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ABSTRACT We present a general framework which can handle different processing stages of the
three-dimensional (3D) scene representation referred to as ‘‘view-plus-depth’’ (V+Z). The main component
of the framework is the relation between the depth map and the super-pixel segmentation of the color image.
We propose a hierarchical super-pixel segmentation which keeps the same boundaries between hierarchical
segmentation layers. Such segmentation allows for a corresponding depth segmentation, decimation and
reconstruction with varying quality and is instrumental in tasks such as depth compression and 3D data
fusion. For the latter we utilize a cross-modality reconstruction filter which is adaptive to the size of
the refining super-pixel segments. We propose a novel depth encoding scheme, which includes specific
arithmetic encoder and handles misalignment outliers. We demonstrate that our scheme is especially
applicable for low bit-rate depth encoding and for fusing color and depth data, where the latter is noisy
and with lower spatial resolution.

INDEX TERMS 3D, 3-D depth, fusion, compression, super-pixel, time-of-flight, ToF, view-plus-depth,
V+Z, V+D.

I. INTRODUCTION
Representation and processing of real-world
three-dimensional (3D) visual scenes has been of increasing
interest recently in the light of new forms of immersive
visualization achieved by the advancement of 3D display
technology. The geometrical information about scenery can
be sensed into an intensity image-like representation referred
to as ‘‘depth map’’. Each pixel of a depth map represents
the distance to a particular point in 3D space as seen from
a particular view perspective. Depth maps are combined with
confocal captures of 2D color images to form a 3D repre-
sentation, referred to as ‘‘View-plus-depth’’ (V+Z) [1], [2],
where both images have the same size and are pixel-to-
pixel aligned to augment each color pixel with its position
in space. V+Z can be used for various applications, such
as virtual view synthesis by Depth-Image Based Rendering
(DIBR) [3], computational photography effects of refocus-
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ing, vertigo or synthetic aperture [4], and mixed reality [5]
The format has been standardized in 3D video compression
standards (3DVC) [1]. Figure 1 illustrates the color and depth
modalities in blended transparent combination (i.e. the actual
color is shown on the upper left corner and depth is shown
pseudo-color coded in the lower right corner). As seen in the
figure, the depth modality is a piece-wise smooth function,
where edges are formed by objects situated in different dis-
tances. The blended transparency reveals that there is a certain
alignment congruency between edges of both modalities
(i.e. scene objects are at a certain depth).

Depth maps of real scenes are captured and estimated
by, generally, two groups of techniques, referred to as pas-
sive or active sensing. The ‘‘structure-from-stereo’’ estimates
depth by matching similar (corresponding) pixels between
two or more images captured from different perspectives.
Dedicated (i.e. active) range sensors employ Time-of-Flight
(ToF) principles to directly capture depth [6], [7]. In all cases,
depth estimation or measurement usually come degraded by
various artifacts. For example, in passive sensing, degradation
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FIGURE 1. View-plus-Depth edge congruency examples (low-right parts
show depth modality in pseudo colors) for (a) ‘‘Ballet’’, (b) ‘‘Art’’ [8] data
sets.

FIGURE 2. Example of 3D sensing by (a) non-confocal asymmetric camera
setup, where (b) HD color sensor, (c) sensed depth map zoomed to
emphasize noise, (d) de-noised, aligned, and fused output for virtual
DIBR view synthesis.

is caused by ambiguity in texture-less areas or repetitive
patterns. Furthermore, depth resolution is degraded by the
non-linear conversion (quantification) of matched dispari-
ties [8]. In ToF approaches, depth data is limited by the low
sensor resolution, e.g. 120× 160 [9]. It is constrained by the
requirement of the photo-elements to work in high-sensitivity
conditions, which is ensured by increasing the sensing ele-
ment area. ToF sensing elements typically have plate size
of 150 µm, compared to the size of modern color sensors
which is about 2 µm [7]. Otherwise, ToF sensors provide
better depth resolution quality, however they are usually
non-confocally located with respect to the companion color
sensors. A 3D data fusion is required to mix the modalities
into a confocal representation. Such processing stage includes
projection alignment, non-uniform data resampling, denois-
ing, and depth enhancement filtering [10], [11]. Figure 2 illus-
trates the fusion process for a non-confocal asymmetric V+Z
setup.

In this work, we focus on the problem of optimally repre-
senting the V+Z data. Our inspiration is based on the fact

that the depth is a piecewise smooth function aligned to
scene object edges, which open possibilities for its sparse
representation. We consider two cases. First, we consider an
already aligned V+Z representation where depth and color
maps are with the same resolution and we target the smallest
decimated depth map representation which would ensure a
faithful full-resolution depth reconstruction. Such approach is
instrumental for depth compression and streaming in the form
of auxiliary data. Second, we consider a case, where the depth
comes as low-resolution, noise-degraded map and the task is
to restore it to its full resolution. Such case is instrumental in
non-confocal ToF/color data fusion systems.

