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Abstract

The present work extends known finite-dimensional constrained optimal control realizations to the realm of well-posed reg-
ular linear infinite-dimensional systems modelled by partial differential equations. The structure-preserving Cayley-Tustin
transformation is utilized to approximate the continuous-time system by a discrete-time model representation without using
any spatial discretization or model reduction. The discrete-time model is utilized in the design of model predictive controller
accounting for optimality, stabilization, and input and output/state constraints in an explicit way. The proposed model pre-
dictive controller is dual-mode in the sense that predictive controller steers the state to a set where exponentially stabilizing
unconstrained feedback can be utilized without violating the constraints. The construction of the model predictive controller
leads to a finite-dimensional constrained quadratic optimization problem easily solvable by standard numerical methods. Two
representative examples of partial differential equations are considered.
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1 Introduction

The concept of regular linear systems came about at
the turn of 1990’s by the work of George Weiss [29–31].
This subclass of abstract linear systems is essentially
the Hilbert space counterpart of the finite-dimensional
systems described by the state-space equations:

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 (1a)

y(t) = Cx(t) +Du(t), (1b)

where, however, the operators A, B and C may be un-
bounded. Regular linear systems are often encountered
in the study of partial differential equations (PDEs) with
boundary controls and boundary observations, and they
cover a large class of abstract systems of practical inter-
est.

Over the past decade, there have been several attempts
to address control of distributed parameter systems
within an input and/or state constrained optimal con-
trol setting. There are several works on dynamical
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analysis and optimal control of hyperbolic PDEs, most
notably the work of Aksikas et al. on optimal linear
quadratic feedback controller design for hyperbolic
DPS [1, 2, 26]. Other contributions considered optimal
and model predictive control applied to Riesz spectral
systems (parabolic and higher order dissipative PDEs)
with a separable eigenspectrum of the underlying dis-
sipative spectral operator and successfully designed
algorithms that account for the input and state con-
straints [5, 13, 35]. In prior contributions, some type of
spatial approximation is applied to the PDE models to
arrive at finite-dimensional models utilized in the con-
troller design. As it will be claimed and demonstrated
in the subsequent sections, the linear distributed pa-
rameter system can be treated intact and controller
design can be accomplished without any spatial model
approximation or reduction.

The research area of model predictive control (MPC)
and contributions associated with this design method-
ology has flourished over past two decades [7,14,15,21].
The appealing nature of applying to the state the first
control input in a finite sequence of control inputs ob-
tained as a solution of an online constrained, discrete-
time, optimal control problem with explicit account for
the control and state constraints, and achieving stability
by adding a terminal cost or terminal constraints, or by
extending the horizon of the optimal control problem, is
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well understood and explored [14, 15, 22] but could not
be easily extended to the DPS setting. Contributions on
this topic include, e.g., [11] where the terminal penalty
approach was analyzed for infinite-dimensional systems
with bounded controls, [20] where MPC was formulated
for boundary controlled hyperbolic systems with zero
terminal constraint, and [19] where MPC was studied
for scalar nonlinear hyperbolic systems. For contribu-
tions on MPC for parabolic PDEs, see e.g. [12] and the
references therein.

In addition to the aforementioned contributions, un-
constrained nonlinear MPC for finite- and infinite-
dimensional systems has been considered in [6] with
emphasis on the computational complexity of the opti-
mization problem. However, the clear link between the
discrete constrained optimization based MPC design,
the well-understood modelling of distributed parameter
systems described by PDEs, and the well-established
control theory of linear DPS has not yet been established
apart from the recent work by the authors [10,34].

Motivated by the preceding, in this contribution, the
model predictive control for regular linear systems is
developed. In particular, the essential feature of the
discrete-time infinite-dimensional representation neces-
sary in the MPC design preserving the continuous-time
system properties is established by applying the Caley-
Tustin (CT) [9] time discretization, implying that no
spatial discretization or model reduction is required. At
the core of the CT transformation, one can find the ap-
plication of a Crank-Nicolson type time discretization
scheme which is a well-know implicit midpoint integra-
tion rule that is symmetric, symplectic (Hamiltonian
preserving) [8], and guarantees structure preserving
numerical integration so that stability and control-
lability are not altered by the discrete-time infinite-
dimensional model representation [4]. Furthermore,
boundary and/or point actuation transformed to the
discrete-setting yields bounded operators. Due to the
input/output convergence and the stability preserving
properties of the CT transformation [9], the developed
discrete-time control laws can be applied to achieve sta-
bilization also for the original continuous-time systems.
However, optimality of the controls in continuous time
cannot be guaranteed.

As the first main contribution, we develop a linear model
predictive control algorithm for stable regular linear sys-
tems and prove optimality and stability of the proposed
design (Theorem 1). The design is demonstrated on a
numerical example of the one-dimensional wave equa-
tion. The proposed design was introduced in [34] where
it was applied to specific PDE models. Here we extend
the design to the broad class of regular linear systems
and provide sufficient general conditions under which we
prove stability and optimality of the proposed design, in
which way we significantly extend the results of [34].

