
cylinder models. Figure 4 shows the workflow of this process, and
the details are given in the following subsections.

Covering the point cloud with patches

Potential stem sections are considered to be large vertically
continuous subsets of the point cloud above the ground level.
To extract them, firstly the point cloud was covered with surface
patches, which are small subsets of the point cloud. These
patches were used as the smallest ‘units’ or ‘building blocks’
for segmenting the point cloud into stems. Their location and
diameter (between 10 and 20 cm) were randomly generated
as the branching structures of the trees were, at this stage of
the methodology, still unknown. Also, the neighbours of the
patches were identified and used for region growing. The patch
generation process is explained in the study of Raumonen et al.
(2013). Figure 5a shows examples of the surface patches.

Locating potential stem sections

Then, based on the height of the patches, layers of the patches
were iteratively processed from the highest to the lowest layer:
all patches between 2.5–4.0, 2.0–3.5, 1.5–3.0, 1.0–2.0 and 0.3–
1.0 m above the ground were iteratively selected (Figure 5a).
For each layer, the connected components of the patches in
the layer were identified: each component is the collection of
all the patches that are connected to each other in the sense
of the neighbour–relation of the patches. Each component that
had more than 15 patches was a potential section containing a
stem (Figure 5b). When all the potential stem sections from one
iteration had been identified, they were processed one at a time,
from the section containing the largest number of patches to
the section containing the smallest number of patches, in order
to see if they could be extended to the whole stem. When the
stems from one layer had been identified, those stem points were
no longer used in other layers for locating stems. In addition,
potential stem sections were disregarded after expansion if they
contained points from already identified stems.

Cylindrical surface coverage

The potential stem sections were processed to find the best
possible stem subset from the point cloud. A subset is considered
a real stem section based on how completely the surface of
the section is covered with points or how high is the so-called
cylindrical surface coverage. The cylindrical surface coverage was
estimated using two lines, an axis line inside the stem section
and another line orthogonal to it, as a reference for partitioning
the points close to the line into subsets that were intersections
of sectors and horizontal layers. A random reference direction
orthogonal to the axis and a given point in the axis make it
possible to compute a single angle and projected height for each
point (see Figure 6a–c). Practical estimation of surface coverage
was performed as follows: using an axis line in space (and a point
in the line) and a random orthogonal direction as a reference, the
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Figure 4 Workflow of the stem extraction and cylinder modelling.

points close to the line were divided into 20 equal-angle sectors
and 10 equal-height layers. The intersection of these sectors and
layers produced a partition of 200 subsets (see the example in
Figure 6) and the relative number of non-empty subsets gave the
surface coverage.

Selecting a proper stem section

In order to correctly select only one stem from multi-stem trees
or sections containing points from two neighbouring stems, a
potential stem section was first expanded with five layers of
neighbours (patches outside the layer defining the section) and
then divided into layers ∼30 cm high. With this step, the con-
nected components of the layers were determined. Considering
each component as a stem section, its axis line was estimated
and applied to estimate the surface coverage on the whole
expanded stem section. The axis line giving the highest surface
coverage was then chosen to define the final stem section. The
extended stem section was once again partitioned into 200

subsets as above, and the points closest to the axis were selected
from each subset (Figure 6d). Then, a cylinder was fitted into
this filtered section, and the cylinder was accepted if it was
reasonable, i.e. a radius of <1 m, axis nearly vertical, and surface
coverage over 40 per cent.

Expanding stem sections into full stems

Once a stem section had been defined, it was then expanded
into the whole stem by first expanding it towards the ground and
then upwards, as follows. The cylinder axis and radius were used
to extract 3D subsets from the point cloud below the cylinder
(or above it, when moving upwards), so that the length of the
subset was increased iteratively and so that the distance of the
points from the axis was less than three times the radius. The
length of the subsections was increased from ∼3 times the radius
up to ∼16 times the radius. The subsets were filtered according
to the surface coverage, as above. They were then fitted with
cylinders to estimate their axis and radius. The subset with the
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Estimating tree stem diameters and volume from smartphone photogrammetric point clouds

Figure 5 Locating potential stem segments. (a) Close-up of a stem point cloud portioned into patches and (b) different colours denote large enough
patch components, which work as initial stem section candidates that are later expanded into full stems.

greatest surface coverage was selected as the one that continues
the stem. This process was then repeated until the ground was
reached. The process continued upwards as long as there were
sufficient points (at least 20), and the axis and radius were similar
to the cylinder below. The result of the process was a subset of
the point cloud containing the stem and cylinders that model its
surface.