A. DEPTH AND VIEW-PLUS-DEPTH COMPRESSION
Depth compression schemes can be roughly separated into
two categories regarding whether the depth maps are com-
pressed independently from or jointly with the aligned color
images [12]–[23]. Methods for direct depth map compres-
sion include decomposition techniques for effective predic-
tion of the underlying piecewise-smooth function [12]–[15]
or techniques for representing and compressing depth con-
tours [16]–[18]. The inter-relation between the V and Z
modalities has been explored in several works utilizing dif-
ferent cross-segmentation approaches [18]–[20]. Other works
have considered block partitioning and ‘‘wedgelet’’ edge
modeling of non-rectangular intra-block segments [2], some-
time combined with inter-component prediction [1]. Some
of the tools in image/video compression standards such as
‘‘JPEG/JPEG2000’’ [21], [22] or ‘‘H.264/HEVC/AVC’’ [23]
are also effectively applicable for depth compression.

B. 3D FUSION OF ASYMMETRIC VIEW-PLUS-DEPTH DATA
3D data fusion problem has been considered in different
research settings aiming at aligning the edges of the two
modalities while enforcing piecewise smoothness of the
depth. A layeredMarkov Random Field (MRF) model in [24]
with the purpose to correlate a continuous smooth surface
to the given samples of depth data. The MRF formalization
have been further advanced in [25], [26] and [27]. In [28],
the problem has been cast as in a dissipated heat anisotropic
diffusion network, where the heat sources are the available
data samples. Simultaneous surface fit and denoising have
been considered in a number of works, employing either
joint-geodesic distance [29], or moving least squares [30],
or multi-point regression [31]. Cross-modality filters such
as bilateral [32] and non-local [33], [34] have been imple-
mented as to utilize the high-resolution color map as a guid-
ing modality is the depth reconstruction process. Solutions
based on bilateral filtering have been proposed in [35]–[38],
and solutions based on non-local filtering have been pro-
posed in [39] and [40]. Other forms of edge-preserving
guided filtering have been proposed as well [41]. A method
based on total generalized variation (TGV) for optimization
of anisotropic diffusion tensor structure has been proposed
in [42]. The article provides also a benchmark data set for
3D fusion resampling quality evaluation for real-case data of
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asymmetric V+Z capturing setup, where depth maps are
obtained by noisy ToF sensor.

C. RELATION WITH PREVIOUS WORK
Previously, we have proposed techniques for depth resam-
pling and 3D fusion for the case of an asymmetric
non-confocal V+Z camera setup, where the depth is sensed
in low-sensing conditions [43], [44], as well as techniques for
near-lossless depth encoding [45], [46]. In the present work,
we present a general framework, which addresses both cases.

We further extend the technical stages of super-pixel (SP)
segmentation, resampling, regularization, encoding, and 3D
fusion. More specifically, we modify the segmentation clus-
tering stage proposed in [45], [44] to ensure border congru-
ency at hierarchical refinement levels and seed the SP clusters
for non-uniform data samples to serve the case of projected
data. Furthermore, we address the problem of possible mis-
alignment between V and Z modalities caused by sensing
artifacts. Such misalignment produces edge outliers that con-
centrate high amount of errors in the global cost metrics and
thus mislead the error optimization in the coding process.
To this end, we propose an efficient encoding scheme of such
outliers in so-called ‘‘yield-flow’’ protocol. A modification of
the adaptive regularized reconstruction is proposed as well.

The article is organized as follows: Section II pro-
vides some preliminaries and notation conventions along
with description of basic super-pixel clustering, Section III
describes the proposed general framework, Section IV
describes application realizations for depth encoding and
3D fusion of asymmetric V+Z sensor data utilizing a pro-
posed multi-layer congruent super-pixel clustering mech-
anism, Section V provides experimental results, and the
manuscript is finalized in Section VI for some conclusive
remarks.

II. PRELIMINARIES
A. DEPTH AND VIEW-PLUS-DEPTH COMPRESSION
Consider a color image is some three-component color space,
for example CIELAB [47]. Each pixel with index j is a three-
component vector Vj = [l, a, b]j, j = (1, .., J). When
needed, the pixel is given with its coordinates related to the
camera projective system x = (x, y), {x, y} ∈ R2 [48]. The
associated depth value is denoted by Zj.
When sensed by active sensors, the depth map relates with

the range data D, which represents distances from pixels to
scene points [42]. When estimated from stereo, the depth val-
ues relate with disparity values d showing the shifts between
corresponding pixels [8]. In many encoding applications,
depth is quantized as ‘‘inverse depth’’ [7]

zn = 1
/

n
N

(
1

ZMIN
−

1
ZMAX

)
+ ZMAX , (1)

where {zMIN , zMAX } are the minimum (MIN) and the maxi-
mum (MAX) sensed values of the depth in the scene, and N
is the number of quantization levels. Usually, disparity and
depth are represented as 8-bit integers, Z = (0, .., 28 − 1).