As the second main contribution, an MPC-based con-
trol design is presented to achieve constrained stabiliza-
tion of exponentially stabilizable regular linear systems
with proof on optimality and stability (Theorem 3). The
proposed design belongs to the class of dual-mode con-
trol [16,25] implying that the model predictive controller
steers the state to the neighborhood of the origin where
local unconstrained stabilizing feedback can be applied
without violating the input constraints. A stabilizing
terminal penalty is added to the MPC formulation to
guarantee stabilizability while no terminal constraints
are imposed. Stabilization of parabolic systems was con-
sidered in the MPC setting in [34], but there the unsta-
ble nodes were tackled with an additional equality con-
straint, which is only applicable for a finite number of
unstable eigenvalues. Our approach here is different as it
utilizes an additional terminal penalty function and can
be applied to arbitrary exponentially stabilizable regu-
lar linear systems, which is a major improvement to [34]
in terms of the broad class of systems the design can be
applied to. The proposed control design is demonstrated
on a simulation study of a tubular reactor that has in-
finitely many unstable eigenvalues.

The structure of the paper is as follows. In Section 2,
we present the notation, the mathematical preliminaries
concerning regular linear systems and the Cayley-Tustin
time discretization scheme. In Section 3, we present the
MPC problem, and in Sections 3.1 and 3.2, stability and
optimality results of the proposed MPC and dual-mode
control designs are presented. In Section 4, we present,
as an example of a stable system, the wave equation on
a one-dimensional spatial domain and compute the op-
erators corresponding to the Cayley-Tustin transform.
Furthermore, in Section 4.2, we derive a solution of the
Lyapunov equation for the wave equation as required
by the proposed MPC design. The performance of the
MPC is demonstrated by numerical simulations of the
controlled wave equation in Section 4.3. In Section 5,
the dual-mode controller design is demonstrated on an
unstable tubular reactor which is successfully stabilized
by the proposed control strategy. Finally, the paper is
concluded in Section 6.

2 Mathematical Preliminaries

2.1 Notation

Here L(X,Y ) denotes the set of bounded linear opera-
tors from the normed space X to the normed space Y .
The domain, range, kernel and resolvent of a linear op-
erator A are denoted by D(A), R(A), N (A) and ρ(A),
respectively. For a linear operator A : D(A) ⊂ X → X
and a fixed s0 ∈ ρ(A), define the scale spaces X1 :=

(D(A), ‖(s0−A) · ‖) and X−1 = (X, ‖(s0 −A−1)−1 · ‖),
where A−1 is the extension of A to X−1 [27, Sec. 2.10].
The scale spaces are related by X1 ⊂ X ⊂ X−1 where
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the inclusions are dense and with continuous embed-
dings. The Λ-extension of an operator P is denoted by
PΛ (see (2)).

2.2 Regular Linear Systems

Consider a well-posed linear system (A,B,C,D), where
A : D(A) ⊂ X → X is the generator of a C0-semigroup,
B ∈ L(U,X−1) is the control operator, C ∈ L(X1, Y ) is
the observation operator, and D ∈ L(U, Y ). We assume
that the spacesX, U , and Y are separable Hilbert spaces
and that U and Y are finite-dimensional.

The operator B is called an admissible input oper-
ator for A if for some τ > 0, the operator Φτ ∈
L(L2(0,∞;U), X−1) defined as [27, Sec. 4.2]:

Φτu =

τ∫
0

T (τ − s)Bu(s)ds,

satisfies R(Φτ ) ⊂ X. Correspondingly, the operator C
is called an admissible output operator for A if for some
τ > 0, there exists a Kτ such that [27, Sec. 4.3]:

τ∫
0

‖CT (s)x‖2ds ≤ Kτ‖x‖2, ∀x ∈ D(A).

Furthermore, if there exists aK such thatKτ ≤ K for all
τ > 0, then C is called infinite-time admissible. Infinite-
time admissibility of the observation operator is required
later on for the solvability of the Lyapunov equation (6).

Let G denote the transfer function of the system
(A,B,C,D). The transfer function is called regular if
lim
λ→∞

G(λ)u = Du for all u ∈ U [31, Thm. 1.3], in which

case (A,B,C,D) is called a regular linear system. The
transfer function G of a regular system is given by:

G(s) := CΛ(s−A−1)−1B +D,

where CΛ denotes the Λ-extension of the operator C
defined as [30]:

CΛx = lim
λ→∞

λC(λ−A)−1x, (2)

the domain of which consists of those elements x ∈ X
for which the limit exists. Regular linear system have
the usual state space presentation (1), where C must be
replaced by CΛ. Throughout this paper, we assume that
we are dealing with regular linear systems with admis-
sible B and C. However, we note that the admissibility
of B is only needed for the state-feedback stabilization
in Section 3.2 and can be lifted elsewhere.

2.3 Cayley-Tustin Time Discretization

Consider a system given in (1). Given a time discretiza-
tion parameter h > 0, the Tustin time discretization of
(1) is given by

x(jh)− x((j − 1)h)

h
≈ Ax(jh)− x((j − 1)h)

2
+Bu(jh)

y(jh) ≈ Cx(jh)− x((j − 1)h)

2
+Du(jh)

for j ≥ 1, where we omitted the spatial dependence of

x for brevity. Let u
(h)
j /
√
h be the approximation of u(t)

on the interval t ∈ ((j−1)h, jh), e.g., by the mean value
sampling used in [9]:

u
(h)
j√
h

=
1

h

jh∫
(j−1)h

u(t)dt.