Extraction Model and Section Model

The above process of extracting stem point clouds used cylinders
and produced a cylinder model for each extracted stem. We
call this the ‘Extraction Model’. Subsequently, the stems were
modelled again with cylinders, but now the locations and lengths
of the cylinders were fixed for a comparison with the manual
diameter measurements. First, a cylinder was fitted around a
height of 1.3 m (section 1.0–1.6 m) to accurately estimate d.b.h..
Then, the entire stem was fitted with cylinders so that they
covered the sections 0–0.5, 0.5–1.5, 1.5–2.5 m, etc. up to the top.
Apart from the first mentioned, the midpoints of these cylinders
were at a height of 1, 2, 3 m, etc., which were the same heights
as the diameter measurements. The section volumes thus match
the volume estimated from the diameter measurements using
equation (1). We call this the ‘Section Model’.

The surface patch generation needed in stem extraction has
a random seed; therefore, when repeated, it always produces a
different partition of the point cloud into patches. Thus, repeating
the extraction process and cylinder modelling will always gen-
erate small variations and in some sensitive cases larger differ-
ences; for example, a stem may be found and extracted in one
iteration but not in another. Extraction and cylinder modelling
were repeated 10 times for each point cloud to capture the
uncertainty in the process. The averages (i.e. volumes) from the

10 iterations were used as the result, and standard deviation
estimates the uncertainty in the results.

Statistics to evaluate the modelling results
To evaluate our modelling results, we calculated the RMSE and
bias as defined in equations (2) and (3):

RMSE =
√∑

n
(
estimated − measured

)2

ntrees
(2)

Bias =
∑

n
(
estimated − measured

)
ntrees

(3)

In both formulas, estimated values were calculated as the
average value of d.b.h. or volume from the 10 iterations for each
tree. The percentage values of these parameters were obtained
by comparing each one with the average measured value.

The uncertainty and accuracy of the modelling results were
estimated by analysing the standard deviation and absolute
error of d.b.h. and section volume for each tree of the 18 point
clouds from the 10 iterations. Then for each point cloud, the
mean standard deviation and mean absolute error values were
calculated as the average value of the 45 single-tree standard
deviations and absolute errors.

Results
Stem extraction and cylinder modelling from point
clouds
Results obtained for each point cloud varied in the number
of reconstructed trees and stems found in different iterations.
Table 2 shows the number of trees found by applying our
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Figure 6 Determination of cylindrical surface coverage. Potential stem section is partitioned into (a) equal-angle sectors based on a line (green)
orthogonal to the cylinder axis (blue) and (b) equal-height layers based on the axis. (c) The final partition is the intersection of the sectors and layers
and the surface coverage is the relative number of non-empty intersections. (d) Filtering based on the partition where only the points closest to the
axis from each subset are kept. Different colours denote different subsets.

algorithm to each of the 18 point clouds produced with the
photogrammetric method. In addition to the total number (trees
found in at least one iteration), the table also shows the number
of trees found in all 10 iterations and those found in at least

9 iterations. All 45 trees were found only in the point clouds
generated with Image scale 1/4 or 1/2. At the same time, with
Image scale 1/2, it was possible to find all trees with the Point
density set to high and optimal. When our algorithm was used
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Estimating tree stem diameters and volume from smartphone photogrammetric point clouds

Table 2 Number of trees found in different point clouds.

Point cloud
index

Number of found trees

Total In all the 10
iterations

In at least 9
iterations

1 44 39 40
2 44 43 44
3 32 23 23
4 37 35 36
5 45 43 45
6 43 42 42
7 42 39 40
8 45 43 44
9 44 43 43
10 45 45 45
11 45 45 45
12 45 43 45
13 45 41 43
14 45 45 45
15 45 44 45
16 45 45 45
17 45 44 44
18 36 34 34

on the point cloud generated with the Image scale 1/2 and low
density (point cloud 18), only 36 trees were found.

The most problematic point cloud is n. 3, which was produced
with the lowest density parameters (Image scale: 1/8; Point
density: low; Minimum number of matches: 3). However, despite
these problems, the algorithm was able to reconstruct 32 trees
from the different iterations. All the trees were found in all the 10
iterations in point clouds 10, 11, 14 and 16. Interestingly, all these
point clouds were produced with an Image scale of 1/2, except for
n. 10 (Image scale: 1/4; Point density: low; Minimum number of
matches: 3).

We also investigated in how many point clouds each tree in
the plot was reconstructed by applying the algorithm. A total of
12 of the 45 trees were reconstructed in all 10 iterations of the
18 point clouds and another 20 in at least 9 iterations of them.