FIGURE 3. Super-pixel clustering: (a) Simple Linear Iterative Clustering
(SLIC) method [49], [51], (b) its possible output, (c) proposed
modification, and (d) its possible output.

When sensed by some active range sensor, depth maps are
non-confocal to the color maps and can come with lower
spatial resolution and floating-point higher range, e.g. Zl ,
l = (1, ..,L), L � J , Z ∈

[
0, 216

]
. In such case, the output of

the V+ Z representation is calculated by projective alignment
and depth resampling, referred to as ‘‘3D fusion’’.

B. SUPER-PIXEL CLUSTERING
Super-pixel (SP) based segmentation plays an essential
role in the proposed framework. Super-pixels are seg-
ments that have near-isotropic and compact representa-
tion with low-computational overhead. A typical super-pixel
behaves as a raster pixel on a low-resolution near-regular
grid. Perceptually, SP areas are homogeneous in terms of
color and texture. Two main approaches for generating
super-pixels can be cited, namely: Simple Linear Iterative
Clustering (SLIC) [49], [50] and Super-pixels Extracted via
Energy-Driven Sampling (SEEDS) [51]. Hereafter we adopt
the SLIC approach.

An elegant feature of the super-pixel segmentation is that
it takes the desired number of SPs as an input parameter
and that for this number it is reproducible in terms of same
SP areas (clusters) and indexing that follow the edge shape
between color textures. For that reason, SP segmentation is
instrumental for finding objects shapes in a scene, see the pear
example in Figure 3 (b). The SP clustering is initialized by
defining K seed locations of color points Qk , k = (1, ..,K ).
Those points are chosen to be equidistantly sampled in image
coordinates xk = {x,y}k for roughly calculated sampling
shifts [50]

s{H,W} = (HW)
/
K , (2)
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where H and W are the pixel dimensions of the sensor (c.f.
blue dots in Figure 3 (a)). Pixels Vj are clustered to SP seg-
ments Ck , where each segment Ck span Nk pixels, as follows.
For each image pixel Vj, a neighborhood Sj (i.e. seeding sup-
port region) is associated. The neighborhood seeding support
region spans a rectangular area of dimensions 2s{R,C} around
Vj. The closest similarity of Vj to seeding points Qk within
Sj is found by applying e.g. a bilateral cost, which assigns Vj
to segment Cκ

k = argMIN
k

{√
λρ ‖xk − xn‖22 + λC

∥∥Qk − Pj
∥∥2
2

}
(3)

where
{
λρ, λC

}
are weighting constants. The clustering is

iterated by updating the seeding pointsQk with the arithmetic
mean for the pixels assigned to the associated cluster Ck

Qk =
1
Nk

{∑
j∈Ck

Vj

}
. (4)

A polishing step that enforces connectivity of points of each
segment is applied at the end [50].

III. PROPOSED GENERAL FRAMEWORK FOR V+Z
RESAMPLING AND FUSION
A. DEPTH RESAMPLING SCHEME
We propose a general depth resampling scheme (DRS) to be
used as a building block in various applications. The aim is
to find an optimal representation of the depth map, for either
compression or depth reconstruction. The block diagram of
the proposed scheme is given in Figure 4. It takes as input
the color image V, a set of initial seeding points Q, and a
depth map Z , which might be or might be not with the same
resolution as the color image. The color image is segmented
by a SP clustering operator 4,

C = 4(V,Q) . (5)

A masking operator M fills each segment Ck with constant
depth values Z̄k , thus generating a depth map with the same
resolution as the color image V

Z̄ =M (Z ,C) . (6)

The values Z̄k are selected or calculated depending on the
application. A cross-modality adaptive reconstruction filter
B reconstructs an estimate of the depth map

Ẑ = B
(
Z̄ ,V,C

)
, (7)

Furthermore, a depth down-sampling operator D turns either
Z̄ or Ẑ into low-resolution depth map Z

Z = D
(
{Z , Ẑ },C

)
, (8)

The scheme is general and can be integrated in other
techniques requiring depth resampling and refinement.
We develop two such techniques, one related with near-
lossless depth encoding and one related with asymmetric V
+Z data fusion. However, we first propose a modification of
the SP segmentation which would better serve the targeted
applications.

FIGURE 4. Proposed depth resampling scheme (DRS).

FIGURE 5. Example of edge congruency of proposed super-pixel
partitioning scheme applied on color map of V+Z data set ‘‘Art’’ for
number of segments K = (a) 64, (b) 256; boundaries visualized on
color (up) and depth (down) modalities.

B. MULTI-LAYER CONGRUENT SUPER-PIXEL CLUSTERING
In order to facilitate the operations in the DRS, we propose
a novel multi-layer SP clustering to serve as the operator
4 (5). It is based on the SLIC method [50] and aims at
finding a segmentation that has contour congruency among
different refinement levels in a sense that a refinement level
with smaller number of segments has segment boundaries of
SPs that are in union to those of a refinement level with higher
number of segments (c.f. Figure 5 (a, b)).