It has been shown in [9] that the Cayley-Tustin dis-
cretization is a convergent time discretization scheme
for input-output stable system nodes satisfying dimU =

dimY = 1 in the sense that y
(h)
j /
√
h converges to y(t) in

several different ways as h→ 0. The discussion in [9, Sec.
6] further implies that the same holds for any finite di-

mensional U and Y . Thus, writing y
(h)
j /
√
h and u

(h)
j /
√
h

in place of y(jh) and u(jh), respectively, simple compu-
tations yield the Cayley-Tustin discretization of (1) as:

x(k) = Adx(k − 1) +Bdu(k), x(ζ, 0) = x0(ζ)

y(k) = Cdx(k − 1) +Ddu(k),

where:[
Ad Bd

Cd Dd

]
:=

[
−I + 2δ(δ −A)−1

√
2δ(δ −A−1)−1B

√
2δC(δ −A)−1 G(δ)

]

and δ := 2/h. Clearly one must have δ ∈ ρ(A), so that
the resolvent operator is well-defined. Thus, for a large
enough δ, the discretization can be applied to unstable
systems as well.

When a discrete-time control law u(k) is obtained, it
can be transferred to continuous time, e.g., by defining
u(t) = u(k)/

√
h for t ∈ [kh, (k + 1)h], and based on the

input/output convergence of the CT discretization [9],
we have that under the control u(t), the continuous-time

output behaves approximately as y(t) ≈ y(k)/
√
h. That

is, the continuous-time output approximately follows the
discrete-time output under the discrete-time control law.
As the CT transform also preserves input/output sta-
bility [9], a stabilizing discrete-time control law u(k) de-
signed for the CT discretized system can be used to sta-
bilize the original continuous-time as well.
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3 Model Predictive Control

The moving horizon regulator is based on a similar for-
mulation emerging from the finite-dimensional system
theory (see e.g. [18]). A corresponding controller in the
infinite-dimensional case is presented, e.g., in [34]. At a
given sampling time k, the objective function with con-
straints is given by:

min
u

∞∑
j=k+1

〈yk+j , Qyk+j〉Y + 〈uk+j , Ruk+j〉U

s.t. xj = Adxj−1 +Bduj
yj = Cdxj−1 +Dduj

umin ≤ uj ≤ umax, ymin ≤ yj ≤ ymax,

(3)

where Q and R are positive self-adjoint weights on the
outputs yj and inputs uj , respectively. Here it is assumed
for simplicity that U and Y are (finite-dimensional) real-
valued spaces. For consideration of the MPC with com-
plex input and output spaces, see [10], where the authors
considered MPC for the Schrödinger equation.

The infinite-horizon objective function (3) can be cast
into a finite-horizon objective function under certain as-
sumptions on the inputs beyond the control horizon.
Furthermore, a penalty term needs to be added to the
objective function to account for the inputs and outputs
beyond the horizon. We will present two approaches on
this depending on the stability of the original plant.

3.1 Stable systems

IfA is the generator of a (strongly) stable C0-semigroup,
we may assume that the input is zero beyond the con-
trol horizon N , i.e., uk+N+i = 0,∀i ∈ N, and add a cor-
responding output penalty term. Under the assumption
thatC is infinite-time admissible forA, the terminal out-
put penalty term can be written as a state penalty term,
so that the finite-horizon objective function is given by:

min
uN

k+N∑
j=k+1

〈yj , Qyj〉Y + 〈uj , Ruj〉U + 〈xk+N , Q̄xk+N 〉X

(4)
with the same constraints as in (3), and where N is the
length of the control horizon.

The operator Q̄ can be calculated from the positive self-
adjoint solution of the following discrete-time Lyapunov
equation:

A∗dQ̄Ad − Q̄ = −C∗dQCd, (5)

or equivalently (see [4, Thm. 2.4]) the continuous-time
Lyapunov equation:

A∗Q̄+ Q̄A = −C∗QC (6)

on the dual space of X−1. By the assumed infinite-time
admissibility of C and the stability of A, the operator
Q̄ ∈ L(X) given by [27, Thm. 5.1.1]:

Q̄x = lim
τ→∞

τ∫
0

T ∗(t)C∗QCT (t)xdt, ∀x ∈ D(A), (7)

is the unique positive self-adjoint solution of the Lya-
punov equations (6) and (5).

Now that we have established that the finite-horizon ob-
jective function (4) is well-defined, to further manipu-
late the objective function (4) we introduce the notation
Yk := (yk+n)Nn=1 ∈ Y N and Uk := (uk+n)Nn=1 ∈ UN .
Hence, a manipulation of the objective function (4) leads
to the following quadratic optimization problem:

min
Uk

〈Uk, HUk〉UN + 2〈Uk, Pxk〉UN + 〈xk, Q̄xk〉X , (8)

where H ∈ L(UN ) is positive and self-adjoint given by:

hi,j =


D∗dQDd +B∗dQ̄Bd +R, for i = j

D∗dQCdA
i−j−1
d Bd +B∗dQ̄A

i−j
d Bd, for i > j

h∗j,i, for i < j

and P ∈ L(X,UN ) is given by P = (D∗dQCdA
k−1
d +

B∗dQ̄A
k
d)Nk=1

The objective function (8) is subjected to constraints
Umin ≤ Uk ≤ Umax and Ymin ≤ (SUk + Txk) ≤ Ymax

which can be written in the form:
I

−I
S

−S

Uk ≤


Umax

−Umin

Ymax − Txk
−Ymin + Txk

 , (9)

where S ∈ L(UN , Y N ) is given by:

si,j =


Dd, for i = j

CdA
i−j−1
d Bd, for i > j

0, for i < j

and T ∈ L(X,Y N ) is given by T = (CdA
k−1
d )Nk=1.