Mapping these data for each tree (Figure 7) shows that the
most problematic trees were those photographed only in the first
two stretches of the forward survey path and in all the photos
taken during the return survey. These photos were taken under
non-optimal light conditions of backlighting due to the position
of the sun and most had significant lighting problems.

Cylinder-based d.b.h. estimates from different point clouds

The RMSE and d.b.h. bias estimated by the cylinder-fitting
approach compared with the field data of those point clouds with
all the 45 trees reconstructed are summarized in Table 3. Mean
standard deviations and absolute errors were also calculated for
the 18 point clouds (Table 4).

D.b.h. RMSE values ranged from a minimum of 1.6 cm (5.58 per
cent) to a maximum of 4.6 cm (16.09 per cent). The best result
in terms of RMSE was achieved by point cloud 10 (Image scale:

1/4; Point density: low; Minimum number of matches: 3). This
point cloud also had the lowest bias value. A strong correlation
was also found between the d.b.h. measured in the field and
the d.b.h. derived with the cylinder-fitting approach based on
this point cloud (R2 = 0.95) (Figure 8). This point cloud also had
the lowest mean absolute error (0.58 cm), low uncertainty and
high precision as indicated by the low mean standard deviation
in the estimation of the d.b.h. (0.23 cm) (Table 4). However, the
best result in terms of mean standard deviation was shown by
point cloud 14 (Image scale: 1/2; Point density: optimal; Mini-
mum number of matches: 3—the default settings of the soft-
ware). The d.b.h. RMSE value of this point cloud was also good
(RMSE = 2.14 cm; RMSE% = 7.72). Negative bias values indicate
that the model tends to slightly underestimate d.b.h.

Figure 9 compares the average absolute error and standard
deviations of d.b.h. estimates, both from the 10 modelling itera-
tions, for each tree and for each point cloud. Point clouds 1 and
2 have a high level of error and standard deviation, showing poor
results in terms of accuracy and uncertainty. The best accuracy
and uncertainty results were obtained from point cloud 10, with a
maximum average error value of 2.9 cm and standard deviation
of <0.5 cm for all but three of the trees. Figure 9a shows the
standard deviation of the d.b.h. estimates obtained during the
10 iterations and for each tree in the different point clouds.
The comparison of these values between the number of trees
and number of point clouds highlights how well the algorithm
worked in most cases. In point clouds 1 and 2, the standard
deviation is large for almost every tree. In the other point clouds,
except for point cloud 18, trees 37–45 usually have large standard
deviations. Tree 27 had some problems in most of the point
clouds, with standard deviation values of ∼3–4 cm. Of note is
the peak in the standard deviation values at tree 10 for point
clouds 11 and 12. As shown in Figure 9b, absolute error values
are bigger than standard deviations, in particular in the first four
point clouds. In addition, in most cases, the most problematic
trees in terms of accuracy are trees 1–10 and trees 35–45, which
were those captured in a smaller number of images because they
were located at the beginning of the two photographic paths.

Volume estimates by sections from different point
clouds
Volumes by sections, estimated using diameters measured at
different heights of up to 6 m with a Wheeler pentaprism, were
compared with those obtained using the Section Model. These
data were also compared to section volumes given by the Extrac-
tion Model. Depending on the quality of the point clouds, it was
not possible to use all 15 reference trees to calculate section
volumes in all the point clouds. Table 5 summarizes the RMSE of
the section volumes and the bias for the 9 point clouds in which
the model managed to compute section volumes of up to 6 m for
all the 15 reference trees. The minimum RMSE value (22.67 per
cent) was obtained from point cloud 10 (Image scale: 1/4; Point
density: low; Minimum number of matches: 3). Estimated section
volumes obtained from point cloud 10 correlated strongly with
those calculated by field measurements (R2 = 0.872, Figure 10).
Extraction Model RMSE and bias values were considerably smaller
than those obtained with the Section Model (but see standard
deviation results below).
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Figure 7 Map of trees showing in how many point clouds each tree was found in at least 9 out of 10 iterations. Dotted line indicates the route of the
forward survey path.

Table 3 Extraction Model d.b.h. results—RMSE and bias.

Point cloud
index

Number of
reconstructed trees RMSE d.b.h. Bias d.b.h.