In the proposed solution, the clustering for some desired
number K of SPs is done by several refinement stages ρ,
starting from an initial very fine mosaic ρ = 0. Assume the
initial number of segments K 0 and the corresponding seeds
Q0
k are selected in a way that only a few points M define

each cluster C0
k (e.g. M

0
k = 4). For each iterative step ρ > 0,

the number of SPs is chosen to be smaller (e.g. decreased by
two in each iteration)

Kρ = ((HW)
/
M0)

/
2ρ . (9)
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The clustering process for ρ > 0 combines segments of
SP cluster Cρ

′

obtained in previous iteration ρ′ = ρ − 1.
Denote the actual seeding points at iteration ρ′ byGρ

′

k ′ . In the
general case, these are at non-uniform locations xk ′ , k ′ =
1, 2, . . . ,Kρ

′

. In order to find the new seeders for iteration
ρ, one first sets a coarser uniform grid with steps sρ

{H,W} =

(HW)
/
Kρ(see the blue points in Figure 3 (c)). Seeders G̃ρ

′

k
being closest to this grid are considered as attractors, as they
are meant to attract other super-pixel centroids to form the
new segments Cρk (see the red points in Figure 3 (c)). This is
done by calculating the bilateral distances (3) between each
Gρ
′

k ′ and G̃ρ
′

k within the neighborhood 2sρ
{H ,W } (see the blue

dashed rectangle in Figure 3 (c)), and appending super-pixels
from iteration ρ′ to corresponding attractor super-pixels. This
operation gives the new segment support Cρk . The new seed-
ing points Gρk are then updated both for their positions and
values. The seeding point location xk , k = (1, 2, . . . ,Kρ)
and its intensity value is calculated as the arithmetic mean of
segment points

xk=
1

Mρ
k

{∑
j∈Cρk

xj

}
, Gρk =

1

Mρ
k

{∑
j∈Cρk

Vj

}
, (10)

Essentially, the operation is repeating the basic SLIC but
working at each layer with super-pixels instead of pixels and
maintaining non-uniform seeding positions to better describe
the properties of the embedded super-pixels. It is important
to mention that the resulted clustered segments Cρk combine
pixels from sub-segments Cρ

′

(c.f. Figure 3 (d)), thus ensur-
ing border congruency. The iterations end upon reaching a
desired number of super-pixel segments Kρ .
The proposed modification of the SP clustering brings a

few benefits. First, it leads to a considerably better modeling
of texture transitions (c.f. Figure 5). Second, using the mass
center locations for seeding points, prevents the occurrence
of a misaligned clustering done on finer mosaic scales for the
consecutive iterations. The congruency of SP boundaries is of
vital importance for simplifying the encoding approach and
improving the speed and quality performance of the originally
proposed compression methods [44], [45].

C. DEPTH RECONSTRUCTION
The operatorB (7) is expected to exploit the relation between
color and depth through a cross-modality guided reconstruc-
tion filter [33], [32]. In practice, we adopt the cross-

bilateral filter as modified in [37]. Two weight laterals are
applied per pixelVj in pixel neighborhood (e.g. square block)
ψj:

$m = λs
∥∥xj − xm

∥∥ λc ∣∣Vj − Vm
∣∣ , m ∈ ψj, (11)

where {λs, λc} are parametrized Gaussian smoothing ker-
nels [32] for the spatial proximity and intensity similarity
correspondingly. Then a bilateral weighted average is applied
to each depth pixel

Ẑj =
∑
m
$mZm

/∑
m
$, (12)

FIGURE 6. Proposed reconstruction filter applied on ‘‘Art’’ data set: (a) an
adapting principle, (b) super-pixel masking operator output Z for
64 segments and several refinement updates, (c) filtered outputẐ , and (d)
zoomed regions (labeled by white rectangles ‘‘1’’ and ‘‘2’’); colors are
exaggerated for better perception of details.

FIGURE 7. Block diagram of depth map encoding employing DRS.

to form the reconstructed map Ẑ (7). The neighborhood ψj
(c.f. Figure 6 (a)) is selected to be proportional to the segment
size of the current refinement level ρ′

#
(
ψj
)
∝ M02ρ

′

. (13)

The spatial proximity kernel λs must be related to the size of
the neighborhoodψj. An example of the filter performance is
demonstrated by visual outputs given in Figure 6 (b-d).

IV. APPLICATION CASES
A. DEPTH MAP ENCODING APPLICATION
First application is encoding of depth map in the V+Z rep-
resentation, where the color and depth modalities are already
aligned. With reference to Figure 4, this means that the input
pixel and depth maps are with the same spatial resolution.