Considering a finite-dimensional input space U = Rm,
the inner products in the objective function given in (8)
are simply vector products, and we have a finite dimen-
sional quadratic optimization problem:

min
Uk

J(Uk, xk) = UTk HUk + 2UTk (Pxk). (10)
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Note that the term
〈
xk, Q̄xk

〉
X

can be neglected as xk
is the initial condition for step k + 1 and cannot be
affected by the control input. Furthermore, as all the
operators related to the objective function and the lin-
ear constraints are bounded under the standing assump-
tions, the quadratic optimization problem is exactly of
the same form as the ones obtained for finite-dimensional
systems. Thus, we obtain the convergence and stability
results for free by the MPC theory on finite-dimensional
systems (see e.g. [25]). To highlight this observation, we
present the following result:

Theorem 1 Assume thatA is the generator of a strongly
stable C0-semigroup and that C is an infinite-time ad-
missible observation operator for A. Then, the input se-
quence (Uk) (and hence the sequence (uk)) obtained as
the solution of the feasible quadratic optimization prob-
lem (10) with constraints (9) converges to zero.

PROOF. By the preceding argumentation, the result-
ing MPC problem is equivalent to a finite-dimensional
one, and thus, the result follows from standard finite-
dimensional MPC theory.

Remark 2 Due to the assumed strong stability of the
semigroup generated by A, the state of the system under
the MPC control law goes asymptotically to zero for all
initial states x0 ∈ D(A) for which the problem is feasible
as the control inputs decay to zero by Theorem 1.

3.2 Exponentially stabilizable systems

Let us now assume that the pair (A,B) is exponentially
stablizable, i.e., there exists an admissible feedback op-
erator K ∈ L(X1, U) such that A + BKΛ is the gener-
ator of an exponentially stable C0-semigroup [32, Def.
3.1], and moreover that C is admissible for A + BKΛ.
As here input and output spaces are finite-dimensional,
the considered systems are uniformly line-regular in the
sense of [17, Def. 6.2.3], and thus, the optimal (in terms
of minimizing the continuous version of (3)) stabilizing
state feedback operator is obtained using the maximal
solution R̄ ∈ L(X) of the continuous-time Riccati equa-
tion [17, Def. 10.1.2]:

K∗SK = A∗R̄+ R̄A+ C∗QC (11)

onD(A), where S := R+D∗QD andK := −S−1(B∗ΛR̄+
D∗QC) yields the optimal feedback operator. Moreover,
by [4, Sect. 3] the solutions of (11) are equivalent to the
solutions of the discrete-time Riccati equation:

K∗dSdKd = A∗dR̄Ad − R̄+ C∗dQCd, (12)

where Sd := B∗dR̄Bd + R + D∗dQDd and Kd :=

−S−1
d (AdR̄Bd +D∗dQCd) yields the optimal state feed-

back for the discrete-time system with the maximal R̄

so that Ad + BdKd corresponds to the Cayley-Tustin
discretization of A + BKΛ. Thus, as K is a stabilizing
feedback for (A,B), equivalently AKd

:= Ad + BdKd is
asymptotically stable [4, Lem 2.2].

Returning to the MPC problem, we assume that the op-
timal state feedback is utilized beyond the control hori-
zon, i.e., uk+N+i = Kdxk+N+i−1,∀i ∈ N. Thus, the
input and output terminal penalties can be expressed
as state terminal penalties by solving the discrete-time
Lyapunov equations:

A∗Kd
Q̄1AKd

− Q̄1 = −K∗dRKd

A∗Kd
Q̄2AKd

− Q̄2 = −(Cd +KdDd)
∗Q(Cd +KdDd)

or equivalently their continuous-time counterparts:

A∗KQ̄1 + Q̄1AK = −K∗RK
A∗KQ̄2 + Q̄2AK = −(C +DK)∗Q(C +DK),

where AK := A + BKΛ. Note, however, that here it is
required that C is admissible for AK in order for the
Lyapunov equations to have solutions [27, Thm. 5.1.1].

Finally, the input and output terminal penalties are
given by

〈
xk+N , Q̄1xk+N

〉
and

〈
xk+N , Q̄2xk+N

〉
, respec-

tively. Thus, the quadratic formulation of the MPC prob-
lem is given as in the stable case, except that in H and
P the operator Q̄ must be replaced with Q̄1 + Q̄2.

Note that the full state feedback u = Kx optimally
solves the unconstrained minimization problem (3).
Thus, in order to utilize it in the constrained setting, we
need to first assume that the system is stabilizable by a
sequence of inputs satisfying the input constraints. Un-
der this assumption, MPC is utilized to steer the system
into a region where umin ≤ Kx ≤ umax, at which point
we can switch from MPC to the state feedback control.
Switching to feedback control is in fact necessary as
it has been shown in [23, Thm. 1.3] that an arbitrary
stabilizable system cannot be stabilized by piecewise
polynomial control. The existence of a constrained sta-
bilizing input sequence can be guaranteed by allowing
sufficiently high-gain inputs to cancel out the unstable
dynamics of the system.