(cm) % (cm) %

1 44 – – – –
2 44 – – – –
3 32 – – – –
4 37 – – – –
5 45 3.0991 10.71 −2.04 −7.07
6 43 – – – –
7 42 – – – –
8 45 2.3479 8.12 −1.05 −3.63
9 44 – – – –
10 45 1.6142 5.58 −0.58 −1.99
11 45 2.2669 7.84 −1.30 −4.50
12 45 2.9589 10.23 −1.60 −5.52
13 45 4.6561 16.09 −2.03 −7.01
14 45 2.1468 7.42 −1.10 −3.82
15 45 2.6816 9.27 −1.61 −5.56
16 45 1.7768 6.14 −0.71 −2.45
17 45 2.3661 8.18 −0.97 −3.36
18 36 – – – –
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Estimating tree stem diameters and volume from smartphone photogrammetric point clouds

Figure 8 D.b.h. estimated by the cylinder-fitting approach compared with field measured d.b.h. Results of the point clouds that detected all trees
in all 10 iterations are illustrated. The depicted values are averages calculated from the 10 iterations and the error bars/vertical bars show ±SD of
the iterations. (a) point cloud n. 10, (b) point cloud n. 11, (c) point cloud n. 14 and (d) Point cloud n. 16. Results of all the remaining point clouds are
available in Supplementary Figure 8.

Similar to the d.b.h. estimates, we analysed the average abso-
lute error and standard deviations of volumes computed from
the 10 iterations for each tree and each point cloud in order to
estimate the uncertainty and the accuracy of the Section Model.
Volume estimates by the Section Model on point cloud 1 show
the highest average error values while those on point cloud 10
the lowest (Table 6). Mean absolute error values for each tree
also showed that volume estimates for tree 10 (dark grey column
in the table) were the least accurate, while those for tree 17
(light grey column in the table) were the most accurate, with
mean absolute error values higher than 0.04 m3 only from point
clouds 1 and 2. Table 7 summarizes the standard deviation values
of the section volumes from each point cloud obtained using
the Section Model for all the 15 trees measured in field. These
values were highest for tree 42 (dark grey column) and lowest
for tree 25 (light grey column) in most point clouds. Therefore,

the volume estimates of tree 42 were the most uncertain, while
those of tree 25 were the most precise. The most problematic
point clouds were 1 and 13, with values up to 0.05593 m3. These
point clouds produced results with the highest uncertainty, while
estimates from point cloud 10 were the most precise in the
Section modelling.

A comparison of the Section Model and Extraction Model
results highlights that the Extraction Model gave more accurate
volume estimates, but that the higher standard deviations indi-
cate more uncertainty in these estimates (Figure 11).

Correlation coefficients
An initial analysis of the results seems to indicate that the den-
sification parameters have a significant influence on the results.
To estimate the influence more quantitatively, we calculated the
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Forestry

Figure 9 Standard deviation and mean absolute error of d.b.h. for each tree in the 18 point clouds obtained during the 10 iterations. (a) Standard
deviation and (b) absolute error. White pixels indicate that the tree was not detected in the corresponding point cloud.
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Estimating tree stem diameters and volume from smartphone photogrammetric point clouds

Figure 10 Volumes from Section Model compared with field measured volume by sections. The values are averages calculated from the 10 iterations
and the error bars/vertical bars show ±SD of the iterations. (a) Point cloud n. 8, (b) point cloud n. 10, (c) point cloud n. 14 and (d) Point cloud n. 16.
Results of all the remaining point clouds are available in Supplementary Figure 10.

correlation coefficients of these parameters with the following
variables: number of reconstructed trees; RMSE and standard
deviation of d.b.h.; volume RMSE and standard deviation from
the Section Model (Table 8). The number of reconstructed trees
showed a low correlation with the Image scale and a low–
medium correlation with Point density and Minimum number
of matches. On the other hand, the correlation of the RMSE of
d.b.h. correlated poorly with Image scale, but correlated highly
with Point density and Minimum number of matches. Thus,
errors in d.b.h. estimates increase with increasing Point density
and Minimum number of matches. The correlation of RMSE of
volume with densification parameters gave very different results:
a medium negative correlation with Image scale and Minimum
number of matches (RMSE increases with decreasing Image
scale and Minimum number of matches) and a medium positive
correlation with Point density. The standard deviation of d.b.h.

and volume showed similar correlations to the corresponding
RMSE correlations. The standard deviation of d.b.h. shows a high
correlation with point density and a medium correlation with
Minimum number of matches, while the standard deviation
of volume shows a negative correlation with Image scale and
Minimum number of matches.

Discussion
The use of photogrammetric methods to estimate biometric
parameters in the forest is still a developing field. Forests often
have complex light conditions, high tree densities and occlusions
by branches and shrubs can occur. This makes photogrammetric
measurements challenging, and investigations are needed to
for example identify optimal acquisition paths and processing
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Figure 11 Mean absolute error [L] (left y-axis) and mean standard deviation [L] (right y-axis) of section volume estimates from modelling each point
cloud. Bars indicate mean absolute errors, while dots indicate standard deviations (light grey: Extraction Model; dark grey: Section Model). (a) Point
cloud n. 2, (b) point cloud n. 5, (c) point cloud n. 10 and (d) Point cloud n. 16. Results of all the remaining point clouds are available in Supplementary
Figure 11.