Figure 7 illustrates the proposed technique. The deci-
mated depth map Z being output of DRS undergoes arith-
metic encoding exemplified by the operator B. It outputs an
encoded binary sequence P. The reconstructed depth map Ẑ
is compared against the original one by means of Sum of
Squared Errors (SSE) on super-pixel level, and regions of
high reconstruction error are split into finer and embedded
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FIGURE 8. Isotropic map generation applied on ‘‘Art’’ data set for
different number of super-pixels, K = (a) 64, (b) 512 elements (c.f.
Figure 5 (b)).

super-pixels. Their centroids are returned to the DRS module
which updates the outputs for next-iteration reconstructed
depth map Ẑ and its decimated version Z. The latter one
along with the localization information for partitioned SP
segments is stored in a predictive sequence unified with P.
The refinement process is applied iteratively subject to an
encoding bit-budget compared with the bit length T of the
sequence P, i.e. T (P) ≤ .

1) DEPTH REFINEMENT BY SUPER-PIXEL PARTITIONING
The SSE is calculated for each super-pixel

ε
ρ
k =

∥∥∥Zj − Ẑj∥∥∥2 , s.t. j∈Cρk , (14)

SPs with highest errors ερk are marked for further refinement
by going to the finer scale ρ′ = ρ − 1 being kept after
the multi-layer clustering. The seeding points Gρ

′

k and the
associated Cρ

′

k segments are fed back to DRS.

2) ENCODING SCHEMES
We encode three components: (A) The uniformly-decimated
depth map Z produced at iteration ρ is encoded in pre-
dictive sequence PZ ; (B) the depth values corresponding
to partitioned SPs are encoded in predictive sequence Ppt ;
and (C) the partitioned SP structure is encoded in the a binary
sequence B.
(A) The decimated depthmapZρ at stage ρ has an isotropic

structure with dimensions sρ
{H,W} and valuesZ

ρ
k , correspond-

ing to each segment Cρk , as illustrated in Figure 8. The
segmentation structure comes from the color modality and
can be reproduced, thus it does not need to be encoded. The
map itself is encoded in a predictive sequence PZ similarly
to ‘‘JPEG-LS’’ standard [21] and described in detail in our
previous work [45].

(B) Consider M partitioned SPs with corresponding depth
values Z

ρ′

m , m = (1, ..,M ). These are predicted in a tree
structure Ppt by the difference with their parent sub-pixel Zρk

Pptm = Z
ρ
k − Zρ

′

m . (15)

The entire sequence Ppt is subsequently encoded by an adap-
tive multi-alphabet range coder [52], [45].

FIGURE 9. Binary tree structure for encoding super-pixel refinement
partitioning.

(C) The partitioning is encoded in a binary sequence B,
formed by two sub-sequences {Bim,Bpt}, which encode the
partitioning of the isotropic map Zρ and the partitioning tree
structure Ppt respectively, as shown in Figure 9. Partitioned
SPs are indexed by 1 (split) and non-refined SPs are indexed
by 0 (no split). The map Bim encodes the partitioned SPs
for the initial stage ρ and the shape and indexing follow
those of the isotropic map Zρ . The binary map is scanned
column-wise to initialize the first index tree level in Bpt .
Next level is for partitioned SPs belonging to consecutive
refinement stages ρ′ = ρ − 1. Those are encoded in a
concatenated sequence in Bpt . Note that it does not need to
store information about the number of children of refined
SPs, as this is automatically found when the SP clustering
for a refinement level is run. For the last refinement level
ρ′ = 0, there is an exception: SPs which are marked for
partitioning are not indexed further, since the segment is
entirely encoded by from the original depth values. The
sequenceBim is encoded separately from the rest of the tree by
a ‘‘Context-Adaptive Binary Range Coder’’ (CABRC) [53].
For the context modeling, it is assumed that ‘‘split/no-split’’
of current SP depends on ‘‘split/no-split’’ of its neighbors.
Using this assumption, the value of a binary element Bimk ,
is assigned to four possible binary sub-contexts indexed by
the sum of neighboring pixels.

3) ENCODING EDGE OUTLIERS BY ‘‘YIELD-FLOW’’
PROTOCOL
The efficiency of the proposed depth encoding approach
relies on the ideal consistency between color and depth
modalities. However, in real case of V+Z capture,
depth maps can come with various artifacts caused
by stereo-correspondence errors, low-resolution non-
confocal depth sensors along with projection misalignment
and resampling ambiguities introduced by measurement
errors [43], [44]. Examples of regions with such artifacts are
given for a frame of ‘‘Ballet’’ data set in Figure 10 (c, d).
While artifacts of the above-mentioned types are affect-
ing a relatively small number of pixels, the encoding
residual error will be concentrated precisely around them
(c.f. Figure 10 (e)). We denote such problematic areas as
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FIGURE 10. Proposed edge outlier coding approach and resulting coding sequence: (a) input segment, (b) modified output; Example of an edge
outlier encounter for a frame from ‘‘Ballet’’ data set: (c) depth and color fusion (blended with transparency), (d) zoomed regions, absolute residual
error for encoded depth for the same bitrate of t∼0.016 bpp: (e) non-applied (∼36 dB) and (f) edge outlier encoding applied (∼38.92 dB).