Theorem 3 Assume that the system (1) is stabilizable
by a sequence of inputs satisfying the input constraints.
Then, the dual-mode control consisting of MPC and op-
timal state feedback optimally stabilizes the system while
satisfying the input constraints.

PROOF. As the stabilization cost is included in the
MPC problem, the optimal solutions of (10) asymptoti-
cally steer the state of the system towards zero. Once the
state reaches the region where state feedback satisfies the
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input constraints, MPC can be switched to unconstrained
gain based controller to finalize stabilization.

In practice, finding the optimal feedback K is rather
challenging as the Riccati equation (11) can rarely be
solved in analytic closed-form. Moreover, in general
there is no guarantee that C would be admissible for
the stabilized semigroup generated by A + BKΛ. How-
ever, some other stabilizing feedback can be used as a
terminal penalty and stabilizing feedback as well, such
as output feedback uk = Kyyk. This is a valid choice as
regularity of the system is preserved under output feed-
back (see [30]), and rather straightforward computa-
tions using Sherman-Morrison-Woodbury formula show
that Ad + BdKy(I − DdKy)−1Cd corresponds to the
Cayley-Tustin discretization of A+BKy(I−DKy)−1C,
i.e., A after output feedback. Apart from optimality, the
result of Theorem 3 holds for any stabilizing feedback.

4 Wave Equation

As an example of a stable system, consider the wave
equation on a 1-D spatial domain ζ ∈ [0, 1] with viscous
damping at one end and boundary control u and bound-
ary observation y at the other end given by:

∂2

∂t2
w(ζ, t) =

1

ρ(ζ)

∂

∂ζ

(
T (ζ)

∂

∂ζ
w(ζ, t)

)
(13a)

0 = T (ζ)
∂

∂ζ
w(1, t) +

κ

ρ

∂

∂t
w(1, t) (13b)

u(t) = T (ζ)
∂

∂ζ
w(0, t) (13c)

y(t) =
∂

∂t
w(0, t), (13d)

where κ > 0. For simplicity we assume that the mass
density ρ and the Young’s modulus T are constants. We
further assume that κ 6=

√
ρT , which will be needed in

Section 4.2.

In order to write (13) in the state-space form (1), let
us first define a new state variable x = [x1, x2]T :=
[ρ∂tw, ∂ζw]T with state space X = L2(0, 1;R2) and an
auxiliary matrix operator H(ζ) := diag(ρ(ζ)−1, T (ζ)).
Now the operator A can be defined as:

Ax(ζ, t) :=

[
0 1

1 0

]
∂

∂ζ
(H(ζ)x(ζ, t))

with domain

D(A) :=
{
x ∈ X : Hx ∈ H1(0, 1;R2), x ∈ N (B)

}
,

where Bx := [Tx2(1, ·) +κρ−1x1(1, ·), Tx2(0, ·)]T . It fol-
lows from [28, Thm. III.2] that A is the generator of an
exponentially stable C0-semigroup.

By [27, Rem. 10.1.5], the control operator B ∈
L(U,X−1) can be found by solving the abstract elliptic
equation

ρ−1f ′1(ζ) = sf2(ζ), T f ′2(ζ) = sf1(ζ)

Tf2(1) + κρ−1f1(1) = 0, T f2(0) = 1,
(14)

the solution of which satisfies f = (s−A−1)−1B for any
s ∈ ρ(A). While the abstract equation can be utilized
in finding B, we note that by solving the equation for
s = δ we directly obtain the discretized control operator
as Bd =

√
2δf .

The observation operator C ∈ L(X1, Y ) is simply de-
fined as Cx := ρ−1x1(0) on D(A) and can be extended
as such to Cx := ρ−1x1(0) on H1(0, 1;R2) (see [31, Rem
4.11]). Furthermore, the transfer function of (13) is given
by G(s) = C(s − A−1)−1B which can be evaluated by
solving (14) and applying C into the solution, that is
G(s) = Cf . Equivalently by [31, Def. 5.6, Thm. 5.8], the
transfer function can be written using the Λ-extension of
C asG(s) = CΛ(s−A−1)−1B+D, whereD = lim

s→∞
G(s).

We will utilize the former way of evaluating the transfer
function for Dd = G(δ). Finally, note that no extension
ofC is required for computingCd asR(δ−A)−1 ⊂ D(C).

4.1 Discretized Operators

Assume that ρ and T are constants and consider the
equation ẋ(t) = Ax(t). Using the Laplace transform
yields

sx(ζ, s)− x(ζ, 0) =
∂

∂ζ

([
0 T

ρ−1 0

]
x(ζ, s)

)
,

that is,

∂

∂ζ
x(ζ, s) =

[
0 ρs

T−1s 0

]
x(ζ, s)−

[
0 ρ

T−1 0

]
x(ζ, 0).

The above is an ordinary differential equation of the
form:

∂

∂ζ
x(ζ, s) = Ax(ζ, s)−Bx(ζ, 0),

the solution of which is given by:

x(ζ, s) = eAζx(0, s)−
ζ∫

0

eA(ζ−η)Bx(η, 0)dη (15)
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where:

eAζ =

[
cosh

(√
ρ
T sζ

) √
ρT sinh

(√
ρ
T sζ

)(√
ρT
)−1

sinh
(√

ρ
T sζ

)
cosh

(√
ρ
T sζ

) ]
.