Table 4 Extraction Model d.b.h. results—mean absolute error and stan-
dard deviation.

Point cloud index Mean absolute
error (cm)

Mean standard
deviation (cm)

5 2.04 0.8233
8 1.05 0.3730
10 0.58 0.2342
11 1.30 0.7460
12 1.60 0.7693
13 2.03 0.6282
14 1.10 0.2209
15 1.61 0.2419
16 0.71 0.4186
17 0.97 0.2876

parameters for deriving dendrometric inventory data from these
data.

In this study, we examined several of these parameters using
photogrammetric surveys based on a smartphone camera. The

use of terrestrial image-based point clouds from a smartphone
camera—a non-specialized instrument that almost everyone
owns—is a new and straightforward way to investigate the
structure and features of forest plots. To our knowledge, in the
published literature so far only professional cameras were used
to produce point clouds of forest stands. This paper has explored
the feasibility of using this low-cost photogrammetric method
for the collection of forest inventory data and has compared the
quality of the terrestrial photogrammetric point clouds obtained
with different densification parameters of the point clouds.

In this section, we present a comparison of our results with
those obtained in previous studies, although the comparison
must take into account the presence of random errors in the
estimation of the parameters in the field in the various studies,
as well as general differences in the species composition and the
complexity of the investigated forest stands.

Liang et al. (2015) developed several photogrammetric meth-
ods to estimate d.b.h. in a 30 × 30 m field plot with 25 trees
(mean d.b.h. = 31.86 cm), i.e. with a tree density of ∼50 per
cent of our plot. They obtained d.b.h. estimates with an RMSE
ranging from 2.98 cm (8.03 per cent) to 6.79 cm (18.87 per
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Estimating tree stem diameters and volume from smartphone photogrammetric point clouds

Table 5 Volume estimates by sections (h = 6 m).

Point cloud index Section Model Extraction Model

RMSE section volume Bias section volume RMSE section volume Bias section volume
(m3) % (m3) % (m3) % (m3) %

1 0.185569 44.39 −0.1631 −38.93 0.170347 40.65 −0.1408 −33.61
2 0.136495 33.30 −0.1095 −26.13 0.130566 31.16 −0.0951 −22.71
5 0.112862 26.93 −0.0736 −17.59 0.104982 25.05 −0.0494 −11.80
8 0.099392 23.72 −0.0506 −12.09 0.087235 20.82 −0.0312 −7.46
10 0.094983 22.67 −0.0335 −7.99 0.085458 20.39 0.0001 0.02
11 0.12036 27.93 −0.0655 −15.65 0.098021 23.39 −0.0371 −8.85
12 0.131031 27.34 −0.0646 −15.43 0.098181 23.43 −0.0478 −11.41
14 0.108853 25.98 −0.0592 −14.13 0.097816 23.34 −0.0383 −9.14
16 0.103580 24.72 −0.0472 −11.27 0.095426 22.77 −0.0270 −6.46

Table 6 Section volume mean absolute error [L].

Tree index

1 2 3 10 11 17 19 20 24 25 34 35 38 42 43

Point
cloud
index

1 190.4 171.4 436.5 348.1 151.2 89.3 172.9 313.6 256.7 238.6 93.6 226.4 127.3 198.9 203.4
2 59.5 105.2 143.6 285.5 75.4 52.2 138.6 130.6 108.5 195.4 142.3 140.5 80.0 117.1 133.2
3 36.2 54.5 85.7 196.2 59.8 11.6 76.1 94.7 256.8 198.9 96.3 234.3 117.1 133.2
4 84.5 87.2 86.3 256.8 157.5 177.4 105.0 59.5 98.8 129.6
5 190.5 81.7 118.0 242.7 76.7 28.8 89.9 68.4 72.5 102.9 194.4 88.2 42.9 92.6 98.6
6 71.9 94.6 161.0 289.0 100.4 18.7 82.2 64.7 256.8 105.2 194.4 76.0 92.9 80.4
7 68.4 85.2 916.5 58.3 2.3 71.1 62.6 67.8 129.5 204.7 78.7 35.4 77.2 92.5
8 51.7 59.5 99.1 229.0 41.7 0.1 55.3 48.9 61.4 95.1 210.1 64.9 20.4 56.0 85.8
9 40.0 40.0 42.6 241.5 4.4 54.5 32.4 62.6 81.5 209.8 53.1 8.0 60.2 75.0
10 16.7 37.1 54.4 213.6 20.4 39.1 51.0 55.8 41.5 121.2 230.4 55.2 3.0 44.9 63.3
11 60.8 69.3 101.0 282.3 71.7 37.1 77.8 65.1 72.8 113.9 213.5 86.4 27.9 41.1 85.1
12 51.9 45.5 107.5 262.1 318.7 2.1 63.0 59.4 256.8 92.4 221.3 83.5 46.4 419.2 103.7
13 25.3 73.2 5.3 279.7 26.5 93.1 256.8 215.7 93.5 41.5 143.3 395.1
14 49.9 92.1 82.9 230.1 51.0 20.2 67.2 59.1 68.8 156.7 223.8 103.0 27.8 43.2 78.0
15 59.6 54.3 124.5 279.3 29.0 68.6 56.7 48.7 92.2 200.6 81.7 12.1 81.1 77.3
16 51.2 71.7 80.0 250.3 54.0 36.3 57.4 40.3 63.7 87.4 228.3 75.1 7.0 52.9 72.9
17 52.2 32.7 110.5 229.8 23.9 57.9 53.7 65.6 85.9 228.5 81.2 234.3 22.7 81.8
18 16.1 32.3 66.7 67.1 138.7 230.9 58.2 4.9 35.3 64.4