edge-consistency outliers (ECO). The SPs which contain
ECO, will indicate high SSE values (14), then the refinement
partitioning will concentrate on those SPs attempting better
quality which might go until the last refinement stage is
reached and pixels are encoded individually. Apparently,
the refinement scheme applied in such manner will be
inefficient and could fail producing an optimal encoding
output for the given bit-budget . To tackle the problem,
we propose an optional ECO binary encoding scheme called
‘‘yield-flow’’ protocol (YF). It indicates an encounter of
possible ECO, if the partitioned SP children have at least
two members with the same depth value as of the parent
SP. In such case, the encoding system activates YF process
that consists of sequence of {‘‘YES’’ - 1, ‘‘NO’’ –0} flags
(c.f. Figure 10 (a, b). The first bit of YF ‘‘tells’’ the encoder
whether the SP is to be encoded for ECO. If YES, then the
YF follows the internal pixel boundary of the SP counter
clock-wisely (c.f. Figure 10 (a, b)) starting from lowest-left
boundary node of neighboring SPs. The positive bit value
indicates whether the boundary segment has to be processed.
The positive bits in YF will indicate a ‘‘yield’’ procedure:
The depth value of processed pixel - Zj is replaced with the
value of neighboring pixels in the horizontal and vertical
nearest direction that belongs to other SP clusters of the same
refinement stage. In case of many choices, the decision is
done for the neighboring pixel that forms the smallest angle
ω between the neighborhood direction and the direction to
SP centroid Gρk . In our realization, the yield process meets
the following requirements. First, the SP should belong to
a refinement stage higher than a certain threshold ρ > tρ ,
(e.g. tρ = 5). Second, pixels considered for the yield process
are those that have no error comparing to GT for the new

assigned depth value. Since the yield-processed pixels belong
to GT, then those are excluded from the SP clusters of all
higher refinement stages and should be skipped also by the
regularization filtering step. The performance of the proposed
edge outlier encoding is exemplified in Figure 10 (f), where
it is shown that most of ECO are suppressed for a significant
quality metric gain (c.f. Figure 10 (c-f)).

B. FUSION FOR ASYMMETRIC V+Z CAMERA SETUP
The general DRS can be applied for 3D fusion of asymmetric
V+Z data, provided some pre-processing is performed before
feeding the DRSmodule as shown in Figure 11. In the above-
mentioned setting, the two modalities are not aligned as they
come from two non-confocal sensors and the dedicated depth
sensor is usually of lower resolution. The depth pixels Zk ,
k = (1, ..,K ) ,K < J should undergo a re-projection step 5

to locate them onto the image grid of the color sensor

Zpk = 5 (Zk , f ) , (16)

where Zpk are re-projected samples and f is a set of
camera parameters related to some multi-view geometry
model [48], [54]. At the initial SP clustering stage, there are
strictly K seeding points Qp

k coinciding with the projected
locations xpk of Zk . The same association is done for the output
samplesZk . The projected locations x

p
k appear non-uniformly

located with respect to the color map grip. Therefore, Qp
k are

found by a standard interpolation L (e.g. by bi-cubic
splines [55])

Qp
k = L

{
V,xpk

}
. (17)

The size of the seeding support region Sj for the SP clustering
operator 4 (5) is fixed by the scale difference between the
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TABLE 1. Metric results for V+Z Fusion Resampling Techniques.

FIGURE 11. Block diagram of proposed 3D fusion employing DRS.

dimensions of the two sensors: {W,H}V / {W,H}Z . Further-
more, a Richardson-Lucy iterative scheme [56] is applied
iteratively

E ik = Z i−1k − Zi−1k , E0
k = Z0

k (18)

Ẑ i+1 = Ẑ0
+ λLB

{
M
(
C,E ik

)}
, (19)

where λL is a regularization constant. For each iteration i,
the error residual E ik is used as a feedback input to DRS, and
further, the reconstructed result from B is accumulated for
initial reconstruction Ẑ0. Usually, very few iterations i (e.g.
i ∼ 3) are enough to converge to optimal output of Ẑ .

V. EXPERIMENTAL RESULTS
We present experiments demonstrating the utilization of the
proposed framework in two cases: depth encoding and fusion
of asymmetric V+Z data. To quantify the performance,
we use the standard mean absolute error (MAE), root mean
squared error (RMSE) and the related Peak-Signal-to-Noise
Ratio (PSNR) in [dB] between the processed and ground
true depth maps. For datasets, where geometry is repre-
sented by disparity maps, we use also the percentage of bad

pixels (BAD) which shows the percentage of disparities
which differ from the ground true disparity map by more
than one pixel [8]. The following datasets are used in the
experiments: Microsoft’s ‘‘Breakdancer’’ and ‘‘Ballet’’ [57];
Middlebury’s ‘‘Aloe’’, ‘‘Art’’, ‘‘Baby’’, ‘‘Dolls’’, ‘‘Teddy’’,
‘‘Cones’’, and ‘‘Bowling’’ [8]; and ToF data. The latter
contain scenes captured by asymmetric non-confocal V+Z
stereo-camera setup, where the depth sensor is a noisy Time-
of-Flight (ToF) camera with 120× 160 pixels spatial resolu-
tion, while the color camera is of resolution 610×810 pixels.