Recall that D(A) has the boundary conditions Tx2(1)+
κ
ρx1(1) = 0 and Tx2(0) = 0, based on which x(0, s) in

(15) can be solved. Eventually, (15) is given by:

x(ζ, s) =
ρ

√
ρT sinh

(√
ρ
T s
)

+ κ cosh
(√

ρ
T s
) [ cosh

(√
ρ
T sζ

)(√
ρT
)−1

sinh
(√

ρ
T sζ

)]×
1∫

0

(
κ√
ρT

sinh
(√

ρ
T s(1− η)

)
+ cosh

(√
ρ
T s(1− η)

))
x1(η, 0)

+
(
κ cosh

(√
ρ
T s(1− η)

)
+
√
ρT sinh

(√
ρ
T s(1− η)

))
x2(η, 0)dη

−
ζ∫

0

[√
ρ
T sinh

(√
ρ
T s(ζ − η)

)
ρ cosh

(√
ρ
T s(ζ − η)

)
T−1 cosh

(√
ρ
T s(ζ − η)

) √
ρ
T sinh

(√
ρ
T s(ζ − η)

)]x(η, 0)dη

:= (s−A)−1x(ζ, 0),

which yields the expression for the resolvent operator,
from which we also obtain the operatorAd = −I+2δ(δ−
A)−1.

In order to find the expression for Bd, we recall that the
solution f of (14) satisfies f = (s − A−1)−1B for all
s ∈ ρ(A). Thus, setting s = δ, we obtain that Bd is given
by

Bd =
−
√

2δ
√
ρT sinh

(√
ρ
T δ
)

+ κ cosh
(√

ρ
T δ
)×[

ρ cosh
(√

ρ
T δ(ζ − 1)

)
+ κ
√

ρ
T sinh

(√
ρ
T δ(ζ + 1)

)√
ρ
T sinh

(√
ρ
T δ(ζ − 1)

)
− κ

T cosh
(√

ρ
T δ(ζ − 1)

)] .
Furthermore, we obtain:

Cdx(ζ) =

√
2δ

√
ρT sinh

(√
ρ
T δ
)
κ cosh

(√
ρ
T δ
)×

1∫
0

(
κ√
ρT

sinh
(√

ρ
T δ(1− η)

)
+ cosh

(√
ρ
T δ(1− η)

))
x1(η)

+
(
κ cosh

(√
ρ
T δ(1− η)

)
+
√
ρT sinh

(√
ρ
T δ(1− η)

))
x2(η)dη.

Finally, in order to compute Dd = G(δ) we evaluate the
transfer function at δ by C(δ − A−1)−1B, where (δ −
A−1)−1B is again obtained by solving (14) for s = δ

(which is equal to Bd/
√

2δ). Thus, Dd is given by

Dd := − 1√
ρT

κ sinh
(√

ρ
T δ
)

+
√
ρT cosh

(√
ρ
T δ
)

√
ρT sinh

(√
ρ
T δ
)

+ κ cosh
(√

ρ
T δ
) . (16)

In order to verify that the wave system (13) is regular, we
first utilize the fact that the C0-semigroup generated by
A is invertible [27, Def. 2.7.1], which we will show in the

next section when finding the spectrum of A. Thus, we
can utilize [27, Thm. 5.2.2, Cor. 5.2.4] by which B and
C are admissible if ‖(s−A−1)−1B‖ and ‖C(s−A)−1‖,
respectively, are uniformly bounded along a vertical line
on the complex right half plane, which are easy to verify
based on the expressions derived for Bd and Cd. Finally,
we note that lim

δ→∞
G(δ) = −(ρT )−1/2 to conclude that

(13) indeed is a regular linear system.

The adjoints of the discretized operators can be com-
puted based on the property that the adjointP ∗ of an op-
erator P satisfies< Px, y >=< x,P ∗y >with respect to
the corresponding inner products. Here the state-space
X is equipped with the L2 inner product, and the in-
put and output spaces are equipped with the real scalar
product. The computations for finding the adjoints are
straightforward and will be omitted here for brevity. An
explicit example of computing the adjoint operators can
be found e.g. in [10].

4.2 Solution of the Lyapunov equation

In this section, we derive the positive solution for the
continuous Lyapunov equation (6), which is realized by
utilizing the spectral representation of A. Let us at first
find the eigenvalues and eigenvectors of the operator
A. A direct computation shows that the solution of the
eigenvalue equation Aφk = λkφk is of the form:

φ1,k(ζ) = α exp

(√
ρ

T
λkζ

)
+ β exp

(√
ρ

T
λkζ

)
φ2,k(ζ) =

α√
ρT

exp

(√
ρ

T
λkζ

)
− β√

ρT
exp

(√
ρ

T
λkζ

)
.

Since φk ∈ D(A), we must have φ2,k(0) = 0, which yields
α = β. Thus, the eigenvectors of A are of the form:

φk(ζ) =

 cosh
(√

ρ
T λkζ

)
1√
ρT

sinh
(√

ρ
T λkζ

)
 ,

and the eigenvalues λk are determined from the condi-
tion Tφ2,k(1) = −κρφ1,k(1), i.e.,√

T

ρ
sinh

(√
ρ

T
λk

)
+
κ

ρ
cosh

(√
ρ

T
λk

)
= 0.