cent). More recently, Piermattei et al. (2019) estimated d.b.h. and
stem curves (up to 2.8 m above the ground), using a cylinder-
fitting method, in four forest plots with a tree density ranging
from 390 to 875 stems ha−1. They estimated d.b.h. with an RMSE
between 1.21 and 5.07 cm. To our knowledge, until now these are
the only studies that used cylinder modelling to estimate stem
diameters.

Forsman et al. (2016) developed a method to estimate d.b.h.
with image-based techniques in six circular field plots (20-m
radius). They obtained the best RMSE (2.6 cm) in the plot with
a tree density of 270 trees ha−1 (mean d.b.h. = 21.0 cm) and
the worst (13.8 cm) in the plot with ∼300 trees ha−1 (mean
d.b.h. = 22.8 cm). Mikita et al. (2016) estimated d.b.h. and stem
volume of 118 trees (mean d.b.h. = 38.16 cm) in a 0.8 ha for-
est stand, with tree density of 30 per cent of our plot. D.b.h.

estimates used a circle-fitting method and stem volumes were
calculated by an allometric equation. They reported a d.b.h. RMSE
of 0.911 cm (2.39 per cent) and a volume RMSE of 0.082 m3.

The forest plots studied in these published articles are
broadly comparable with that of the present study. It is hence
interesting that the RMSE values found in this study (d.b.h.
RMSE = 1.61 cm and stem volume RMSE = 0.094 m3) are better
than those presented in all the previous studies, except for Mikita
et al. (2016). The latter is the only study that estimated stem
volumes, in addition to the d.b.h., but the volume estimates
were based on allometric relationships. The better performances
observed in the study of Mikita et al. (2016) could be due to
the lower density of trees in their forest plot compared to
that of our study and due to the availability of well-suited
allometries.
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Table 7 Section volume standard deviation [L].

Tree index

1 2 3 10 11 17 19 20 24 25 34 35 38 42 43

Point
cloud
Index

1 18.46 7.77 13.78 7.04 17.11 12.99 3.22 5.86 4.78 3.36 3.44 26.97 14.20 11.54 12.87
2 4.46 5.21 5.30 6.24 2.02 6.13 2.98 14.01 22.16 4.62 1.69 3.90 4.25 16.55 8.48
3 5.45 16.64 5.55 23.92 9.80 13.18 11.22 8.57 3.33 0.39
4 0.54 0.82 1.09 4.96 0.50 1.48 2.79 9.27 5.12 1.96
5 9.71 1.30 5.39 2.75 5.44 1.74 2.50 5.06 12.36 1.50 1.05 1.03 3.13 6.17 3.33
6 5.94 7.59 22.21 8.29 29.94 0.89 2.73 4.55 7.89 0.53 1.09 6.29 17.47 4.75
7 1.18 5.48 3.56 2.06 1.00 0.97 0.85 1.58 0.82 1.13 2.57 1.30 1.81 1.11
8 5.09 5.94 2.45 2.21 1.24 0.89 2.59 4.99 1.27 0.62 1.09 3.70 1.35 9.69 5.75
9 4.54 18.90 43.36 3.54 1.23 0.93 2.46 6.78 3.38 0.63 14.92 4.01 41.53 1.62
10 2.63 2.76 1.86 5.19 5.00 4.90 2.71 6.64 9.96 1.00 0.65 2.90 5.46 2.32 1.46
11 2.69 1.14 7.55 8.27 2.27 17.02 2.38 100 17.88 0.96 1.08 6.91 5.36 56.42 12.75
12 3.82 5.12 5.84 9.14 1.01 1.92 1.19 10.33 1.16 0.92 3.58 7.99 20.23 4.47
13 37.48 12.97 55.92 25.87 1.20 16.91 29.71 1.28 5.96 24.56 21.84
14 1.80 8.12 1.46 3.14 0.79 1.19 7.09 1.03 14.95 0.90 0.67 5.53 3.62 0.98 1.24
15 6.14 3.45 6.31 0.92 1.70 1.26 0.85 0.72 0.60 1.31 1.11 1.98 1.16 1.15
16 13.46 3.03 1.52 1.42 2.28 19.15 0.77 1.02 5.82 1.89 0.57 1.25 4.62 20.56 2.73
17 1.73 8.08 28.77 11.27 1.13 3.66 1.63 4.74 1.09 0.50 1.15 9.47 18.23 1.02
18 1.38 0.52 15.12 6.98 2.24 0.85 1.72 2.64 0.96 1.73