A. DEPTH COMPRESSION FOR VIEW-PLUS-DEPTH DATA
The quality metrics are calculated versus the encoding (com-
pression) rate in bits-per-pixel (bpp) measured on the encoded
isotropic map Pim. The first experiment characterizes the
gain obtained by applying the reconstruction filter B (7). The
results are shown in Figure 12 (a). The quality is varied by
varying the SP segmentation point on the plot indicates the
PSNR between either Z̄ or reconstructed (regularized) Ẑ and
the non-compressed depth. By increasing the number of SP
elements K , one gets higher quality for the price of high bit
rate. No further optimization is applied. Still, the proposed
technique reaches PSNR of about 40 dB for ≤ 0.1 bppwith
additional improvement of at least 2 dB when the reconstruc-
tion filter is applied.

For optimized encoding, we employ the classical ‘‘Rate-
distortion Optimization Scheme’’ [58]. The only varying
parameter in the system is the choice of the refinement
stage ρ for the initial segmentation, which in all experiments
was fixed to 256 elements, ρs.t.K ≈ 256. For the depth
encoding scheme that utilizes also predictive refinement and
the proposed YF encoding, the output results are compared
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FIGURE 12. Evaluation results for proposed depth encoding application for V+Z data: (a) performance of non-refined SP segmentation of depth maps
(number of elements are denoted as orders of two for each point); comparison to state-of-art methods; in terms of PSNR for some datasets: (b) ‘‘Ballet’’,
(c) ‘‘Breakdancer’’, (d) ‘‘Art’’, and (e) ‘‘Baby’’, (f) ‘‘Bowling’’; (g) in terms of BAD metric; example of encoded depth maps: (h) ‘‘Art’’ (t∼0.008 bpp),
(i) ‘‘Breakdancer’’ (t∼0.0014 bpp); method notation reference: ‘‘Platelet’’ [12], ‘‘P80’’ [15], ‘‘GSOs+CCLV’’, ‘‘GSOm+CERV’’ [16], ‘‘Milani’’ [18],
‘‘JPEG2000’’ [22], ‘‘H.264’’ [23].

against the works denoted as: ‘‘Platelet’’ [12], ’’Milani’’ [18],
‘‘P80’’ [15], ‘‘GSOs+CCLV’’, ‘‘GSOm+CERV’’ [16],
‘‘H.264’’ [23], ‘‘JPEG2000’’ [22]. Since ‘‘GSOs+CCLV’’
and ‘‘GSOm+CERV’’ perform optimally for different bitrate
zones, for those, a single plot is given that holds the bet-
ter metric value. The results are given in the plots of
Figure 12 (b-f) for different test data. The proposed method
is clearly highly competitive and performs best for very low
bitrate regions (e.g. ≤ 0.05), where the quality of the
decompressed output is above 45 dB. This is considered
near- lossless for most of the rendering applications utilizing
depth maps [59]. A depiction of decoded and reconstructed
depth map for ‘‘Art’’ data set for bit budget ∼= 0.008 bpp
is shown in Figure 12 (h) and ‘‘Breakdancer’’ data set
for bit-budget ∼= 0.0014 bpp is shown in Figure 12 (i).
When YF is applied for test sets with problematic zones
(e.g. ‘‘Ballet’’), the results are highly competitive for the
entire range. In another test, we calculate the BAD metric as
plotted in Figure 12 (g). The curves show that for a wide range

of tested stereo-matching datasets ofMiddlebury [8], the pro-
posed technique robustly fades the BAD percentage to about
3−5% for bitrates below < 0.2 bpp [60]. Such performance
is in par with the performance of the highest-ranked stereo-
matching estimation algorithms [8]. The performance of our
method is slightly inferior for datasets of low-depth contrast
and low-resolution (e.g. ‘‘Bowling’’ (c.f. Figure 12 (f)).

B. 3D RESAMPLING AND FUSION OF ASYMMETRIC
VIEW-PLUS-DEPTH DATA
For this experiment we use the dataset from [42] which
are commonly adopted benchmarking datasets. The datasets
provide projected irregular data samples Zpk ready to be
applied for 3D fusion and resampling. The GT depth maps
have been captured by another high-end high-definition depth
sensor. The scenes are referred to as ‘‘Shark’’, ‘‘Books’’
(c.f. Figures 13, 14), and ‘‘Devil’’.