Using the exponential form of the hyperbolic functions
we obtain that one of the eigenvalues is given by:

λ0 =
1

2

√
T

ρ
log

(√
ρT − κ√
ρT + κ

)
, (17)

which is real if κ <
√
ρT . Finally, by the periodicity

of the exponential function along the imaginary axis,
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we obtain that in general the eigenvalues are given by
λk = λ0 +

√
T/ρkπi for k ∈ Z, which also implies that

the semigroup generated by A is invertible (see, e.g., [27,
Prop. 2.7.8]) as stated in the previous section.

We note that damped wave equations have been consid-
ered, e.g., in [3] and [33, Sect. 4] – both referring to the
original work by Rideau [24] – where similar spectra were
obtained. Furthermore, it can be seen from (17) that the
assumption κ 6=

√
ρT is required to ensure σ(A) 6= ∅,

which is further required by [3, Thm. 3.5] to ensure that
the eigenvectors of A constitute a Riesz basis for X. In-
deed, we can define an invertible operator:

M :=

[
cosh

(√
ρ
T λ0ζ

)
−
√
ρT sinh

(√
ρ
T λ0ζ

)
i sinh

(√
ρ
T λ0ζ

)
−i
√
ρT cosh

(√
ρ
T λ0ζ

)] ,
so that Mφk = [cos(kπζ), sin(kπζ)] is an orthonormal
basis inX, and the biorthogonal sequence [27, Def. 2.5.1](
φ̄k
)

to (φk) is given by φ̄k = M∗Mφk.

Let us now return to the Lyapunov equation and apply
it to an arbitrary x ∈ D(A):

A∗Q̄x+ Q̄Ax+ C∗QCx = 0.

By [27, Prop. 2.5.2], we can write x =
∑
k∈Z

〈
z, φ̄k

〉
φk

for every x ∈ X, which yields:∑
k∈Z

(
A∗Q̄

〈
x, φ̄k

〉
φk + Q̄A

〈
x, φ̄k

〉
φk + C∗QC

〈
x, φ̄k

〉
φk
)

= 0,

which by utilizing [27, Prop. 2.6.3] further yields:∑
k∈Z

(
(A∗ + λk)Q̄

〈
x, φ̄k

〉
φk + C∗QC

〈
x, φ̄k

〉
φk
)

= 0.

The above especially holds if (A∗ + λk)Q̄
〈
x, φ̄k

〉
φk =

−C∗QC
〈
x, φ̄k

〉
φk for all k ∈ Z. Thus, for an arbitrary

k ∈ Z, we obtain:

Q̄
〈
x, φ̄k

〉
φk = (−λk −A∗)−1C∗QC

〈
x, φ̄k

〉
φk.

As A is densely defined and −λ̄k ∈ ρ(A) since λk ∈
σ(A), we have by [27, Prop. 2.8.4] that (−λk −A∗)−1 =(
(−λ̄k −A)−1

)∗
, so we obtain :

Q̄
〈
x, φ̄k

〉
φk =

(
(−λ̄k −A)−1

)∗
C∗QC

〈
x, φ̄k

〉
φk

=
(
C(−λ̄k −A)−1

)∗
QC

〈
x, φ̄k

〉
φk.

Finally, summation over k ∈ Z yields the solution:

Q̄x =
∑
k∈Z

〈
x, φ̄k

〉 (
C(−λ̄k −A)−1

)∗
QCφk. (18)

Note that as Cφk = 1 and C(−λ∗k − A)−1 is uniformly
bounded for all k ∈ Z, the series in (18) is convergent.
Thus, for any x ∈ X we may approximate:

Q̄x ≈ Q̄Mx :=

M∑
k=−M

〈
x, φ̄k

〉 (
C(−λ̄k −A)−1

)∗
QCφk,

and it holds that lim
M→∞

‖Q̄x − Q̄Mx‖L2
= 0, by which

we can evaluate (18) to an arbitrary precision ε > 0 by
choosing a sufficiently large M . A suitable value for M
can determined, e.g., by numerical experiments.

4.3 Simulation results for the wave equation

Consider the wave equation (13) with the parameter
choices ρ = T = 1 and κ = 0.75. For the MPC, choose
the optimization horizon asN = 15 and choose the input
and output weights as R = 10 andQ = 0.5, respectively.
For the Cayley-Tustin discretization, choose h = 0.075
so that δ ≈ 26.67. For numerical integration, an adap-
tive approximation of dζ is used with 519 nodal points.
To approximate the solution of the Lyapunov equation
(18), we choose M = 100. The initial conditions for
the wave equation are given by ∂tw(ζ) = cos(πζ) and
∂ζw(ζ) = sin( 1

2πζ).

The input and output constraints −0.05 ≤ uk ≤ 0.05
and −0.025 ≤ yk ≤ 0.3 are displayed in Figure 1 along
with the control inputs u(k) obtained from the MPC
problem. The outputs of the system under the MPC and
under no control are displayed as well. It can be seen that
the MPC makes the output decay slightly faster in the
beginning. Then control is imposed to satisfy the output
constraints while the uncontrolled output violates them.
Finally, a minor stabilizing control effort is imposed be-
fore both the MPC input and the output decay to zero.
Naturally the uncontrolled output decays to zero as well
due to the exponential stability of the considered system.