Table 8 Correlation coefficient with densification parameters.

Image scale Point density Minimum no.
of matches

No. of reconstructed
trees

0.282191166 0.423233178 0.442913404

RMSE d.b.h. 0.186784026 0.700465172 0.803823716
RMSE volume −0.524342322 0.483270612 −0.352826843
SD d.b.h. 0.071999959 0.898297643 0.455042236
SD volume −0.210754747 0.539382044 −0.165215077

Our experiment highlighted strengths and weaknesses of the
applied image acquisition grid. It is evident that the photogram-
metric process has given better results for trees located towards
the centre of the plot. This is probably because these trees are
captured by a larger number of images in both the forward and
the return survey paths. It is therefore important to maximize
the number of images in which each element of the scene is
present, in order to obtain good results with the photogrammetric
reconstruction of the trees.

Light conditions are another factor to take into account when
setting the image acquisition grid, because they greatly affect the
quality of the point clouds and consequently the performance
of the model. It is advisable to avoid lighting problems during
the photographic survey. For example, images captured when
the sun is higher or during the early afternoon (when there is
a softer light in the forest) prevent the acquisition of images
against the light. Similarly, an overcast sky also prevents lighting
problems (Liang et al., 2015; Forsman et al., 2016; Piermattei
et al., 2019).

Recent studies demonstrated that the accuracy of pho-
togrammetric point clouds varies with the resolution of the
image sensor, the camera configuration and the equipment used
to support the camera (Piermattei et al., 2019). In this study,
we also investigated the influence of densification parameters
on the 3D reconstruction and, hence, on d.b.h. and volume
estimates. The results showed that Image scale is the parameter
that most influences the model’s performance in finding and
extracting trees from the point clouds. All the trees were found in
all the 10 modelling iterations in point clouds produced with an
Image scale of 1/2. The only point cloud produced with an Image
scale different from 1/2 that allowed to find all the 45 trees was
the number 10 (Image scale: 1/4; Point density: low; Minimum
number of matches: 3). Details in the images increase as the
image scale increases, which improves the production of the
point cloud during the photogrammetric process.

Therefore, using a higher Image scale value (increasing the
image size during the photogrammetric process for the produc-
tion of the point cloud and therefore the possibility to obtain more
details) leads to a better reconstruction of the 3D structure of
the trees, reducing the presence of noise caused by incorrectly
identified points. Nevertheless, it is important to make the right
combination of this parameter with the other parameters. The
results show that the best performance for extracting d.b.h. and
volume estimates for the individual tree was obtained with point
cloud 10 (Image scale: 1/4; Point density: low; Minimum number
of matches: 3). This indicates that a low density of the point cloud
can positively influence the volume estimates, probably due to
reduced noise. It is therefore possible to state that the presence
of incorrectly positioned points (noise) and an excessively high
Point density lead to incorrect fitting of cylinders to the stems and
consequently cause errors in the estimates of biometric forest
inventory parameters. Point cloud 10 also gave the best results
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Estimating tree stem diameters and volume from smartphone photogrammetric point clouds

Figure 12 Working timeline comparison between the two methods.

in terms of accuracy and uncertainty with very low values of
standard deviation and average error from the 10 iterations of the
Section Model. Maintaining the same Point density and Minimum
number of matches and improving the Image scale from 1/8
to 1/4 can lead to a substantial change in results, improving
the worst result (point cloud 3 with Point density low, Minimum
number of matches 3 and Image scale 1/8) into one of the best
(point cloud 10).