Along with basic methods of ‘‘Voronoi (NN)’’, ‘‘Bilinear’’,
and ‘‘Bicubic’’ resampling, the proposed fusion technique has
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FIGURE 13. Results for various View-plus-depth fusion techniques for ‘‘Book’’ data set (visuals and zoomed details for the black window are given
in Figure 14): (a) Ground-truth with the low-resolution noisy input (bottom, scaled to fit); fusion results for (up – resulted depth maps, bottom - map
of residuals): (b) ‘‘Voronoi (NN)’’, (c) ‘‘Bilinear’’, (d) ‘‘GF’’ [41], (e) ‘‘AD’’ [28], (f) ‘‘Hyp’’ [37], (g) ‘‘Yang’’ [38], (h) ‘‘CLMF’’ [31], (i) ‘‘IMLS’’ [30],
(j) ‘‘TGV’’ [42], (k) ‘‘Proposed (SP)’’, (l) ‘‘Proposed (3 iter.)’’; color map indices are shown for depth (left) and residuals(right), in centimeters.

been compared to the performance of à number of state-of-
art 3D fusion methods ‘‘BF’’ [36], ‘‘AD’’ [28], ‘‘GF’’ [41],
‘‘Hyp’’ [37], ‘‘Yang’’ [38], ‘‘JGF’’ [29], ‘‘IMLS’’ [30],
‘‘CLMF’’ [31], ‘‘TGV’’ [42], and ‘‘Yang’’ [38]. The code
scripts for all the referenced methods have been obtained
online and run for the tuned or default settings, when the

authors of the particular approach provide code scripts for the
evaluation of same benchmarking test. The calculated MAE
and RMSE are given in Table 1; visual outputs of some of
the methods and scenes are given in Figure 13; along with
depiction of the absolute difference maps (maps of residuals)
with respect to GT data. The visual outputs for zoomed region
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FIGURE 14. Results for the zoomed detail in ‘‘Books’’ data set (c.f. Figure 13): (a) visible modality, (b) ground-truth reference, (c) noisy low-resolution
input, (d) ‘‘Voronoi (NN)‘‘, (e) ‘‘Bilinear’’, (f) ‘‘IMLS’’ [30], (g) ‘‘CLMF’’ [31], (h) ‘‘Yang’’ [38], (i) ‘‘Hyp’’ [37], (j) ‘‘TGV’’ [42], (k) ‘‘Proposed (3 iter.)’’.

(shown with black edge in Figures 13 (a) and 14 (a)) of a
miniature elephant sculpture is provided in Figure 14). The
proposed framework has been tested for three cases: ‘‘Pro-
posed (SP)’’ with no iterative refinement applied, and when
iterative refinement has been applied for i = 3 iterations
(‘‘Proposed 3 iter.’’). The results can be analyzed as follows:
the proposed framework in its basic form provides a balanced
output in terms of error metrics, when compared to similarly
performing methods e.g. ‘‘Hyp’’, ‘‘TGV’’ and ‘‘GF’’, where
‘‘TGV’’ has the most competitive results. However, ‘‘TGV’’ is
slow and took about 10 minutes on our computing platform,
while our proposed technique offers real-time performance.
Basic interpolation methods involving no cross-modality fil-
tering e.g. ‘‘Voronoi (NN)’’ and ‘‘Bilinear’’ perform surpris-
inglywell in some cases (c.f. Table 1), which can be explained
by the imperfectly aligned datamodalities for GT data. Cross-
modality filtering methods aim at finding edge congruency
between V and Z modalities, and any initial misalignment
leads to high error (c.f. Figure 13 (f-l)), which is not mani-
fested in the direct resamplingmethods (c.f. Figure 13 (b, c)).
However, visual appearance of the latter is not good in overall
(c.f. Figure 14 (d, e)).

VI. CONCLUSIONS
The presented work improved and streamlined our previous
depth compression method [45] to a more general aspect
of treating View-plus-depth data. Specifically, we relate
the depth representation with the underlined color modal-
ity in terms of super-pixels. To this end, we have pro-
posed a novel hierarchical super-pixel segmentation which
keeps the boundary congruency of successive layers. In
this way, the segmentation structure is very suitable for
depth modelling in terms of constant depth segments, and
its subsequent down-sampling for effective encoding or for
its color-adaptive reconstruction. More specifically, the SPs
allow for embedding also the down-sampled depth isotropic

maps and thus achieving better performance of the encoding
scheme. The reconstruction filter, which leads to smoothed
and well-aligned depth maps, has been made adaptive to
the size of the refining SPs. We have added a boundary
correction in terms of the proposed edge outlier encoding
protocol. Apart from effectively avoiding code redundancies
related to misaligned V+Z data, such boundary correction
provides a suitable alignment of the two modalities, which
is important for rendering virtual views.

The proposed encoding technique is highly competitive
in the very low bit rate region. The general framework is
also suitable for fusing non-confocal sensor data with asym-
metric spatial resolution. It is easily tunable for other image
processing tasks such as segmentation and multi-sensor data
sparsification.
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