-0.05

0

0.05

0 10 20 30 40

-0.1

0

0.1

0.2

0.3

MPC

no control

Figure 1. Above: MPC inputs u(k) and the input constraints.
Below: MPC and uncontrolled outputs and the output con-
straints.
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Figure 2 displays the velocity profiles of the system un-
der the model predictive control law and without con-
trol. No substantial differences can be observed in the
velocity profiles, which is rather expected as the out-
puts in Figure 1 were rather close to one another. We
note that under the nonsmooth MPC inputs the wave
system (13) only admits a mild solution (a solution on
X−1) [27, Prop. 4.2.5], due to which oscillations can be
seen in the controlled velocity profile below.

Figure 2. Above: the velocity profile of the wave equation
without control. Below: the velocity profile under the model
predicting control law.

5 Tubular reactor with recycle

As another example, consider a model of the mixing of
flow in a tubular reactor:

∂

∂t
x(ζ, t) = −v ∂

∂ζ
x(ζ, t) + αx(ζ, t) (19a)

x(0, t) = rx(1, t) + (1− r)u(t) (19b)

y(t) = x(1, t) (19c)

on X = L2(0, 1;R), where v, α > 0 are velocity and re-
action terms, respectively, and 0 < r < 1 is a recycle
term. The system has its spectrum at {α + v log(r) +
v2nπi}n∈Z, which for parameters v = 1, α = 1/2 and
r = 2/3 is on the right half plane. Thus, the system
is unstable but exponentially stabilizable, e.g., by out-
put feedback u(t) = −y(t). Under this feedback, (19b)
changes to x(0, t) = (2r−1)x(1, t) but otherwise the sys-
tem remains the same. Note that the recycle term r has
the largest effect on the location of the spectrum as in
the extremal case r = 0 the spectrum would be empty.

Similar to the wave equation in Section 4, we can com-
pute the resolvent operator and find the discretized op-
erators (Ad, Bd, Cd, Dd) and their adjoints. Since output
feedback is used as a stabilizing terminal cost and in this

case D = 0, for the terminal penalty one needs to solve
the Lyapunov equation A∗sQ̄ + Q̄As = −C∗(Q + R)C,
whereAs is the generator of the exponentially stable C0-
semigroup corresponding to the boundary control sys-
tem (19) under output feedback u(t) = −y(t). This can
be done as in Section 4.2, except that the normalized
eigenvectors of As already form an orthonormal basis in
X = L2(0, 1;R).

Similar to the wave equation example (13), the eigenval-
ues of (19) are located (before and after stabilization) on
a vertical line on the complex plane, and thus, the semi-
group associated with the system is invertible [27, Prop.
2.7.8]. Thus, the admissibility of the operators B and
C can be determined here as well based on Bd and Cd,
which together with the fact that lim

s→∞
G(s) = 0 con-

cludes that the system (19) is regular.

For the MPC problem formulation, the weights are cho-
sen as Q = 2 and R = 10, and the input constraints
are given by −0.15 ≤ uk ≤ 0.05 while no output con-
straints are imposed. The optimization horizon is cho-
sen as N = 10, and for approximation of the solution
of the Lyapunov equation, 201 eigenvectors of As are
used. For the Cayley-Tustin discretization, we choose
h = 0.1 so that δ = 20. The initial condition is given by
x0(ζ) = 1

2 sin(πζ). For numerical integration, an adap-
tive approximation of dζ is used with 510 nodal points.

In Figure 3, the dual-mode inputs and the outputs of
the system under the dual-mode control are presented.
For comparison, the output feedback control and the
output under the feedback control are also presented. It
can be seen that while the output feedback stabilizes the
system faster, it does not satisfy the input constraints
early on in the simulation. In the dual-model control,
the MPC inputs first steer the output close to zero while
satisfying the input constraints, and then at k = 80 it
is switched to output feedback u = −y which completes
the stabilization.

-0.2

-0.1

0

output feedback

MPC + feedback

0  50 100 150

0

0.1

0.2 output feedback

MPC + feedback

Figure 3. Above: dual-mode inputs, the input constraints
and the output feedback. Below: outputs of the system under
the dual-mode control and output feedback.
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In Figure 4, the state profiles of the tubular reactor are
displayed under the dual-mode and the feedback con-
trols. The states behave according to what could be ex-
pected based on the outputs, that is, both states decay
asymptotically to zero and the state under output feed-
back decays faster. Similar to the wave system, the non-
smooth inputs admit the system to only have a mild so-
lution, due to which there are oscillations in the state
profiles below.

Figure 4. Above: the state profile of the tubular reactor under
the-dual mode control. Below: the state profile under the
output feedback.

6 Conclusions

In this work, a linear model predictive controller for reg-
ular linear systems was designed, and it was shown that
for stable systems, stability of the zero output regulator
follows from the finite-dimensional MPC theory. For sta-
bilizable systems, constrained stabilization was achieved
by dual-mode control consisting of MPC and stabiliz-
ing feedback. The MPC design was demonstrated on an
illustrative example where it was implemented for the
boundary controlled wave equation. Constrained stabi-
lization was demonstrated on a tubular reactor which
had solely unstable eigenvalues. The performances of the
control strategies were illustrated with numerical simu-
lations.
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