Besides assessing the influence of the densification param-
eters of the SfM algorithm, we also examined two different
approaches to estimate the stem volume: the Extraction Model
and the Section Model. The former models the stem with cylin-
ders of variable height, while the latter uses 1 m tall stem sections
(to compare model estimates with those obtained from data
collected in the field). We found that volumes estimated by the
Extraction Model generally gave lower RMSE values than the
Section Model, and lower values of absolute error, but high values
of standard deviation. This is probably because on the one hand
the cylinders in the Extraction Model are generally shorter and
can thus more accurately fit the local diameter. On the other
hand, standard deviation is larger with the Extraction Model
because the lengths and sections of the fitted cylinders can
change from one iteration to the other, in contrast to the Section
Model, where the sections are always the same. Thus, it could
be possible to estimate volumes using only the Extraction Model,
given its good correspondence with the total stem volume up to
a certain height, as estimated with the traditional dendrometric
method.

Concerning the efficiency of the presented approach, we
found that the traditional method of estimating the examined
forest inventory metrics, particularly the diameters of stem
sections at multiple heights, is more time-consuming than the
proposed method. The suggested approach takes approximately
half the time that the traditional methods require (estimated
time based on experience) (Figure 12). Furthermore, it is possible
to obtain other dendrometric parameters useful for forest
management and planning purposes (in addition to d.b.h.
and volume) including lower crown height, or crown depth
estimated by combining images from the ground with aerial
images, simply by implementing the estimation algorithm.
Furthermore, it could be possible to use the photographic surveys
as presented in this study: (1) to estimate all the parameters

needed to produce volume tables rapidly and without felling
trees; (2) to carry out thinning simulations, estimating the
possible withdrawable assortments of wood and the residual
volume; repeated photographic surveys would additionally allow
for, (3) carrying out multi-temporal surveys in order to estimate
stand growth over time and to monitor the evolution of forest
stands.

In summary, our results show that photogrammetric point
clouds can be useful for the reconstruction of 3D tree models to
derive diameter and volumes estimates. Although d.b.h. and vol-
umes were underestimated in comparison with those obtained
using data collected in the field, both d.b.h. and volume up to
a height of 6 m were estimated with good accuracies. Since it
is not possible to assess the error in the estimates produced by
the field measurements conducted here (attempting to measure
irregular shapes, i.e. defined by the presence of ribs or irregularity
of the bark) and the photogrammetric 3D model (dependent on
many factors, including the image calibration process), it is not
possible to define which method is more reliable. This would
require to fell some of the trees and to measure the targeted
parameters, which was out of the scope of this study. Never-
theless, it is encouraging to see that the estimates produced
by the photogrammetric approach agreed very well with the
measurements of the traditional approach and that the data
collection was less time-intensive. Even though certain hardware
and software requirements have to be fulfilled for subsequent
data processing, a further optimization of the process may also
result in a significant cost-saving.

Conclusions
We presented a rapid and automatic image-based, photogram-
metric method for estimating diameters from multiple heights
of a stem as well as the stem’s volume. These parameters are
difficult to assess in the field, and the suggested approach is
a real alternative to other non-destructive measurements of
stem volume and diameters at multiple heights and allows the
structure of forest stands to be studied in a more objective
way.

The possibility to obtain a 3D reconstruction of forest stands
makes it possible to acquire the nearly complete structure of

427

D
ow

nloaded from
 https://academ

ic.oup.com
/forestry/article-abstract/93/3/411/5688859 by Tam

pere U
niversity Library. D

epartm
ent of H

ealth Sciences user on 26 June 2020



Forestry

the studied stand. This information could be used to estimate
other forest inventory metrics useful for forest management and
planning purposes, which may be calculated using the point
cloud.

We tested the influence of the densification parameters of the
photogrammetric process on the d.b.h. and volume estimates
of our method, finding that the most important parameter
is Image scale. Furthermore, our results suggest that it is
important to find an optimal balance between Point density and
Image scale.

We tested our method in a stand with relatively simple struc-
ture, but we are confident that it will work well even in forests
with more understory, if the understory does not cover most of
the stem. Further studies are in progress to test the performance
of the method under such conditions.

The future challenge will be to estimate total tree volume by
improving the photogrammetric survey to capture also the upper
part of the stem by changing the settings of the survey path and
modifying the tree modelling approach. This could enable the
extraction of the total tree structure to estimate total volume and
other useful dendrometric parameters for forest management,
such as lower crown-base height, or also crown depth when the
images taken on the ground are combined with images captured
by a drone. The performance of the presented approach may
further improve with the technological evolution of smartphone
cameras.

Supplementary data
Supplementary data are available at Forestry online.
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